@article{ShivhareErdmannHoermannetal.2018, author = {Shivhare, Rishi and Erdmann, Tim and Hoermann, Ulrich and Collado-Fregoso, Elisa and Zeiske, Stefan and Benduhn, Johannes and Ullbrich, Sascha and Huebner, Rene and Hambsch, Mike and Kiriy, Anton and Voit, Brigitte and Neher, Dieter and Vandewal, Koen and Mannsfeld, Stefan C. B.}, title = {Alkyl Branching Position in Diketopyrrolopyrrole Polymers}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b02739}, pages = {6801 -- 6809}, year = {2018}, abstract = {Diketopyrrolopyrrole (DPP)-based donor acceptor copolymers have gained a significant amount of research interest in the organic electronics community because of their high charge carrier mobilities in organic field-effect transistors (OFETs) and their ability to harvest near-infrared (NIR) photons in solar cells. In this study, we have synthesized four DPP based donor-acceptor copolymers with variations in the donor unit and the branching point of the solubilizing alkyl chains (at the second or sixth carbon position). Grazing incidence wide-angle X-ray scattering (GIWAXS) results suggest that moving the branching point further away from the polymer backbone increases the tendency for aggregation and yields polymer phases with a higher degree of crystallinity (DoC). The polymers were blended with PC70BM and used as active layers in solar cells. A careful analysis of the energetics of the neat polymer and blend films reveals that the charge-transfer state energy (E-CT) of the blend films lies exceptionally close to the singlet energy of the donor (E-D*), indicating near zero electron transfer losses. The difference between the optical gap and open-circuit voltage (V-OC) is therefore determined to be due to rather high nonradiative 418 +/- 13 mV) and unavoidable radiative voltage losses (approximate to 255 +/- 8 mV). Even though the four materials have similar optical gaps, the short-circuit current density (J(SC)) covers a vast span from 7 to 18 mA cm(-2) for the best performing system. Using photoluminescence (PL) quenching and transient charge extraction techniques, we quantify geminate and nongeminate losses and find that fewer excitons reach the donor-acceptor interface in polymers with further away branching points due to larger aggregate sizes. In these material systems, the photogeneration is therefore mainly limited by exciton harvesting efficiency.}, language = {en} } @article{LiBenduhnQiaoetal.2019, author = {Li, Tian-yi and Benduhn, Johannes and Qiao, Zhi and Liu, Yuan and Li, Yue and Shivhare, Rishi and Jaiser, Frank and Wang, Pei and Ma, Jie and Zeika, Olaf and Neher, Dieter and Mannsfeld, Stefan C. B. and Ma, Zaifei and Vandewal, Koen and Leo, Karl}, title = {Effect of H- and J-Aggregation on the Photophysical and Voltage Loss of Boron Dipyrromethene Small Molecules in Vacuum-Deposited Organic Solar Cells}, series = {The journal of physical chemistry letters}, volume = {10}, journal = {The journal of physical chemistry letters}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.9b01222}, pages = {2684 -- 2691}, year = {2019}, abstract = {An understanding of the factors limiting the open-circuit voltage (V-oc) and related photon energy loss mechanisms is critical to increase the power conversion efficiency (PCE) of small-molecule organic solar cells (OSCs), especially those with near-infrared (NIR) absorbers. In this work, two NIR boron dipyrromethene (BODIPY) molecules are characterized for application in planar (PHJ) and bulk (BHJ) heterojunction OSCs. When two H atoms are substituted by F atoms on the peripheral phenyl rings of the molecules, the molecular aggregation type in the thin film changes from the H-type to J-type. For PHJ devices, the nonradiative voltage loss of 0.35 V in the J-aggregated BODIPY is lower than that of 0.49 V in the H-aggregated device. In BHJ devices with a nonradiative voltage loss of 0.35 V, a PCE of 5.5\% is achieved with an external quantum efficiency (EQE) maximum of 68\% at 700 nm.}, language = {en} }