@article{CaetanoCarvalhoMetzleretal.2020, author = {Caetano, Daniel L. Z. and Carvalho, Sidney Jurado de and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Critical adsorption of multiple polyelectrolytes onto a nanosphere}, series = {Interface : journal of the Royal Society}, volume = {17}, journal = {Interface : journal of the Royal Society}, number = {167}, publisher = {Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2020.0199}, pages = {10}, year = {2020}, abstract = {Employing extensive Monte Carlo computer simulations, we investigate in detail the properties of multichain adsorption of charged flexible polyelectrolytes (PEs) onto oppositely charged spherical nanoparticles (SNPs). We quantify the conditions of critical adsorption-the phase-separation curve between the adsorbed and desorbed states of the PEs-as a function of the SNP surface-charge density and the concentration of added salt. We study the degree of fluctuations of the PE-SNP electrostatic binding energy, which we use to quantify the emergence of the phase subtransitions, including a series of partially adsorbed PE configurations. We demonstrate how the phase-separation adsorption-desorption boundary shifts and splits into multiple subtransitions at low-salt conditions, thereby generalizing and extending the results for critical adsorption of a single PE onto the SNP. The current findings are relevant for finite concentrations of PEs around the attracting SNP, such as the conditions for PE adsorption onto globular proteins carrying opposite electric charges.}, language = {en} } @article{HollandMoritzGraupnerMoelleretal.2018, author = {Holland-Moritz, Henry and Graupner, Julia and M{\"o}ller, Wolfhard and Pacholski, Claudia and Ronning, Carsten}, title = {Dynamics of nanoparticle morphology under low energy ion irradiation}, series = {Nanotechnology}, volume = {29}, journal = {Nanotechnology}, number = {31}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0957-4484}, doi = {10.1088/1361-6528/aac36c}, pages = {7}, year = {2018}, abstract = {If nanostructures are irradiated with energetic ions, the mechanism of sputtering becomes important when the ion range matches about the size of the nanoparticle. Gold nanoparticles with diameters of similar to 50 nm on top of silicon substrates with a native oxide layer were irradiated by gallium ions with energies ranging from 1 to 30 keV in a focused ion beam system. High resolution in situ scanning electron microscopy imaging permits detailed insights in the dynamics of the morphology change and sputter yield. Compared to bulk-like structures or thin films, a pronounced shaping and enhanced sputtering in the nanostructures occurs, which enables a specific shaping of these structures using ion beams. This effect depends on the ratio of nanoparticle size and ion energy. In the investigated energy regime, the sputter yield increases at increasing ion energy and shows a distinct dependence on the nanoparticle size. The experimental findings are directly compared to Monte Carlo simulations obtained from iradina and TRI3DYN, where the latter takes into account dynamic morphological and compositional changes of the target.}, language = {en} }