@phdthesis{Zeitz2022, author = {Zeitz, Maria}, title = {Modeling the future resilience of the Greenland Ice Sheet}, doi = {10.25932/publishup-56883}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-568839}, school = {Universit{\"a}t Potsdam}, pages = {x, 189}, year = {2022}, abstract = {The Greenland Ice Sheet is the second-largest mass of ice on Earth. Being almost 2000 km long, more than 700 km wide, and more than 3 km thick at the summit, it holds enough ice to raise global sea levels by 7m if melted completely. Despite its massive size, it is particularly vulnerable to anthropogenic climate change: temperatures over the Greenland Ice Sheet have increased by more than 2.7◦C in the past 30 years, twice as much as the global mean temperature. Consequently, the ice sheet has been significantly losing mass since the 1980s and the rate of loss has increased sixfold since then. Moreover, it is one of the potential tipping elements of the Earth System, which might undergo irreversible change once a warming threshold is exceeded. This thesis aims at extending the understanding of the resilience of the Greenland Ice Sheet against global warming by analyzing processes and feedbacks relevant to its centennial to multi-millennial stability using ice sheet modeling. One of these feedbacks, the melt-elevation-feedback is driven by the temperature rise with decreasing altitudes: As the ice sheet melts, its thickness and surface elevation decrease, exposing the ice surface to warmer air and thus increasing the melt rates even further. The glacial isostatic adjustment (GIA) can partly mitigate this melt-elevation feedback as the bedrock lifts in response to an ice load decrease, forming the negative GIA feedback. In my thesis, I show that the interaction between these two competing feedbacks can lead to qualitatively different dynamical responses of the Greenland Ice Sheet to warming - from permanent loss to incomplete recovery, depending on the feedback parameters. My research shows that the interaction of those feedbacks can initiate self-sustained oscillations of the ice volume while the climate forcing remains constant. Furthermore, the increased surface melt changes the optical properties of the snow or ice surface, e.g. by lowering their albedo, which in turn enhances melt rates - a process known as the melt-albedo feedback. Process-based ice sheet models often neglect this melt-albedo feedback. To close this gap, I implemented a simplified version of the diurnal Energy Balance Model, a computationally efficient approach that can capture the first-order effects of the melt-albedo feedback, into the Parallel Ice Sheet Model (PISM). Using the coupled model, I show in warming experiments that the melt-albedo feedback almost doubles the ice loss until the year 2300 under the low greenhouse gas emission scenario RCP2.6, compared to simulations where the melt-albedo feedback is neglected, and adds up to 58\% additional ice loss under the high emission scenario RCP8.5. Moreover, I find that the melt-albedo feedback dominates the ice loss until 2300, compared to the melt-elevation feedback. Another process that could influence the resilience of the Greenland Ice Sheet is the warming induced softening of the ice and the resulting increase in flow. In my thesis, I show with PISM how the uncertainty in Glen's flow law impacts the simulated response to warming. In a flow line setup at fixed climatic mass balance, the uncertainty in flow parameters leads to a range of ice loss comparable to the range caused by different warming levels. While I focus on fundamental processes, feedbacks, and their interactions in the first three projects of my thesis, I also explore the impact of specific climate scenarios on the sea level rise contribution of the Greenland Ice Sheet. To increase the carbon budget flexibility, some warming scenarios - while still staying within the limits of the Paris Agreement - include a temporal overshoot of global warming. I show that an overshoot by 0.4◦C increases the short-term and long-term ice loss from Greenland by several centimeters. The long-term increase is driven by the warming at high latitudes, which persists even when global warming is reversed. This leads to a substantial long-term commitment of the sea level rise contribution from the Greenland Ice Sheet. Overall, in my thesis I show that the melt-albedo feedback is most relevant for the ice loss of the Greenland Ice Sheet on centennial timescales. In contrast, the melt-elevation feedback and its interplay with the GIA feedback become increasingly relevant on millennial timescales. All of these influence the resilience of the Greenland Ice Sheet against global warming, in the near future and on the long term.}, language = {en} } @article{WeimarKoehliBudachetal.2020, author = {Weimar, Jannis and K{\"o}hli, Markus and Budach, Christian and Schmidt, Ulrich}, title = {Large-scale boron-lined neutron detection systems as a 3He alternative for Cosmic Ray Neutron Sensing}, series = {Frontiers in water}, volume = {2}, journal = {Frontiers in water}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2624-9375}, doi = {10.3389/frwa.2020.00016}, pages = {17}, year = {2020}, abstract = {Cosmic-Ray neutron sensors are widely used to determine soil moisture on the hectare scale. Precise measurements, especially in the case of mobile application, demand for neutron detectors with high counting rates and high signal-to-noise ratios. For a long time Cosmic Ray Neutron Sensing (CRNS) instruments have relied on He-3 as an efficient neutron converter. Its ongoing scarcity demands for technological solutions using alternative converters, which are Li-6 and B-10. Recent developments lead to a modular neutron detector consisting of several B-10-lined proportional counter tubes, which feature high counting rates via its large surface area. The modularity allows for individual shieldings of different segments within the detector featuring the capability of gaining spectral information about the detected neutrons. This opens the possibility for active signal correction, especially useful when applied to mobile measurements, where the influence of constantly changing near-field to the overall signal should be corrected. Furthermore, the signal-to-noise ratio could be increased by combining pulse height and pulse length spectra to discriminate between neutrons and other environmental radiation. This novel detector therefore combines high-selective counting electronics with large-scale instrumentation technology.