@article{MeyerPohlPetrovetal.2023, author = {Meyer, Dominique M.-A. and Pohl, Martin and Petrov, M. and Egberts, Kathrin}, title = {Mixing of materials in magnetized core-collapse supernova remnants}, series = {Monthly notices of the Royal Astronomical Society}, volume = {521}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stad906}, pages = {5354 -- 5371}, year = {2023}, abstract = {Core-collapse supernova remnants are structures of the interstellar medium (ISM) left behind the explosive death of most massive stars ( ?40 M-?). Since they result in the expansion of the supernova shock wave into the gaseous environment shaped by the star's wind history, their morphology constitutes an insight into the past evolution of their progenitor star. Particularly, fast-mo ving massiv e stars can produce asymmetric core-collapse superno va remnants. We inv estigate the mixing of materials in core-collapse supernova remnants generated by a moving massive 35 M-? star, in a magnetized ISM. Stellar rotation and the wind magnetic field are time-dependently included into the models which follow the entire evolution of the stellar surroundings from the zero-age main-sequence to 80 kyr after the supernova explosion. It is found that very little main-sequence material is present in remnants from moving stars, that the Wolf-Rayet wind mixes very efficiently within the 10 kyr after the explosion, while the red supergiant material is still unmixed by 30 per cent within 50 kyr after the supernova. Our results indicate that the faster the stellar motion, the more complex the internal organization of the supernova remnant and the more ef fecti ve the mixing of ejecta therein. In contrast, the mixing of stellar wind material is only weakly affected by progenitor motion, if at all.}, language = {en} } @article{SushchBrosePohletal.2022, author = {Sushch, Iurii and Brose, Robert and Pohl, Martin and Plotko, Pavlo and Das, Samata}, title = {Leptonic nonthermal emission from supernova remnants evolving in the circumstellar magnetic field}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {926}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac3cb8}, pages = {14}, year = {2022}, abstract = {The very-high-energy (VHE; E > 100 GeV) gamma-ray emission observed from a number of supernova remnants (SNRs) indicates particle acceleration to high energies at the shock of the remnants and a potentially significant contribution to Galactic cosmic rays. It is extremely difficult to determine whether protons (through hadronic interactions and subsequent pion decay) or electrons (through inverse Compton scattering on ambient photon fields) are responsible for this emission. For a successful diagnostic, a good understanding of the spatial and energy distribution of the underlying particle population is crucial. Most SNRs are created in core-collapse explosions and expand into the wind bubble of their progenitor stars. This circumstellar medium features a complex spatial distribution of gas and magnetic field which naturally strongly affects the resulting particle population. In this work, we conduct a detailed study of the spectro-spatial evolution of the electrons accelerated at the forward shock of core-collapse SNRs and their nonthermal radiation, using the RATPaC code that is designed for the time- and spatially dependent treatment of particle acceleration at SNR shocks. We focus on the impact of the spatially inhomogeneous magnetic field through the efficiency of diffusion and synchrotron cooling. It is demonstrated that the structure of the circumstellar magnetic field can leave strong signatures in the spectrum and morphology of the resulting nonthermal emission.}, language = {en} } @article{AlawashraPohl2022, author = {Alawashra, Mahmoud and Pohl, Martin}, title = {Suppression of the TeV Pair-beam-Plasma Instability by a Tangled Weak Intergalactic Magnetic Field}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {929}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac5a4b}, pages = {8}, year = {2022}, abstract = {We study the effect of a tangled sub-fG level intergalactic magnetic field (IGMF) on the electrostatic instability of a blazar-induced pair beam. Sufficiently strong IGMF may significantly deflect the TeV pair beams, which would reduce the flux of secondary cascade emission below the observational limits. A similar flux reduction may result from the electrostatic beam-plasma instability, which operates the best in the absence of IGMF. Considering IGMF with correlation lengths smaller than a kiloparsec, we find that weak magnetic fields increase the transverse momentum of the pair-beam particles, which dramatically reduces the linear growth rate of the electrostatic instability and hence the energy-loss rate of the pair beam. We show that the beam-plasma instability is eliminated as an effective energy-loss agent at a field strength three orders of magnitude below that needed to suppress the secondary cascade emission by magnetic deflection. For intermediate-strength IGMF, we do not know a viable process to explain the observed absence of GeV-scale cascade emission.}, language = {en} } @article{MeyerVelazquezPetruketal.2022, author = {Meyer, Dominique M.