@phdthesis{Mandal2020, author = {Mandal, Partha Sarathi}, title = {Controlling the surface band gap in topological states of matter}, doi = {10.25932/publishup-48045}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480459}, school = {Universit{\"a}t Potsdam}, pages = {122}, year = {2020}, abstract = {In the present study, we employ the angle-resolved photoemission spectroscopy (ARPES) technique to study the electronic structure of topological states of matter. In particular, the so-called topological crystalline insulators (TCIs) Pb1-xSnxSe and Pb1-xSnxTe, and the Mn-doped Z2 topological insulators (TIs) Bi2Te3 and Bi2Se3. The Z2 class of strong topological insulators is protected by time-reversal symmetry and is characterized by an odd number of metallic Dirac type surface states in the surface Brillouin zone. The topological crystalline insulators on the other hand are protected by the individual crystal symmetries and exhibit an even number of Dirac cones. The topological properties of the lead tin chalcogenides topological crystalline insulators can be tuned by temperature and composition. Here, we demonstrate that Bi-doping of the Pb1-xSnxSe(111) epilayers induces a quantum phase transition from a topological crystalline insulator to a Z2 topological insulator. This occurs because Bi-doping lifts the fourfold valley degeneracy in the bulk. As a consequence a gap appears at ⌈¯, while the three Dirac cones at the M̅ points of the surface Brillouin zone remain intact. We interpret this new phase transition is caused by lattice distortion. Our findings extend the topological phase diagram enormously and make strong topological insulators switchable by distortions or electric field. In contrast, the bulk Bi doping of epitaxial Pb1-xSnxTe(111) films induces a giant Rashba splitting at the surface that can be tuned by the doping level. Tight binding calculations identify their origin as Fermi level pinning by trap states at the surface. Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE) which provide quantized edge states for lossless charge transport applications. The edge states are hosted by a magnetic energy gap at the Dirac point which has not been experimentally observed to date. Our low temperature ARPES studies unambiguously reveal the magnetic gap of Mn-doped Bi2Te3. Our analysis shows a five times larger gap size below the Tc than theoretically predicted. We assign this enhancement to a remarkable structure modification induced by Mn doping. Instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3quintuple layers is formed. This enhances the wave-function overlap and gives rise to a large magnetic gap. Mn-doped Bi2Se3 forms similar heterostructure, but only a nonmagnetic gap is observed in this system. This correlates with the difference in magnetic anisotropy due to the much larger spin-orbit interaction in Bi2Te3 compared to Bi2Se3. These findings provide crucial insights for pushing lossless transport in topological insulators towards room-temperature applications.}, language = {en} } @phdthesis{Wang2020, author = {Wang, Jingwen}, title = {Electret properties of polypropylene with surface chemical modification and crystalline reconstruction}, doi = {10.25932/publishup-47027}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470271}, school = {Universit{\"a}t Potsdam}, pages = {vi, 121}, year = {2020}, abstract = {As one of the most-produced commodity polymers, polypropylene draws considerable scientific and commercial interest as an electret material. In the present thesis, the influence of the surface chemical modification and crystalline reconstruction on the electret properties of the polypropylene thin films will be discussed. The chemical treatment with orthophosphoric acid can significantly improve the surface charge stability of the polypropylene electrets by introducing phosphorus- and oxygen-containing structures onto the modified surface. The thermally stimulated discharge measurement and charge profiling by means of piezoelectrically generated pressure steps are used to investigate the electret behaviour. It is concluded that deep traps of limited number density are created during the treatment with inorganic chemicals. Hence, the improvement dramatically decreases when the surface-charge density is substantially higher than ±1.2×10^(-3) C·m^(-2). The newly formed traps also show a higher trapping energy for negative charges. The energetic distributions of the traps in the non-treated and chemically treated samples offer an insight regarding the surface and foreign-chemical dominance on the charge storage and transport in the polypropylene electrets. Additionally, different electret properties are observed on the polypropylene films with the spherulitic and transcrystalline structures. It indicates the dependence of the charge storage and transport on the crystallite and molecular orientations in the crystalline phase. In general, a more diverse crystalline growth in the spherulitic samples can result in a more complex energetic trap