@article{ThapaWyłomańskaSikoraetal.2021, author = {Thapa, Samudrajit and Wyłomańska, Agnieszka and Sikora, Grzegorz and Wagner, Caroline E. and Krapf, Diego and Kantz, Holger and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Leveraging large-deviation statistics to decipher the stochastic properties of measured trajectories}, series = {New Journal of Physics}, volume = {23}, journal = {New Journal of Physics}, publisher = {Dt. Physikalische Ges. ; IOP}, address = {Bad Honnef ; London}, issn = {1367-2630}, doi = {10.1088/1367-2630/abd50e}, pages = {22}, year = {2021}, abstract = {Extensive time-series encoding the position of particles such as viruses, vesicles, or individualproteins are routinely garnered insingle-particle tracking experiments or supercomputing studies.They contain vital clues on how viruses spread or drugs may be delivered in biological cells.Similar time-series are being recorded of stock values in financial markets and of climate data.Such time-series are most typically evaluated in terms of time-averaged mean-squareddisplacements (TAMSDs), which remain random variables for finite measurement times. Theirstatistical properties are different for differentphysical stochastic processes, thus allowing us toextract valuable information on the stochastic process itself. To exploit the full potential of thestatistical information encoded in measured time-series we here propose an easy-to-implementand computationally inexpensive new methodology, based on deviations of the TAMSD from itsensemble average counterpart. Specifically, we use the upper bound of these deviations forBrownian motion (BM) to check the applicability of this approach to simulated and real data sets.By comparing the probability of deviations fordifferent data sets, we demonstrate how thetheoretical bound for BM reveals additional information about observed stochastic processes. Weapply the large-deviation method to data sets of tracer beads tracked in aqueous solution, tracerbeads measured in mucin hydrogels, and of geographic surface temperature anomalies. Ouranalysis shows how the large-deviation properties can be efficiently used as a simple yet effectiveroutine test to reject the BM hypothesis and unveil relevant information on statistical propertiessuch as ergodicity breaking and short-time correlations.}, language = {en} } @phdthesis{Keles2021, author = {Keles, Engin}, title = {Atmospheric properties and dynamics of gaseous exoplanets inferred from high-resolution alkali line transmission spectroscopy}, school = {Universit{\"a}t Potsdam}, year = {2021}, abstract = {The characterization of exoplanets applying high-resolution transmission spectroscopy ini- tiated a new era making it possible to trace atmospheric signature at high altitudes in exoplanet atmospheres and to determine atmospheric properties which enrich our under- standing of the formation and evolution of the solar system. In contrast to what is observed in our solar system, where gaseous planets orbit at wide orbits, Jupiter type exoplanets were detected in foreign stellar systems surrounding their host stars within few days, in close orbits, the so called hot- and ultra-hot Jupiters. The most well studied ones are HD209458b and HD189733b, which are the first exoplanets where absorption is detected in their atmospheres, namely from the alkali line sodium. For hot Jupiters, the resonant alkali lines are the atmospheric species with one of the strongest absorption signatures, due to their large absorption cross-section. However, al- though the alkali lines sodium and potassium were detected in low-resolution observations for various giant exoplanets, potassium was absent in different high-resolution investiga- tions in contrast to sodium. The reason for this is quite puzzling, since both alkalis have very similar physical and chemical properties (e.g. condensation and ionization proper- ties). Obtaining high-resolution transit observations of HD189733b and HD209458b, we were able to detect potassium on HD189733b (Manuscript 1), which was the first high-resolution detection of potassium on an exoplanet. The absence of potassium on HD209458b could be reasoned by depletion processes, such as condensation or photo-ionization or high-altitude clouds. In a further study (Manuscript II), we resolved the potassium line and compared this to a previously detected sodium absorption on this planet. The comparison showed, that the potassium lines are either tracing different altitudes and temperatures compared to the sodium lines, or are depleted so that the planetary Na/K- ratio is way larger than the stellar one. A comparison of the alkali lines with synthetic line profiles showed that the sodium lines were much broader than the potassium lines, probably being induced by winds. To investigate this, the effect of zonal streaming winds on the sodium lines on Jupiter-type planets is investigated in a further study (Manuscript III), showing that such winds can significantly broaden the Na- lines and that high-resolution observations can trace such winds with different