-A. and Velazquez, Pablo F. and Petruk, Oleh and Chiotellis, Alexandros and Pohl, Martin and Camps-Farina, Artemi and Petrov, Miroslav and Reynoso, Estela M. and Toledo-Roy, Juan C. and Schneiter, E. Matias and Castellanos-Ramirez, Antonio and Esquivel, Alejandro}, title = {Rectangular core-collapse supernova remnants}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1832}, pages = {594 -- 605}, year = {2022}, abstract = {Core-collapse supernova remnants are the gaseous nebulae of galactic interstellar media (ISM) formed after the explosive death of massive stars. Their morphology and emission properties depend both on the surrounding circumstellar structure shaped by the stellar wind-ISM interaction of the progenitor star and on the local conditions of the ambient medium. In the warm phase of the Galactic plane (n approximate to 1 cm(-3), T approximate to 8000 K), an organized magnetic field of strength 7 mu G has profound consequences on the morphology of the wind bubble of massive stars at rest. In this paper, we show through 2.5D magnetohydrodynamical simulations, in the context of a Wolf-Rayet-evolving 35 M 0 star, that it affects the development of its supernova remnant. When the supernova remnant reaches its middle age (15-20 kyr), it adopts a tubular shape that results from the interaction between the isotropic supernova ejecta and the anisotropic, magnetized, shocked stellar progenitor bubble into which the supernova blast wave expands. Our calculations for non-thermal emission, i.e. radio synchrotron and inverse-Compton radiation, reveal that such supernova remnants can, due to projection effects, appear as rectangular objects in certain cases. This mechanism for shaping a supernova remnant is similar to the bipolar and elliptical planetary nebula production by wind-wind interaction in the low-mass regime of stellar evolution. If such a rectangular core-collapse supernova remnant is created, the progenitor star must not have been a runaway star. We propose that such a mechanism is at work in the shaping of the asymmetric core-collapse supernova remnant Puppis A.}, language = {en} } @article{MorrisBohdanWeidletal.2022, author = {Morris, Paul J. and Bohdan, Artem and Weidl, Martin S. and Pohl, Martin}, title = {Preacceleration in the Electron Foreshock. I. Electron Acoustic Waves}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {931}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac69c7}, pages = {12}, year = {2022}, abstract = {To undergo diffusive shock acceleration, electrons need to be preaccelerated to increase their energies by several orders of magnitude, else their gyroradii will be smaller than the finite width of the shock. In oblique shocks, where the upstream magnetic field orientation is neither parallel nor perpendicular to the shock normal, electrons can escape to the shock upstream, modifying the shock foot to a region called the electron foreshock. To determine the preacceleration in this region, we undertake particle-in-cell simulations of oblique shocks while varying the obliquity and in-plane angles. We show that while the proportion of reflected electrons is negligible for theta (Bn) = 74.degrees 3, it increases to R similar to 5\% for theta (Bn) = 30 degrees, and that, via the electron acoustic instability, these electrons power electrostatic waves upstream with energy density proportional to R (0.6) and a wavelength approximate to 2 lambda (se), where lambda (se) is the electron skin length. While the initial reflection mechanism is typically a combination of shock-surfing acceleration and magnetic mirroring, we show that once the electrostatic waves have been generated upstream, they themselves can increase the momenta of upstream electrons parallel to the magnetic field. In less than or similar to 1\% of cases, upstream electrons are prematurely turned away from the shock and never injected downstream. In contrast, a similar fraction is rescattered back toward the shock after reflection, reinteracts with the shock with energies much greater than thermal, and crosses into the downstream.}, language = {en} } @article{MeyerPetrovPohl2020, author = {Meyer, Dominique M.-A. and Petrov, Mykola and Pohl, Martin}, title = {Wind nebulae and supernova remnants of very massive stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {493}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa554}, pages = {3548 -- 3564}, year = {2020}, abstract = {A very small fraction of (runaway) massive stars have masses exceeding 60-70 M-circle dot and are predicted to evolve as luminous blue variable and Wolf-Rayet stars before ending their lives as core-collapse supernovae. Our 2D axisymmetric hydrodynamical simulations explore how a fast wind (2000 km s(-1)) and high mass-loss rate (10(-5)M(circle dot) yr(-1)) can impact the morphology of the circumstellar medium. It is shaped as 100 pc-scale wind nebula that can be pierced by the driving star when it supersonically moves with velocity 20-40 km s(-1) through the interstellar medium (ISM) in the Galactic plane. The motion of such runaway stars displaces the position of the supernova explosion out of their bow shock nebula, imposing asymmetries to the eventual shock wave expansion and engendering Cygnus-loop-like supernova remnants. We conclude that the size (up to more than 200 pc) of the filamentary wind cavity in which the chemically enriched supernova ejecta expand, mixing efficiently the wind and ISM materials by at least 10 per cent in number density, can be used as a tracer of the runaway nature of the very massive progenitors of such 0.1Myr old remnants. Our results motivate further observational campaigns devoted to the bow shock of the very massive stars BD+43 degrees 3654 and to the close surroundings of the synchrotron-emitting Wolf-Rayet shell G2.4+1.4.