distribution, in comparison to that in a transcrystalline polypropylene. The double-layer transcrystalline polypropylene film with a crystalline interface in the middle can be obtained by crystallising the film in contact with rough moulding surfaces on both sides. A layer of heterocharges appears on each side of the interface in the double-layer transcrystalline polypropylene electrets after the thermal poling. However, there is no charge captured within the transcrystalline layers. The phenomenon reveals the importance of the crystalline interface in terms of creating traps with the higher activation energy in polypropylene. The present studies highlight the fact that even slight variations in the polypropylene film may lead to dramatic differences in its electret properties.}, language = {en} } @phdthesis{RodriguezZuluaga2020, author = {Rodriguez Zuluaga, Juan}, title = {Electric and magnetic characteristics of equatorial plasma depletions}, doi = {10.25932/publishup-44587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445873}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 87}, year = {2020}, abstract = {Near-Earth space represents a significant scientific and technological challenge. Particularly at magnetic low-latitudes, the horizontal magnetic field geometry at the dip equator and its closed field-lines support the existence of a distinct electric current system, abrupt electric field variations and the development of plasma irregularities. Of particular interest are small-scale irregularities associated with equatorial plasma depletions (EPDs). They are responsible for the disruption of trans-ionospheric radio waves used for navigation, communication, and Earth observation. The fast increase of satellite missions makes it imperative to study the near-Earth space, especially the phenomena known to harm space technology or disrupt their signals. EPDs correspond to the large-scale structure (i.e., tens to hundreds of kilometers) of topside F region irregularities commonly known as Spread F. They are observed as depleted-plasma density channels aligned with the ambient magnetic field in the post-sunset low-latitude ionosphere. Although the climatological variability of their occurrence in terms of season, longitude, local time and solar flux is well-known, their day to day variability is not. The sparse observations from ground-based instruments like radars and the few simultaneous measurements of ionospheric parameters by space-based instruments have left gaps in the knowledge of EPDs essential to comprehend their variability. In this dissertation, I profited from the unique observations of the ESA's Swarm constellation mission launched in November 2013 to tackle three issues that revealed novel and significant results on the current knowledge of EPDs. I used Swarm's measurements of the electron density, magnetic, and electric fields to answer, (1.) what is the direction of propagation of the electromagnetic energy associated with EPDs?, (2.) what are the spatial and temporal characteristics of the electric currents (field-aligned and diamagnetic currents) related to EPDs, i.e., seasonal/geographical, and local time dependencies?, and (3.) under what conditions does the balance between magnetic and plasma pressure across EPDs occur? The results indicate that: (1.) The electromagnetic energy associated with EPDs presents a preference for interhemispheric flows; that is, the related Poynting flux directs from one magnetic hemisphere to the other and varies with longitude and season. (2.) The field-aligned currents at the edges of EPDs are interhemispheric. They generally close in the hemisphere with the highest Pedersen conductance. Such hemispherical preference presents a seasonal/longitudinal dependence. The diamagnetic currents increase or decrease the magnetic pressure inside EPDs. These two effects rely on variations of the plasma temperature inside the EPDs that depend on longitude and local time. (3.) EPDs present lower or higher plasma pressure than the ambient. For low-pressure EPDs the plasma pressure gradients are mostly dominated by variations of the plasma density so that variations of the temperature are negligible. High-pressure EPDs suggest significant temperature variations with magnitudes of approximately twice the ambient. Since their occurrence is more frequent in the vicinity of the South Atlantic magnetic anomaly, such high temperatures are suggested to be due to particle precipitation. In a broader context, this dissertation shows how dedicated satellite missions with high-resolution capabilities improve the specification of the low-latitude ionospheric electrodynamics and expand knowledge on EPDs which is valuable for current and future communication, navigation, and Earth-observing missions. The contributions of this investigation represent several 'firsts' in the study of EPDs: (1.) The first observational evidence of interhemispheric electromagnetic energy flux and field-aligned currents. (2.) The first spatial and temporal characterization of EPDs based on their associated field-aligned and diamagnetic currents. (3.) The first evidence of high plasma pressure in regions of depleted plasma density in the ionosphere. These findings provide new insights that promise to advance our current knowledge of not only EPDs but the low-latitude post-sunset ionosphere environment.