@phdthesis{Sun2024, author = {Sun, Bowen}, title = {Energy losses in low-offset organic solar cells}, doi = {10.25932/publishup-62143}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-621430}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 190}, year = {2024}, abstract = {Organic solar cells (OSCs) represent a new generation of solar cells with a range of captivating attributes including low-cost, light-weight, aesthetically pleasing appearance, and flexibility. Different from traditional silicon solar cells, the photon-electron conversion in OSCs is usually accomplished in an active layer formed by blending two kinds of organic molecules (donor and acceptor) with different energy levels together. The first part of this thesis focuses on a better understanding of the role of the energetic offset and each recombination channel on the performance of these low-offset OSCs. By combining advanced experimental techniques with optical and electrical simulation, the energetic offsets between CT and excitons, several important insights were achieved: 1. The short circuit current density and fill-factor of low-offset systems are largely determined by field-dependent charge generation in such low-offset OSCs. Interestingly, it is strongly evident that such field-dependent charge generation originates from a field-dependent exciton dissociation yield. 2. The reduced energetic offset was found to be accompanied by strongly enhanced bimolecular recombination coefficient, which cannot be explained solely by exciton repopulation from CT states. This implies the existence of another dark decay channel apart from CT. The second focus of the thesis was on the technical perspective. In this thesis, the influence of optical artifacts in differential absorption spectroscopy upon the change of sample configuration and active layer thickness was studied. It is exemplified and discussed thoroughly and systematically in terms of optical simulations and experiments, how optical artifacts originated from non-uniform carrier profile and interference can manipulate not only the measured spectra, but also the decay dynamics in various measurement conditions. In the end of this study, a generalized methodology based on an inverse optical transfer matrix formalism was provided to correct the spectra and decay dynamics manipulated by optical artifacts. Overall, this thesis paves the way for a deeper understanding of the keys toward higher PCEs in low-offset OSC devices, from the perspectives of both device physics and characterization techniques.}, language = {en} } @phdthesis{Shaw2024, author = {Shaw, Vasundhara}, title = {Cosmic-ray transport and signatures in their local environment}, doi = {10.25932/publishup-62019}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-620198}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2024}, abstract = {The origin and structure of magnetic fields in the Galaxy are largely unknown. What is known is that they are essential for several astrophysical processes, in particular the propagation of cosmic rays. Our ability to describe the propagation of cosmic rays through the Galaxy is severely limited by the lack of observational data needed to probe the structure of the Galactic magnetic field on many different length scales. This is particularly true for modelling the propagation of cosmic rays into the Galactic halo, where our knowledge of the magnetic field is particularly poor. In the last decade, observations of the Galactic halo in different frequency regimes have revealed the existence of out-of-plane bubble emission in the Galactic halo. In gamma rays these bubbles have been termed Fermi bubbles with a radial extent of ≈ 3 kpc and an azimuthal height of ≈ 6 kpc. The radio counterparts of the Fermi bubbles were seen by both the S-PASS telescopes and the Planck satellite, and showed a clear spatial overlap. The X-ray counterparts of the Fermi bubbles were named eROSITA bubbles after the eROSITA satellite, with a radial width of ≈ 7 kpc and an azimuthal height of ≈ 14 kpc. Taken together, these observations suggest the presence of large extended Galactic Halo Bubbles (GHB) and have stimulated interest in exploring the less explored Galactic halo. In this thesis, a new toy model (GHB model) for the magnetic field and non-thermal electron distribution in the Galactic halo has been proposed. The new toy model has been used to produce polarised synchrotron emission sky maps. Chi-square analysis was used to compare the synthetic skymaps with the Planck 30 GHz polarised skymaps. The obtained constraints on the strength and azimuthal height were found to be in agreement with the S-PASS radio observations. The upper, lower and best-fit values obtained from the above chi-squared analysis were used to generate three separate toy models. These three models were used to propagate ultra-high energy cosmic rays. This study was carried out for two potential sources, Centaurus A and NGC 253, to produce magnification maps and arrival direction skymaps. The simulated arrival direction skymaps were found to be consistent with the hotspots of Centaurus A and NGC 253 as seen in the observed arrival direction skymaps provided by the Pierre Auger Observatory (PAO). The turbulent magnetic field component of the GHB model was also used to investigate the extragalactic dipole suppression seen by PAO. UHECRs with an extragalactic dipole were forward-tracked through the turbulent GHB model at different field strengths. The suppression in the dipole due to the varying diffusion coefficient from the simulations was noted. The results could also be compared with an analytical analogy of electrostatics. The simulations of the extragalactic dipole suppression were in agreement with similar studies carried out for galactic cosmic rays.