@phdthesis{Lysyakova2017, author = {Lysyakova, Liudmila}, title = {Interaction of azobenzene containing surfactants with plasmonic nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403359}, school = {Universit{\"a}t Potsdam}, pages = {viii, 155}, year = {2017}, abstract = {The goal of this thesis is related to the question how to introduce and combine simultaneously plasmonic and photoswitching properties to different nano-objects. In this thesis I investigate the complexes between noble metal nanoparticles and cationic surfactants containing azobenzene units in their hydrophobic tail, employing absorption spectroscopy, surface zeta-potential, and electron microscopy. In the first part of the thesis, the formation of complexes between negatively charged laser ablated spherical gold nanoparticles and cationic azobenzene surfactants in trans- conformation is explored. It is shown that the constitution of the complexes strongly depends on a surfactant-to-gold molar ratio. At certain molar ratios, particle self-assembly into nanochains and their aggregation have been registered. At higher surfactant concentrations, the surface charge of nanoparticles turned positive, attributed to the formation of the stabilizing double layer of azobenzene surfactants on gold nanoparticle surfaces. These gold-surfactant complexes remained colloidally stable. UV light induced trans-cis isomerization of azobenzene surfactant molecules and thus perturbed the stabilizing surfactant shell, causing nanoparticle aggregation. The results obtained with silver and silicon nanoparticles mimick those for the comprehensively studied gold nanoparticles, corroborating the proposed model of complex formation. In the second part, the interaction between plasmonic metal nanoparticles (Au, Ag, Pd, alloy Au-Ag, Au-Pd), as well as silicon nanoparticles, and cis-isomers of azobenzene containing compounds is addressed. Cis-trans thermal isomerization of azobenzenes was enhanced in the presence of gold, palladium, and alloy gold-palladium nanoparticles. The influence of the surfactant structure and nanoparticle material on the azobenzene isomerization rate is expounded. Gold nanoparticles showed superior catalytic activity for thermal cis-trans isomerization of azobenzenes. In a joint project with theoretical chemists, we demonstrated that the possible physical origin of this phenomenon is the electron transfer between azobenzene moieties and nanoparticle surfaces. In the third part, complexes between gold nanorods and azobenzene surfactants with different tail length were exposed to UV and blue light, inducing trans-cis and cis-trans isomerization of surfactant, respectively. At the same time, the position of longitudinal plasmonic absorption maximum of gold nanorods experienced reversible shift responding to the changes in local dielectric environment. Surface plasmon resonance condition allowed the estimation of the refractive index of azobenzene containing surfactants in solution.}, language = {en} }