}, language = {en} } @phdthesis{Brose2020, author = {Brose, Robert}, title = {From dawn till dusk}, doi = {10.25932/publishup-47086}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470865}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 146}, year = {2020}, abstract = {Supernova remnants are believed to be the source of cosmic rays with energies up to 10^15 eV that are produced within our Galaxy. The acceleration mechanism associated with the collision-less shocks in supernova remnants - diffusive shock acceleration - predicts a spectral index of the accelerated non-thermal particles of s = 2. However, measurements of non-thermal emission in radio, X-rays and gamma-rays reveal significant deviations of the particles spectral index from the canonical value of s = 2. The youngest Galactic supernova remnant G1.9+0.3 is an interesting target for next-generation gamma-ray observatories. So far, the remnant is only detected in the radio and the X-ray bands, but its young age of ≈100 yrs and inferred shock speed of ≈ 14, 000 km/s could make it an efficient particle accelerator. I performed spherical symmetric 1D simulations with the RATPaC code, in which I simultaneously solved the transport equation for cosmic rays, the transport equation for magnetic turbulence, and the hydro-dynamical equations for the gas flow. Separately computed distributions of the particles accelerated at the forward and the reverse shock were then used to calculate the spectra of synchrotron, inverse Compton, and Pion-decay radiation from the source. The emission from G1.9+0.3 can be self-consistently explained within the test-particle limit. I find that the X-ray flux is dominated by emission from the forward shock while most of the radio emission originates near the reverse shock, which makes G1.9+0.3 the first remnant with non-thermal radiation detected from the reverse shock. The flux of very-high-energy gamma-ray emission from G1.9+0.3 is expected to be close to the sensitivity threshold of the Cherenkov Telescope Array. The limited time available to grow large-scale turbulence limits the maximum energy of particles to values below 100 TeV, hence G1.9+0.3 is not a PeVatron. Although there are many models for the acceleration of cosmic rays in Supernova remnants, the escape of cosmic rays from these sources is yet understudied. I use our time-dependent acceleration code RATPaC to study the acceleration of cosmic rays and their escape in post-adiabatic Supernova remnants and calculate the subsequent gamma-ray emission from inverse-Compton scattering and Pion decay. My simulations span 100,000 years, thus covering the free-expansion, the Sedov-Taylor, and the beginning of the post-adiabatic phase of the remnant's evolution. At later stages of the evolution cosmic rays over a wide range of energy can reside outside of the remnant, creating spectra that are softer than predicted by standard diffusive shock acceleration and feature breaks in the 10 - 100 GeV-range. The total spectrum of cosmic rays released into the interstellar medium has a spectral index of s ≈ 2.4 above roughly 10 GeV which is close to that required by Galactic propagation models. I further find the gamma-ray luminosity to peak around an age of 4,000 years for inverse-Compton-dominated high-energy emission. Remnants expanding in low-density media emit generally more inverse-Compton radiation matching the fact that the brightest known supernova remnants - RCW86, Vela Jr, HESSJ1721-347 and RXJ1713.7-3946 - are all expanding in low density environments. The importance of feedback from the cosmic-rays on the hydrodynamical evolution of the remnants is debated as a possibility to obtain soft cosmic-ray spectra at low energies. I performed spherically symmetric 1-D simulations with a modified version of the RATPaC code, in which I simultaneously solve the transport equation for cosmic rays and the hydrodynamical equations, including the back-reaction of the cosmic-ray pressure on the flow profiles. Besides the known modification of the flow profiles and the consequently curved cosmic-ray spectra, steady-state models for non-linear diffusive shock acceleration overpredict the total compression ratio that can be reached with cosmic-ray feedback, as there is limited time for building these modifications. Further, I find modifications to the downstream flow structure that change the evolutionary behavior of the remnant and trigger a cosmic-ray-induced instability close to the contact discontinuity, if and when the cosmic-ray pressure becomes dominant there.