@article{LiebigSarhanPrietzeletal.2018, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Th{\"u}nemann, Andreas F. and Bargheer, Matias and Koetz, Joachim}, title = {Undulated Gold Nanoplatelet Superstructures}, series = {Langmuir}, volume = {34}, journal = {Langmuir}, number = {15}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.7b02898}, pages = {4584 -- 4594}, year = {2018}, abstract = {Negatively charged flat gold nanotriangles, formed in a vesicular template phase and separated by an AOT-micelle-based depletion flocculation, were reloaded by adding a cationic polyelectrolyte, that is, a hyperbranched polyethylenimine (PEI). Heating the system to 100 degrees C in the presence of a gold chloride solution, the reduction process leads to the formation of gold nanoparticles inside the polymer shell surrounding the nanoplatelets. The gold nanoparticle formation is investigated by UV-vis spectroscopy, small-angle X-ray scattering, and dynamic light scattering measurements in combination with transmission electron microscopy. Spontaneously formed gold clusters in the hyperbranched PEI shell with an absorption maximum at 350 nm grow on the surface of the nanotriangles as hemispherical particles with diameters of similar to 6 nm. High-resolution micrographs show that the hemispherical gold particles are crystallized onto the {111} facets on the bottom and top of the platelet as well as on the edges without a grain boundary. Undulated gold nanoplatelet superstructures with special properties become available, which show a significantly modified performance in SERS-detected photocatalysis regarding both reactivity and enhancement factor.}, language = {en} } @article{BetkeLokstein2019, author = {Betke, Alexander and Lokstein, Heiko}, title = {Two-photon excitation spectroscopy of photosynthetic light-harvesting complexes and pigments}, series = {Faraday discussions}, volume = {216}, journal = {Faraday discussions}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-6640}, doi = {10.1039/c8fd00198g}, pages = {494 -- 506}, year = {2019}, abstract = {In addition to (bacterio)chlorophylls, (B)Chls, light-harvesting complexes (LHCs) bind carotenoids, and/or their oxygen derivatives, xanthophylls. Xanthophylls/carotenoids have pivotal functions in LHCs: in stabilization of the structure, as accessory light-harvesting pigments and, probably most importantly, in photoprotection. Xanthophylls are assumed to be involved in the not yet fully understood mechanism of energy-dependent (qE) non-photochemical quenching of Chl fluorescence (NPQ) in higher plants and algae. The so called "xanthophyll cycle" appears to be crucial in this regard. The molecular mechanism(s) of xanthophyll involvement in qE/NPQ have not been established, yet. Moreover, excitation energy transfer (EET) processes involving carotenoids are also difficult to study, due to the fact that transitions between the ground state (S-0, 1(1)A(g)(-)) and the lowest excited singlet state (S-1, 2(1)A(g)(-)) of carotenoids are optically one-photon forbidden ("dark"). Two-photon excitation spectroscopic techniques have been used for more than two decades to study one-photon forbidden states of carotenoids. In the current study, two-photon excitation profiles of LHCII samples containing different xanthophyll complements were measured in the presumed 1(1)A(g)(-) -> 2(1)A(g)(-) (S-0 -> S-1) transition spectral region of the xanthophylls, as well as for isolated chlorophylls a and b in solution. The results indicate that direct two-photon excitation of Chls in this spectral region is dominant over that by xanthophylls. Implications of the results for proposed mechanism(s) of qE/NPQ will be discussed.}, language = {en} } @article{YarmanKurbanoğluZebgeretal.2021, author = {Yarman, Aysu and Kurbanoğlu, Sevin{\c{c}} and Zebger, Ingo and Scheller, Frieder W.}, title = {Simple and robust}, series = {Sensors and actuators : B, Chemical : an international journal devoted to research and development of chemical transducers}, volume = {330}, journal = {Sensors and actuators : B, Chemical : an international journal devoted to research and development of chemical transducers}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0925-4005}, doi = {10.1016/j.snb.2020.129369}, pages = {12}, year = {2021}, abstract = {A spectrum of 7562 publications on Molecularly Imprinted Polymers (MIPs) has been presented in literature within the last ten years (Scopus, September 7, 2020). Around 10 \% of the papers published on MIPs describe the recognition of proteins. The straightforward synthesis of MIPs is a significant advantage as compared with the preparation of enzymes or antibodies. MIPs have been synthesized from only one up to six functional monomers while proteins are made up of 20 natural amino acids. Furthermore, they can be synthesized against structures of low immunogenicity and allow multi-analyte measurements via multi-target synthesis. Electrochemical methods allow simple polymer synthesis, removal of the template and readout. Among the different sensor configurations electrochemical MIP-sensors provide the broadest spectrum of protein analytes. The sensitivity of MIP-sensors is sufficiently high for biomarkers in the sub-nanomolar region, nevertheless the cross-reactivity of highly abundant proteins in human serum is still a challenge. MIPs for proteins offer innovative tools not only for clinical and environmental analysis, but also for bioimaging, therapy and protein engineering.}, language = {en} }