properties. Furthermore, investigating the Na-line observations for different exoplanets, I showed that the Na-line broadening follows a trend with cooler planets showing stronger line broadening and so hinting on stronger winds, matching well into theoretical predictions. Each presented manuscript depends on the re- sults published within the previous manuscript, yielding a unitary study of the exoplanet HD189733b. The investigation of the potassium absorption required to account for different effects: The telluric lines removal and the effect of center-to-limb variation (see Manuscript I), the residual Rossiter-Mc-Laughlin effect (see Manuscript II) and the broadening of spectral lines on a translucent atmospheric ring by zonal jet streams (see Manuscript III). This thesis shows that high-resolution transmission spectroscopy is a powerful tool to probe sharp alkali line absorption on giant exoplanet atmospheres and to investigate on the properties and dynamics of hot Jupiter type atmospheres.}, language = {en} } @article{Teichmann2021, author = {Teichmann, Erik}, title = {Using phase dynamics to study partial synchrony}, series = {European physical journal special topics}, volume = {230}, journal = {European physical journal special topics}, number = {14-15}, publisher = {Springer}, address = {Heidelberg}, issn = {1951-6355}, doi = {10.1140/epjs/s11734-021-00156-3}, pages = {2833 -- 2842}, year = {2021}, abstract = {Partial synchronous states appear between full synchrony and asynchrony and exhibit many interesting properties. Most frequently, these states are studied within the framework of phase approximation. The latter is used ubiquitously to analyze coupled oscillatory systems. Typically, the phase dynamics description is obtained in the weak coupling limit, i.e., in the first-order in the coupling strength. The extension beyond the first-order represents an unsolved problem and is an active area of research. In this paper, three partially synchronous states are investigated and presented in order of increasing complexity. First, the usage of the phase response curve for the description of macroscopic oscillators is analyzed. To achieve this, the response of the mean-field oscillations in a model of all-to-all coupled limit-cycle oscillators to pulse stimulation is measured. The next part treats a two-group Kuramoto model, where the interaction of one attractive and one repulsive group results in an interesting solitary state, situated between full synchrony and self-consistent partial synchrony. In the last part, the phase dynamics of a relatively simple system of three Stuart-Landau oscillators are extended beyond the weak coupling limit. The resulting model contains triplet terms in the high-order phase approximation, though the structural connections are only pairwise. Finally, the scaling of the new terms with the coupling is analyzed.}, language = {en} } @article{RubioAndersCorrea2021, author = {Rubio, Jes{\´u}s and Anders, Janet and Correa, Luis A.}, title = {Global quantum thermometry}, series = {Physical review letters / publ. by the American Physical Society}, volume = {127}, journal = {Physical review letters / publ. by the American Physical Society}, number = {19}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.127.190402}, pages = {6}, year = {2021}, abstract = {A paradigm shift in quantum thermometry is proposed. To date, thermometry has relied on local estimation, which is useful to reduce statistical fluctuations once the temperature is very well known. In order to estimate temperatures in cases where few measurement data or no substantial prior knowledge are available, we build instead a method for global quantum thermometry. Based on scaling arguments, a mean logarithmic error is shown here to be the correct figure of merit for thermometry. Its full minimization provides an operational and optimal rule to postprocess measurements into a temperature reading, and it establishes a global precision limit. We apply these results to the simulated outcomes of measurements on a spin gas, finding that the local approach can lead to biased temperature estimates in cases where the global estimator converges to the true temperature. The global framework thus enables a reliable approach to data analysis in thermometry experiments.}, language = {en} } @article{Keles2021, author = {Keles, Engin}, title = {Spectral signature of atmospheric winds in high-resolution transit observations}, series = {Monthly Notices of the Royal Astronomical Society}, volume = {502}, journal = {Monthly Notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, doi = {10.1093/mnras/stab099}, pages = {1456 -- 1468}, year = {2021}, abstract = {The study of exoplanet atmospheres showed large diversity compared to the planets in our Solar system. Especially Jupiter-type exoplanets orbiting their host star in close orbits, the so-called hot and ultra-hot Jupiters, have been studied in detail due to their enhanced atmospheric signature. Due to their tidally locked status, the temperature difference between the day- and nightside triggers atmospheric