}, language = {en} } @phdthesis{Wolff2020, author = {Wolff, Christian Michael}, title = {Identification and reduction of losses in perovskite solar cells}, doi = {10.25932/publishup-47930}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-479301}, school = {Universit{\"a}t Potsdam}, pages = {x, 158}, year = {2020}, abstract = {Perovskite solar cells have become one of the most studied systems in the quest for new, cheap and efficient solar cell materials. Within a decade device efficiencies have risen to >25\% in single-junction and >29\% in tandem devices on top of silicon. This rapid improvement was in many ways fortunate, as e. g. the energy levels of commonly used halide perovskites are compatible with already existing materials from other photovoltaic technologies such as dye-sensitized or organic solar cells. Despite this rapid success, fundamental working principles must be understood to allow concerted further improvements. This thesis focuses on a comprehensive understanding of recombination processes in functioning devices. First the impact the energy level alignment between the perovskite and the electron transport layer based on fullerenes is investigated. This controversial topic is comprehensively addressed and recombination is mitigated through reducing the energy difference between the perovskite conduction band minimum and the LUMO of the fullerene. Additionally, an insulating blocking layer is introduced, which is even more effective in reducing this recombination, without compromising carrier collection and thus efficiency. With the rapid efficiency development (certified efficiencies have broken through the 20\% ceiling) and thousands of researchers working on perovskite-based optoelectronic devices, reliable protocols on how to reach these efficiencies are lacking. Having established robust methods for >20\% devices, while keeping track of possible pitfalls, a detailed description of the fabrication of perovskite solar cells at the highest efficiency level (>20\%) is provided. The fabrication of low-temperature p-i-n structured devices is described, commenting on important factors such as practical experience, processing atmosphere \& temperature, material purity and solution age. Analogous to reliable fabrication methods, a method to identify recombination losses is needed to further improve efficiencies. Thus, absolute photoluminescence is identified as a direct way to quantify the Quasi-Fermi level splitting of the perovskite absorber (1.21eV) and interfacial recombination losses the transport layers impose, reducing the latter to ~1.1eV. Implementing very thin interlayers at both the p- and n-interface (PFN-P2 and LiF, respectively), these losses are suppressed, enabling a VOC of up to 1.17eV. Optimizing the device dimensions and the bandgap, 20\% devices with 1cm2 active area are demonstrated. Another important consideration is the solar cells' stability if subjected to field-relevant stressors during operation. In particular these are heat, light, bias or a combination thereof. Perovskite layers - especially those incorporating organic cations - have been shown to degrade if subjected to these stressors. Keeping in mind that several interlayers have been successfully used to mitigate recombination losses, a family of perfluorinated self-assembled monolayers (X-PFCn, where X denotes I/Br and n = 7-12) are introduced as interlayers at the n-interface. Indeed, they reduce interfacial recombination losses enabling device efficiencies up to 21.3\%. Even more importantly they improve the stability of the devices. The solar cells with IPFC10 are stable over 3000h stored in the ambient and withstand a harsh 250h of MPP at 85◦C without appreciable efficiency losses. To advance further and improve device efficiencies, a sound understanding of the photophysics of a device is imperative. Many experimental observations in recent years have however drawn an inconclusive picture, often suffering from technical of physical impediments, disguising e. g. capacitive discharge as recombination dynamics. To circumvent these obstacles, fully operational, highly efficient perovskites solar cells are investigated by a combination of multiple optical and optoelectronic probes, allowing to draw a conclusive picture of the recombination dynamics in operation. Supported by drift-diffusion simulations, the device recombination dynamics can be fully described by a combination of first-, second- and third-order recombination and JV curves as well as luminescence efficiencies over multiple illumination intensities are well described within the model. On this basis steady state carrier densities, effective recombination constants, densities-of-states and effective masses are calculated, putting the devices at the brink of the radiative regime. Moreover, a comprehensive review of recombination in state-of-the-art devices is given, highlighting the importance of interfaces in nonradiative recombination. Different strategies to assess these are discussed, before emphasizing successful strategies to reduce interfacial recombination and pointing towards the necessary steps to further improve device efficiency and stability. Overall, the main findings represent an advancement in understanding loss mechanisms in highly efficient solar cells. Different reliable optoelectronic techniques are used and interfacial losses are found to be of grave importance for both efficiency and stability. Addressing the interfaces, several interlayers are introduced, which mitigate recombination losses and degradation.