@article{VollbrechtBrus2020, author = {Vollbrecht, Joachim and Brus, Viktor V.}, title = {On charge carrier density in organic solar cells obtained via capacitance spectroscopy}, series = {Advanced electronic materials}, volume = {6}, journal = {Advanced electronic materials}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {2199-160X}, doi = {10.1002/aelm.202000517}, pages = {9}, year = {2020}, abstract = {The determination of the voltage-dependent density of free charge carriers via capacitance spectroscopy is considered an important step in the analysis of emerging photovoltaic technologies, such as organic and perovskite solar cells. In particular, an intimate knowledge of the density of free charge carriers is required for the determination of crucial parameters such as the effective mobility, charge carrier lifetime, nongeminate recombination coefficients, average extraction times, and competition factors. Hence, it is paramount to verify the validity of the commonly employed approaches to obtain the density of free charge carriers. The advantages, drawbacks, and limitations of the most common approaches are investigated in detail and strategies to mitigate misleading values are explored. To this end, two types of nonfullerene organic solar cells based on a PTB7-Th:ITIC-2F blend and a PM6:Y6 blend, respectively, are used as a case study to assess how subsequent analyses of the nongeminate recombination dynamics depend on the chosen approach to calculate the density of free charge carriers via capacitance spectroscopy.}, language = {en} }