}, language = {en} } @phdthesis{Schroeder2024, author = {Schr{\"o}der, Jakob}, title = {Fundamentals of diffraction-based residual stress and texture analysis of laser powder bed fused Inconel 718}, doi = {10.25932/publishup-62197}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-621972}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 135}, year = {2024}, abstract = {Additive manufacturing (AM) processes enable the production of metal structures with exceptional design freedom, of which laser powder bed fusion (PBF-LB) is one of the most common. In this process, a laser melts a bed of loose feedstock powder particles layer-by-layer to build a structure with the desired geometry. During fabrication, the repeated melting and rapid, directional solidification create large temperature gradients that generate large thermal stress. This thermal stress can itself lead to cracking or delamination during fabrication. More often, large residual stresses remain in the final part as a footprint of the thermal stress. This residual stress can cause premature distortion or even failure of the part in service. Hence, knowledge of the residual stress field is critical for both process optimization and structural integrity. Diffraction-based techniques allow the non-destructive characterization of the residual stress fields. However, such methods require a good knowledge of the material of interest, as certain assumptions must be made to accurately determine residual stress. First, the measured lattice plane spacings must be converted to lattice strains with the knowledge of a strain-free material state. Second, the measured lattice strains must be related to the macroscopic stress using Hooke's law, which requires knowledge of the stiffness of the material. Since most crystal structures exhibit anisotropic material behavior, the elastic behavior is specific to each lattice plane of the single crystal. Thus, the use of individual lattice planes in monochromatic diffraction residual stress analysis requires knowledge of the lattice plane-specific elastic properties. In addition, knowledge of the microstructure of the material is required for a reliable assessment of residual stress. This work presents a toolbox for reliable diffraction-based residual stress analysis. This is presented for a nickel-based superalloy produced by PBF-LB. First, this work reviews the existing literature in the field of residual stress analysis of laser-based AM using diffraction-based techniques. Second, the elastic and plastic anisotropy of the nickel-based superalloy Inconel 718 produced by PBF-LB is studied using in situ energy dispersive synchrotron X-ray and neutron diffraction techniques. These experiments are complemented by ex situ material characterization techniques. These methods establish the relationship between the microstructure and texture of the material and its elastic and plastic anisotropy. Finally, surface, sub-surface, and bulk residual stress are determined using a texture-based approach. Uncertainties of different methods for obtaining stress-free reference values are discussed. The tensile behavior in the as-built condition is shown to be controlled by texture and cellular sub-grain structure, while in the heat-treated condition the precipitation of strengthening phases and grain morphology dictate the behavior. In fact, the results of this thesis show that the diffraction elastic constants depend on the underlying microstructure, including texture and grain morphology. For columnar microstructures in both as-built and heat-treated conditions, the diffraction elastic constants are best described by the Reuss iso-stress model. Furthermore, the low accumulation of intergranular strains during deformation demonstrates the robustness of using the 311 reflection for the diffraction-based residual stress analysis with columnar textured microstructures. The differences between texture-based and quasi-isotropic approaches for the residual stress analysis are shown to be insignificant in the observed case. However, the analysis of the sub-surface residual stress distributions show, that different scanning strategies result in a change in the orientation of the residual stress tensor. Furthermore, the location of the critical sub-surface tensile residual stress is related to the surface roughness and the microstructure. Finally, recommendations are given for the diffraction-based determination and evaluation of residual stress in textured additively manufactured alloys.}, language = {en} } @phdthesis{Ronneberger2024, author = {Ronneberger, Sebastian}, title = {Nanolayer Fused Deposition Modeling (NanoFDM)}, school = {Universit{\"a}t Potsdam}, pages = {170}, year = {2024}, language = {en} } @phdthesis{Littmann2024, author = {Littmann, Daniela-Christin}, title = {Large eddy simulations of the Arctic boundary layer around the MOSAiC drift track}, doi = {10.25932/publishup-62437}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-624374}, school = {Universit{\"a}t Potsdam}, pages = {xii, 110}, year = {2024}, abstract = {The icosahedral non-hydrostatic large eddy model (ICON-LEM) was applied around the drift track of the Multidisciplinary Observatory Study of the Arctic (MOSAiC) in 2019 and 2020. The model was set up with horizontal grid-scales between 100m and 800m on areas with radii of 17.5km and 140 km. At its lateral boundaries, the model was driven by analysis data from the German Weather Service (DWD), downscaled by ICON in limited area mode (ICON-LAM) with horizontal grid-scale of 3 km. The aim of this thesis was the investigation of the atmospheric boundary layer near the surface in the central Arctic during polar winter with a high-resolution mesoscale model. The default settings in ICON-LEM prevent the model from representing the exchange processes in the Arctic boundary layer in accordance to the MOSAiC observations. The implemented sea-ice scheme in ICON does not include a snow