}, language = {en} } @phdthesis{Latza2020, author = {Latza, Victoria Maria}, title = {Interactions involving lipid-based surfaces}, doi = {10.25932/publishup-44559}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445593}, school = {Universit{\"a}t Potsdam}, pages = {217}, year = {2020}, abstract = {Interactions involving biological interfaces such as lipid-based membranes are of paramount importance for all life processes. The same also applies to artificial interfaces to which biological matter is exposed, for example the surfaces of drug delivery systems or implants. This thesis deals with the two main types of interface interactions, namely (i) interactions between a single interface and the molecular components of the surrounding aqueous medium and (ii) interactions between two interfaces. Each type is investigated with regard to an important scientific problem in the fields of biotechnology and biology: 1.) The adsorption of proteins to surfaces functionalized with hydrophilic polymer brushes; a process of great biomedical relevance in context with harmful foreign-body-response to implants and drug delivery systems. 2.) The influence of glycolipids on the interaction between lipid membranes; a hitherto largely unexplored phenomenon with potentially great biological relevance. Both problems are addressed with the help of (quasi-)planar, lipid-based model surfaces in combination with x-ray and neutron scattering techniques which yield detailed structural insights into the interaction processes. Regarding the adsorption of proteins to brush-functionalized surfaces, the first scenario considered is the exposure of the surfaces to human blood serum containing a multitude of protein species. Significant blood protein adsorption was observed despite the functionalization, which is commonly believed to act as a protein repellent. The adsorption consists of two distinct modes, namely strong adsorption to the brush grafting surface and weak adsorption to the brush itself. The second aspect investigated was the fate of the brush-functionalized surfaces when exposed to aqueous media containing immune proteins (antibodies) against the brush polymer, an emerging problem in current biomedical applications. To this end, it was found that antibody binding cannot be prevented by variation of the brush grafting density or the polymer length. This result motivates the search for alternative, strictly non-antigenic brush chemistries. With respect to the influence of glycolipids on the interaction between lipid membranes, this thesis focused on the glycolipids' ability to crosslink and thereby to tightly attract adjacent membranes. This adherence is due to preferential saccharide-saccharide interactions occurring among the glycolipid headgroups. This phenomenon had previously been described for lipids with special oligo-saccharide motifs. Here, it was investigated how common this phenomenon is among glycolipids with a variety of more abundant saccharide-headgroups. It was found that glycolipid-induced membrane crosslinking is equally observed for some of these abundant glycolipid types, strongly suggesting that this under-explored phenomenon is potentially of great biological relevance.}, language = {en} } @phdthesis{Landau2020, author = {Landau, Livnat}, title = {Mechanical stimulation of in-vitro tissue growth using magnetic beads}, pages = {112}, year = {2020}, abstract = {Cells and tissues are sensitive to mechanical forces applied to them. In particular, bone forming cells and connective tissues, composed of cells embedded in fibrous extracellular matrix (ECM), are continuously remodeled in response to the loads they bear. The mechanoresponses of cells embedded in tissue include proliferation, differentiation, apoptosis, internal signaling between cells, and formation and resorption of tissue. Experimental in-vitro systems of various designs have demonstrated that forces affect tissue growth, maturation and mineralization. However, the results depended on different parameters such as the type and magnitude of the force applied in each study. Some experiments demonstrated that applied forces increase cell proliferation and inhibit cell maturation rate, while other studies found the opposite effect. When the effect of different magnitudes of forces was compared, some studies showed that higher forces resulted in a cell proliferation increase or differentiation decrease, while other studies observed the opposite trend or no trend at all. In this study, MC3T3-E1 cells, a cell line of pre-osteoblasts (bone forming cells), was used. In this cell line, cell differentiation is known to accelerate after cells