}, language = {en} } @article{MatzkaSiddiquiLilienkampetal.2017, author = {Matzka, J{\"u}rgen and Siddiqui, Tarique Adnan and Lilienkamp, Henning and Stolle, Claudia and Veliz, Oscar}, title = {Quantifying solar flux and geomagnetic main field influence on the equatorial ionospheric current system at the geomagnetic observatory Huancayo}, series = {Journal of Atmospheric and Solar-Terrestrial Physics}, volume = {163}, journal = {Journal of Atmospheric and Solar-Terrestrial Physics}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-6826}, doi = {10.1016/j.jastp.2017.04.014}, pages = {120 -- 125}, year = {2017}, abstract = {In order to analyse the sensitivity of the equatorial ionospheric current system, i.e. the solar quiet current system and the equatorial electrojet, to solar cycle variations and to the secular variation of the geomagnetic main field, we have analysed 51 years (1935-1985) of geomagnetic observatory data from Huancayo, Peru. This period is ideal to analyse the influence of the main field strength on the amplitude of the quiet daily variation, since the main field decreases significantly from 1935 to 1985, while the distance of the magnetic equator to the observatory remains stable. To this end, we digitised some 19 years of hourly mean values of the horizontal component (H), which have not been available digitally at the World Data Centres. Then, the sensitivity of the amplitude Ali of the quiet daily variation to both solar cycle variations (in terms of sunspot numbers and solar flux F10.7) and changes of the geomagnetic main field strength (due to secular variation) was determined. We confirm an increase of Delta H for the decreasing main field in this period, as expected from physics based models (Cnossen, 2016), but with a somewhat smaller rate of 4.4\% (5.8\% considering one standard error) compared with 6.9\% predicted by the physics based model.}, language = {en} } @article{KaramzadehToularoudHeimannDahmetal.2018, author = {Karamzadeh Toularoud, Nasim and Heimann, Sebastian and Dahm, Torsten and Kr{\"u}ger, Frank}, title = {Application based seismological array design by seismicity scenario modelling}, series = {Geophysical journal international}, volume = {216}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, pages = {1711 -- 1727}, year = {2018}, abstract = {The design of an array configuration is an important task in array seismology during experiment planning. Often the array response function (ARF), which depends on the relative position of array stations and frequency content of the incoming signals, is used as the array design criterion. In practice, additional constraints and parameters have to be taken into account, for example, land ownership, site-specific noise levels or characteristics of the seismic sources under investigation. In this study, a flexible array design framework is introduced that implements a customizable scenario modelling and optimization scheme by making use of synthetic seismograms. Using synthetic seismograms to evaluate array performance makes it possible to consider additional constraints. We suggest to use synthetic array beamforming as an array design criterion instead of the ARF. The objective function of the optimization scheme is defined according to the monitoring goals, and may consist of a number of subfunctions. The array design framework is exemplified by designing a seven-station small-scale array to monitor earthquake swarm activity in Northwest Bohemia/Vogtland in central Europe. Two subfunctions are introduced to verify the accuracy of horizontal slowness estimation; one to suppress aliasing effects due to possible secondary lobes of synthetic array beamforming calculated in horizontal slowness space and the other to reduce the event's mislocation caused by miscalculation of the horizontal slowness vector. Subsequently, a weighting technique is applied to combine the subfunctions into one single scalar objective function to use in the optimization process.}, language = {en} } @article{HeidenreichBuchnerWalzetal.2021, author = {Heidenreich, Anna and Buchner, Martin and Walz, Ariane and Thieken, Annegret}, title = {How to deal with heat stress at an open-air event?