layer on sea-ice, which causes a too slow response of the sea-ice surface temperature to atmospheric changes. To allow the sea-ice surface to respond faster to changes in the atmosphere, the implemented sea-ice parameterization in ICON was extended with an adapted heat capacity term. The adapted sea-ice parameterization resulted in better agreement with the MOSAiC observations. However, the sea-ice surface temperature in the model is generally lower than observed due to biases in the downwelling long-wave radiation and the lack of complex surface structures, like leads. The large eddy resolving turbulence closure yielded a better representation of the lower boundary layer under strongly stable stratification than the non-eddy-resolving turbulence closure. Furthermore, the integration of leads into the sea-ice surface reduced the overestimation of the sensible heat flux for different weather conditions. The results of this work help to better understand boundary layer processes in the central Arctic during the polar night. High-resolving mesoscale simulations are able to represent temporally and spatially small interactions and help to further develop parameterizations also for the application in regional and global models.}, language = {en} } @phdthesis{GostkowskaLekner2024, author = {Gostkowska-Lekner, Natalia Katarzyna}, title = {Organic-inorganic hybrids based on P3HT and mesoporous silicon for thermoelectric applications}, doi = {10.25932/publishup-62047}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-620475}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2024}, abstract = {This thesis presents a comprehensive study on synthesis, structure and thermoelectric transport properties of organic-inorganic hybrids based on P3HT and porous silicon. The effect of embedding polymer in silicon pores on the electrical and thermal transport is studied. Morphological studies confirm successful polymer infiltration and diffusion doping with roughly 50\% of the pore space occupied by conjugated polymer. Synchrotron diffraction experiments reveal no specific ordering of the polymer inside the pores. P3HT-pSi hybrids show improved electrical transport by five orders of magnitude compared to porous silicon and power factor values comparable or exceeding other P3HT-inorganic hybrids. The analysis suggests different transport mechanisms in both materials. In pSi, the transport mechanism relates to a Meyer-Neldel compansation rule. The analysis of hybrids' data using the power law in Kang-Snyder model suggests that a doped polymer mainly provides charge carriers to the pSi matrix, similar to the behavior of a doped semiconductor. Heavily suppressed thermal transport in porous silicon is treated with a modified Landauer/Lundstrom model and effective medium theories, which reveal that pSi agrees well with the Kirkpatrick model with a 68\% percolation threshold. Thermal conductivities of hybrids show an increase compared to the empty pSi but the overall thermoelectric figure of merit ZT of P3HT-pSi hybrid exceeds both pSi and P3HT as well as bulk Si.}, language = {en} } @phdthesis{Doerries2024, author = {D{\"o}rries, Timo Julian}, title = {Anomalous transport and non-Gaussian dynamics in mobile-immobile models}, doi = {10.25932/publishup-63495}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-634959}, school = {Universit{\"a}t Potsdam}, pages = {ii, 177}, year = {2024}, abstract = {The mobile-immobile model (MIM) has been established in geoscience in the context of contaminant transport in groundwater. Here the tracer particles effectively immobilise, e.g., due to diffusion into dead-end pores or sorption. The main idea of the MIM is to split the total particle density into a mobile and an immobile density. Individual tracers switch between the mobile and immobile state following a two-state telegraph process, i.e., the residence times in each state are distributed exponentially. In geoscience the focus lies on the breakthrough curve (BTC), which is the concentration at a fixed location over time. We apply the MIM to biological experiments with a special focus on anomalous scaling regimes of the mean squared displacement (MSD) and non-Gaussian displacement distributions. As an exemplary system, we have analysed the motion of tau proteins, that diffuse freely inside axons of neurons. Their free diffusion thereby corresponds to the mobile state of the MIM. Tau proteins stochastically bind to microtubules, which effectively immobilises the tau proteins until they unbind and continue diffusing. Long immobilisation durations compared to the mobile durations give rise to distinct non-Gaussian Laplace shaped distributions. It is accompanied by a plateau in the MSD for initially mobile tracer particles at relevant intermediate timescales. An equilibrium fraction of initially mobile tracers gives rise to non-Gaussian displacements at intermediate timescales, while the MSD remains linear at all times. In another setting bio molecules diffuse in a biosensor and transiently bind to specific receptors, where advection becomes relevant in the mobile state. The plateau in the MSD observed for the advection-free setting and long immobilisation durations persists also for the case with advection. We find a new clear regime of anomalous diffusion with non-Gaussian distributions and a cubic scaling of the MSD. This regime emerges for initially mobile and for initially immobile tracers. For an equilibrium fraction of initially mobile tracers we observe an intermittent ballistic scaling of the MSD. The long-time effective diffusion coefficient is enhanced by advection, which we physically explain with the variance of mobile durations. Finally, we generalize the MIM to incorporate arbitrary immobilisation time distributions and focus on a Mittag-Leffler immobilisation time distribution with power-law tail ~ t^(-1-mu) with 0