stop proliferating, typically at confluency. This makes this cell line an interesting subject for studying the influence of forces on the switch between the proliferation stage of the precursor cell and the differentiation to the mature osteoblasts. A new experimental system was designed to perform systematic investigations of the influence of the type and magnitude of forces on tissue growth. A single well plate contained an array of 80 rectangular pores. Each pore was seeded with MC3T3-E1 cells. The culture medium contained magnetic beads (MBs) of 4.5 μm in diameter that were incorporated into the pre-osteoblast cells. Using an N52 neodymium magnet, forces ranging over three orders of magnitude were applied to MBs incorporated in cells at 10 different distances from the magnet. The amount of formed tissue was assessed after 24 days of culture. The experimental design allowed to obtain data concerning (i) the influence of the type of the force (static, oscillating, no force) on tissue growth; (ii) the influence of the magnitude of force (pN-nN range); (iii) the effect of functionalizing the magnetic beads with the tripeptide Arg-Gly-Asp (RGD). To learn about cell differentiation state, in the final state of the tissue growth experiments, an analysis for the expression of alkaline phosphatase (ALP), a well - known marker of osteoblast differentiation, was performed. The experiments showed that the application of static magnetic forces increased tissue growth compared to control, while oscillating forces resulted in tissue growth reduction. A statistically significant positive correlation was found between the amount of tissue grown and the magnitude of the oscillating magnetic force. A positive but non-significant correlation of the amount of tissue with the magnitude of forces was obtained when static forces were applied. Functionalizing the MBs with RGD peptides and applying oscillating forces resulted in an increase of tissue growth relative to tissues incubated with "plain" epoxy MBs. ALP expression decreased as a function of the magnitude of force both when static and oscillating forces were applied. ALP stain intensity was reduced relative to control when oscillating forces were applied and was not significantly different than control for static forces. The suggested interpretation of the experimental findings is that larger mechanical forces delay cell maturation and keep the pre-osteoblasts in a more proliferative stage characterized by more tissue formed and lower expression of ALP. While the influence of the force magnitude can be well explained by an effect of the force on the switch between proliferation and differentiation, the influence of force type (static or oscillating) is less clear. In particular, it is challenging to reconcile the reduction of tissue formed under oscillating forces as compared to controls with the simultaneous reduction of ALP expression. To better understand this, it may be necessary to refine the staining protocol of the scaffolds and to include the amount and structure of ECM as well as other factors that were not monitored in the experiment and which may influence tissue growth and maturation. The developed experimental system proved well suited for a systematic and efficient study of the mechanoresponsiveness of tissue growth, it allowed a study of the dependence of tissue growth on force magnitude ranging over three orders of magnitude, and a comparison between the effect of static and oscillating forces. Future experiments can explore the multiple parameters that affect tissue growth as a function of the magnitude of the force: by applying different time-dependent forces; by extending the force range studied; or by using different cell lines and manipulating the mechanotransduction in the cells biochemically.}, language = {en} } @phdthesis{Aseev2020, author = {Aseev, Nikita}, title = {Modeling and understanding dynamics of charged particles in the Earth's inner magnetosphere}, doi = {10.25932/publishup-47921}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-479211}, school = {Universit{\"a}t Potsdam}, pages = {xxii, 154}, year = {2020}, abstract = {The Earth's inner magnetosphere is a very dynamic system, mostly driven by the external solar wind forcing exerted upon the magnetic field of our planet. Disturbances in the solar wind, such as coronal mass ejections and co-rotating interaction regions, cause geomagnetic storms, which lead to prominent changes in charged particle populations of the inner magnetosphere - the plasmasphere, ring current, and radiation belts. Satellites operating in the regions of elevated energetic and relativistic electron fluxes can be damaged by deep dielectric or surface charging during severe space weather events. Predicting the dynamics of the charged particles and mitigating their effects on the infrastructure is of particular importance, due to our increasing reliance on space technologies. The dynamics of particles in the plasmasphere, ring current, and radiation belts are strongly coupled