}, series = {Weather, climate \& society / American Meteorological Society}, volume = {13}, journal = {Weather, climate \& society / American Meteorological Society}, number = {4}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {1948-8327}, doi = {10.1175/WCAS-D-21-0027.1}, pages = {989 -- 1002}, year = {2021}, abstract = {Heat waves are increasingly common in many countries across the globe, and also in Germany, where this study is set. Heat poses severe health risks, especially for vulnerable groups such as the elderly and children. This case study explores visitors' behavior and perceptions during six weekends in the summer of 2018 at a 6-month open-air horticultural show. Data from a face-to-face survey (n = 306) and behavioral observations ( n = 2750) were examined by using correlation analyses, ANOVA, and multiple regression analyses. Differences in weather perception, risk awareness, adaptive behavior, and activity level were observed between rainy days (maximum daily temperature, 25 degrees C), warmsummer days (25 degrees-30 degrees C), and hot days (>30 degrees C). Respondents reported a high level of heat risk awareness, butmost (90\%) were unaware of actual heat warnings. During hot days, more adaptive measures were reported and observed. Older respondents reported taking the highest number of adaptive measures. We observed the highest level of adaptation in children, but they also showed the highest activity level. From our results we discuss how to facilitate individual adaptation to heat stress at open-air events by taking the heterogeneity of visitors into account. To mitigate negative health outcomes for citizens in the future, we argue for tailored risk communication aimed at vulnerable groups.
SIGNIFICANCE STATEMENT: People around the world are facing higher average temperatures. While higher temperatures make open-air events a popular leisure time activity in summer, heat waves are a threat to health and life. Since there is not much research on how visitors of such events perceive different weather conditions-especially hot temperatures-we explored this in our case study in southern Germany at an open-air horticultural show in the summer of 2018. We discovered deficits both in people's awareness of current heat risk and the heat adaptation they carry out themselves. Future research should further investigate risk perception and adaptation behavior of private individuals, whereas event organizers and authorities need to continually focus on risk communication and facilitate individual adaptation of their visitors.}, language = {en} } @article{CanoCrespoTraxlThonicke2021, author = {Cano Crespo, Ana and Traxl, Dominik and Thonicke, Kirsten}, title = {Spatio-temporal patterns of extreme fires in Amazonian forests}, series = {European physical journal special topics}, volume = {230}, journal = {European physical journal special topics}, number = {14-15}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {1951-6355}, doi = {10.1140/epjs/s11734-021-00164-3}, pages = {3033 -- 3044}, year = {2021}, abstract = {Fires are a fundamental part of the Earth System. In the last decades, they have been altering ecosystem structure, biogeochemical cycles and atmospheric composition with unprecedented rapidity. In this study, we implement a complex networks-based methodology to track individual fires over space and time. We focus on extreme fires-the 5\% most intense fires-in the tropical forests of the Brazilian Legal Amazon over the period 2002-2019. We analyse the interannual variability in the number and spatial patterns of extreme forest fires in years with diverse climatic conditions and anthropogenic pressure to examine potential synergies between climate and anthropogenic drivers. We observe that major droughts, that increase forest flammability, co-occur with high extreme fire years but also that it is fundamental to consider anthropogenic activities to understand the distribution of extreme fires. Deforestation fires, fires escaping from managed lands, and other types of forest degradation and fragmentation provide the ignition sources for fires to ignite in the forests. We find that all extreme forest fires identified are located within a 0.5-km distance from forest edges, and up to 56\% of them are within a 1-km distance from roads (which increases to 73\% within 5 km), showing a strong correlation that defines spatial patterns of extreme fires.}, language = {en} } @article{AgarwalGuntuBanerjeeetal.2022, author = {Agarwal, Ankit and Guntu, Ravikumar and Banerjee, Abhirup and Gadhawe, Mayuri Ashokrao and Marwan, Norbert}, title = {A complex network approach to study the extreme precipitation patterns in a river basin}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {32}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {1}, publisher = {American Institute of Physics}, address = {Woodbury, NY}, issn = {1054-1500}, doi = {10.1063/5.0072520}, pages = {12}, year = {2022}, abstract = {The quantification of spatial propagation of extreme precipitation events is vital in water resources planning and disaster mitigation. However, quantifying these extreme events has always been challenging as many traditional methods are insufficient to capture the nonlinear interrelationships between extreme event time series. Therefore, it is crucial to develop suitable methods for analyzing the dynamics of extreme events over a river basin with a diverse climate and complicated topography. Over the last decade, complex network analysis emerged as a powerful tool to study the intricate spatiotemporal relationship between many variables in a compact way. In this study, we employ two nonlinear concepts of event synchronization and edit distance to investigate the extreme precipitation pattern in the Ganga river basin. We use the network degree to understand the spatial synchronization pattern of extreme rainfall and identify essential sites in the river basin with respect to potential prediction skills. The study also attempts to quantify the influence of precipitation seasonality and topography on extreme events. The findings of the study reveal that (1) the network degree is decreased in the southwest to northwest direction, (2) the timing of 50th percentile precipitation within a year influences the spatial distribution of degree, (3) the timing is inversely related to elevation, and (4) the lower elevation greatly influences connectivity of the sites. The study highlights that edit distance could be a promising alternative to analyze event-like data by incorporating event time and amplitude and constructing complex networks of climate extremes.}, language = {en} }