}, language = {en} } @article{ArcherBenbowBirdetal.2019, author = {Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Chromey, A. J. and Cui, Wei and Falcone, A. and Feng, Qi and Finley, J. P. and Fortson, Lucy and Furniss, Amy and Gent, A. and Gueta, O. and Hanna, David and Hassan, T. and Hervet, Olivier and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McCann, A. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Pandel, D. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Richards, Gregory T. and Roache, E. and Sadeh, I and Santander, Marcos and Scott, S. S. and Sembroski, G. H. and Shahinyan, Karlen and Sushch, Iurii and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B.}, title = {A Search for Pulsed Very High-energy Gamma-Rays from 13 Young Pulsars in Archival VERITAS Data}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {876}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab14f4}, pages = {14}, year = {2019}, abstract = {We conduct a search for periodic emission in the very high-energy (VHE) gamma-ray band (E > 100 GeV) from a total of 13 pulsars in an archival VERITAS data set with a total exposure of over 450 hr. The set of pulsars includes many of the brightest young gamma-ray pulsars visible in the Northern Hemisphere. The data analysis resulted in nondetections of pulsed VHE gamma-rays from each pulsar. Upper limits on a potential VHE gamma-ray flux are derived at the 95\% confidence level above three energy thresholds using two methods. These are the first such searches for pulsed VHE emission from each of the pulsars, and the obtained limits constrain a possible flux component manifesting at VHEs as is seen for the Crab pulsar.}, language = {en} } @misc{BohdanNiemiecKobzaretal.2019, author = {Bohdan, Artem and Niemiec, Jacek and Kobzar, Oleh and Pohl, Martin}, title = {Erratum: Electron Pre-acceleration at Nonrelativistic High-Mach-number Perpendicular Shocks (The astrophysical journal : an international review of spectroscopy and astronomical physics. - Vol 847, 2017, 71)}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {880}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab2f89}, pages = {1}, year = {2019}, language = {en} } @article{BroseSushchPohletal.2019, author = {Brose, Robert and Sushch, Iuri and Pohl, Martin and Luken, K. J. and Filipovic, M. D. and Lin, R.}, title = {Nonthermal emission from the reverse shock of the youngest galactic supernova remnant G1.9+0.3}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {627}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834430}, pages = {9}, year = {2019}, abstract = {Context. The youngest Galactic supernova remnant G1.9+0.3 is an interesting target for next-generation gamma-ray observatories. So far, the remnant is only detected in the radio and the X-ray bands, but its young age of approximate to 100 yr and inferred shock speed of approximate to 14 000 km s(-1) could make it an efficient particle accelerator. Aims. We aim to model the observed radio and X-ray spectra together with the morphology of the remnant. At the same time, we aim to estimate the gamma-ray flux from the source and evaluate the prospects of its detection with future gamma-ray experiments. Methods. We performed spherical symmetric 1D simulations with the RATPaC code, in which we simultaneously solved the transport equation for cosmic rays, the transport equation for magnetic turbulence, and the hydro-dynamical equations for the gas flow. Separately computed distributions of the particles accelerated at the forward and the reverse shock were then used to calculate the spectra of synchrotron, inverse Compton, and pion-decay radiation from the source. Results. The emission from G1.9+0.3 can be self-consistently explained within the test-particle limit. We find that the X-ray flux is dominated by emission from the forward shock while most of the radio emission originates near the reverse shock, which makes G1.9+0.3 the first remnant with nonthermal radiation detected from the reverse shock. The flux of very-high-energy gamma-ray emission from G1.9+0.3 is expected to be close to the sensitivity threshold of the Cherenkov Telescope Array. The limited time available to grow large-scale turbulence limits the maximum energy of particles to values below 100 TeV, hence G1.9+0.3 is not a PeVatron.}, language = {en} } @article{IwamotoAmanoHoshinoetal.2019, author = {Iwamoto, Masanori and Amano, Takanobu and Hoshino, Masahiro and Matsumoto, Yosuke and Niemiec, Jacek and Ligorini, Arianna and Kobzar, Oleh and Pohl, Martin}, title = {Precursor Wave Amplification by Ion-Electron Coupling through Wakefield in Relativistic Shocks}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {883}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/ab4265}, pages = {6}, year = {2019}, abstract = {We investigated electromagnetic precursor wave emission in relativistic shocks by using two-dimensional particle-in-cell simulations. We found that the wave amplitude is significantly enhanced by a positive feedback process associated with ion-electron coupling through the wakefields for high magnetization. The wakefields collapse during the nonlinear process of the parametric decay instability in the near-upstream region, where nonthermal electrons and ions are generated. The intense coherent emission and the particle acceleration may operate in high-energy astrophysical objects.}, language = {en} }