by means of collisions and collisionless interactions with electromagnetic fields induced by the motion of charged particles. Multidimensional numerical models simplify the treatment of transport, acceleration, and loss processes of these particles, and allow us to predict how the near-Earth space environment responds to solar storms. The models inevitably rely on a number of simplifications and assumptions that affect model accuracy and complicate the interpretation of the results. In this dissertation, we quantify the processes that control electron dynamics in the inner magnetosphere, paying particular attention to the uncertainties of the employed numerical codes and tools. We use a set of convenient analytical solutions for advection and diffusion equations to test the accuracy and stability of the four-dimensional Versatile Electron Radiation Belt (VERB-4D) code. We show that numerical schemes implemented in the code converge to the analytical solutions and that the VERB-4D code demonstrates stable behavior independent of the assumed time step. The order of the numerical scheme for the convection equation is demonstrated to affect results of ring current and radiation belt simulations, and it is crucially important to use high-order numerical schemes to decrease numerical errors in the model. Using the thoroughly tested VERB-4D code, we model the dynamics of the ring current electrons during the 17 March 2013 storm. The discrepancies between the model and observations above 4.5 Earth's radii can be explained by uncertainties in the outer boundary conditions. Simulation results indicate that the electrons were transported from the geostationary orbit towards the Earth by the global-scale electric and magnetic fields. We investigate how simulation results depend on the input models and parameters. The model is shown to be particularly sensitive to the global electric field and electron lifetimes below 4.5 Earth's radii. The effects of radial diffusion and subauroral polarization streams are also quantified. We developed a data-assimilative code that blends together a convection model of energetic electron transport and loss and Van Allen Probes satellite data by means of the Kalman filter. We show that the Kalman filter can correct model uncertainties in the convection electric field, electron lifetimes, and boundary conditions. It is also demonstrated how the innovation vector - the difference between observations and model prediction - can be used to identify physical processes missing in the model of energetic electron dynamics. We computed radial profiles of phase space density of ultrarelativistic electrons, using Van Allen Probes measurements. We analyze the shape of the profiles during geomagnetically quiet and disturbed times and show that the formation of new local minimums in the radial profiles coincides with the ground observations of electromagnetic ion-cyclotron (EMIC) waves. This correlation indicates that EMIC waves are responsible for the loss of ultrarelativistic electrons from the heart of the outer radiation belt into the Earth's atmosphere.}, language = {en} } @phdthesis{Christ2020, author = {Christ, Simon}, title = {Morphological transitions of vesicles exposed to nonuniform spatio-temporal conditions}, doi = {10.25932/publishup-48078}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480788}, school = {Universit{\"a}t Potsdam}, pages = {viii, 105}, year = {2020}, abstract = {Giant unilamellar vesicles are an important tool in todays experimental efforts to understand the structure and behaviour of biological cells. Their simple structure allows the isolation of the physical elastic properties of the lipid membrane. A central physical property is the bending energy of the membrane, since the many different shapes of giant vesicles can be obtained by finding the minimum of the bending energy. In the spontaneous curvature model the bending energy is a function of the bending rigidity as well as the mean curvature and an additional parameter called the spontaneous curvature, which describes an internal preference of the lipid-bilayer to bend towards one side or the other. The spontaneous and mean curvature are local properties of the membrane. Additional constraints arise from the conservation of the membrane surface area and the enclosed volume, which are global properties. In this thesis the spontaneous curvature model is used to explain the experimental observation of a periodic shape oscillation of a giant unilamellar vesicle that was filled with a protein complex that periodically binds to and unbinds from the membrane. By assuming that the binding of the proteins to the membrane induces a change in the spontaneous curvature the experimentally observed shapes could successfully be explained. This involves the numerical solution of the differential equations as obtained from the minimization of the bending energy respecting the area and volume constraints, the so called shape equations. Vice versa this approach can be used to estimate the spontaneous curvature from experimentally measurable quantities. The second topic of this thesis is the analysis of concentration gradients in rigid conic membrane compartments. Gradients of an ideal gas due to gravity and gradients generated by the directed stochastic movement of molecular motors along a microtubulus were considered. It was possible to calculate the free energy and the bending energy analytically for the ideal gas. In the case of the non-equilibrium system with molecular motors, the characteristic length of the density profile, the jam-length, and its dependency on the opening angle of the conic compartment have been calculated in the mean-field limit. The mean field results agree qualitatively with stochastic particle simulations.}, language = {en} } @phdthesis{Graetz2020, author = {Gr{\"a}tz, Fabio M.}, title = {Nonlinear diffusion in granular gases and dense planetary rings}, school = {Universit{\"a}t Potsdam}, pages = {101}, year = {2020}, abstract = {Small moonlets or moons embedded in dense planetary rings create S-shaped density modulations called propellers if their masses are smaller than a certain threshold, alternatively they create a circumferential gap in the disk if the embedded body's mass exceeds this threshold (Spahn and Sremčević, 2000). The gravitational perturber scatters the ring particles, depletes the disk's density, and, thus, clears a gap, whereas counteracting viscous diffusion of the ring material has the tendency to close the created gap, thereby forming a propeller. Propeller objects were predicted by Spahn and Sremčević (2000) and Sremčević et al. (2002) and were later discovered by the Cassini space probe (Tiscareno et al., 2006, Sremčević et al., 2007, Tiscareno et al., 2008, and Tiscareno et al., 2010). The ring moons Pan and Daphnis are massive enough to maintain the circumferential Encke and Keeler gaps in Saturn's A ring and were detected by Showalter (1991) and Porco (2005) in Voyager and Cassini images, respectively. In this thesis, a nonlinear axisymmetric diffusion model is developed to describe radial density profiles of circumferential gaps in planetary rings created by embedded moons (Grätz et al., 2018). The model accounts for the gravitational scattering of the ring particles by the embedded moon and for the counteracting viscous diffusion of the ring matter back into the gap. With test particle simulations it is shown that the scattering of the ring particles passing the moon is larger for small impact parameters than estimated by Goldreich and Tremaine (1980). This is especially significant for the modeling of the Keeler gap. The model is applied to the Encke and Keeler gaps with the aim to estimate the shear viscosity of the ring in their vicinities. In addition, the model is used to analyze whether tiny icy moons whose dimensions lie below Cassini's resolution capabilities would be able to cause the poorly understood gap structure of the C ring and the Cassini Division. One of the most intriguing facets of Saturn's rings are the extremely sharp edges of the Encke and Keeler gaps: UVIS-scans of their gap edges show that the optical depth drops from order unity to zero over a range of far less than 100 m, a spatial scale comparable to the ring's vertical extent. This occurs despite the fact that the range over which a moon transfers angular momentum onto the ring material is much larger. Borderies et al. (1982, 1989) have shown that this striking feature is likely related to the local reversal of the usually outward-directed viscous transport of angular momentum in strongly perturbed regions. We have revised the Borderies et al. (1989) model using a granular flow model to define the shear and bulk viscosities, ν and ζ, in order to incorporate the angular momentum flux reversal effect into the axisymmetric diffusion model for circumferential gaps presented in this thesis (Grätz et al., 2019). The sharp Encke and Keeler gap edges are modeled and conclusions regarding the shear and bulk viscosities of the ring are discussed. Finally, we explore the question of whether the radial density profile of the central and outer A ring, recently measured by Tiscareno and Harris (2018) in the highest resolution to date, and in particular, the sharp outer A ring edge can be modeled consistently from the balance of gravitational scattering by several outer moons and the mass and momentum transport. To this aim, the developed model is extended to account for the inward drifts caused by multiple discrete and overlapping resonances with multiple outer satellites and is then used to hydrodynamically simulate the normalized surface mass density profile of the A ring. This section of the thesis is based on studies by Tajeddine et al. (2017a) who recently discussed the common misconception that the 7:6 resonance with Janus alone maintains the outer A ring edge, showing that the combined effort of several resonances with several outer moons is required to confine the A ring as observed by the Cassini spacecraft.}, language = {en} }