winds that can lead to various fingerprints in the observations. Spatially resolved absorption lines during transit such as sodium (Na) could be a good tracer for such winds. Different works resolved the Na absorption lines on different exoplanets which show different line widths. Assuming that this could be attributed to such zonal jet streams, this work models the effect of such winds on synthetic absorption lines. For this, transiting Jupiter-type planets with rotational velocities similar to hot and ultra-hot Jupiter are considered. The investigation shows that high wind velocities could reproduce the broadening of Na-line profiles inferred in different high-resolution transit observations. There is a tendency that the broadening values decrease for planets with lower equilibrium temperature. This could be explained by atmospheric drag induced by the ionization of alkali lines that slow down the zonal jet streams, favouring their existence on hot Jupiter rather than ultra-hot Jupiter.}, language = {en} } @phdthesis{Diercke2021, author = {Diercke, Andrea}, title = {Physical environment of large-scale high-latitude and polar crown filaments}, doi = {10.25932/publishup-51130}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-511301}, school = {Universit{\"a}t Potsdam}, pages = {133}, year = {2021}, abstract = {Filaments are omnipresent features in the solar chromosphere, one of the atmospheric layers of the Sun, which is located above the photosphere, the visible surface of the Sun. They are clouds of plasma reaching from the photosphere to the chromosphere, and even to the outer-most atmospheric layer, the corona. They are stabalized by the magnetic field. If the magnetic field is disturbed, filaments can erupt as coronal mass ejections (CME), releasing plasma into space, which can also hit the Earth. A special type of filaments are polar crown filaments, which form at the interface of the unipolar field of the poles and flux of opposite magnetic polarity, which was transported towards the poles. This flux transport is related to the global dynamo of the Sun and can therefore be analyzed indirectly with polar crown filaments. The main objective of this thesis is to better understand the physical properties and environment of high-latitude and polar crown filaments, which can be approached from two perspectives: (1) analyzing the large-scale properties of high-latitude and polar crown filaments with full-disk Hα observations from the Chromospheric Telescope (ChroTel) and (2) determining the relation of polar crown and high-latitude filaments from the chromosphere to the lower-lying photosphere with high-spatial resolution observations of the Vacuum Tower Telescope (VTT), which reveal the smallest details. The Chromospheric Telescope (ChroTel) is a small 10-cm robotic telescope at Observatorio del Teide on Tenerife (Spain), which observes the entire Sun in Hα, Ca IIK, and He I 10830 {\AA}. We present a new calibration method that includes limb-darkening correction, removal of non-uniform filter transmission, and determination of He I Doppler velocities. Chromospheric full-disk filtergrams are often obtained with Lyot filters, which may display non-uniform transmission causing large-scale intensity variations across the solar disk. Removal of a 2D symmetric limb-darkening function from full-disk images results in a flat background. However, transmission artifacts remain and are even more distinct in these contrast-enhanced images. Zernike polynomials are uniquely appropriate to fit these large-scale intensity variations of the background. The Zernike coefficients show a distinct temporal evolution for ChroTel data, which is likely related to the telescope's alt-azimuth mount that introduces image rotation. In addition, applying this calibration to sets of seven filtergrams that cover the He I triplet facilitates determining chromospheric Doppler velocities. To validate the method, we use three datasets with varying levels of solar activity. The Doppler velocities are benchmarked with respect to co-temporal high-resolution spectroscopic data of the GREGOR Infrared Spectrograph (GRIS). Furthermore, this technique can be applied to ChroTel Hα and Ca IIK data. The calibration method for ChroTel filtergrams can be easily adapted to other full-disk data exhibiting unwanted large-scale variations. The spectral region of the He I triplet is a primary choice for high-resolution near-infrared spectropolarimetry. Here, the improved calibration of ChroTel data will provide valuable context data. Polar crown filaments form above the polarity inversion line between the old magnetic flux of the previous cycle and the new magnetic flux of the current cycle. Studying their appearance and their properties can lead to a better understanding of the solar cycle. We use full-disk data of the ChroTel at Observatorio del Teide, Tenerife, Spain, which were taken in three different chromospheric absorption lines (Hα 6563 {\AA}, Ca IIK 3933 {\AA}, and He I 10830 {\AA}), and we create synoptic maps. In addition, the spectroscopic He I data allow us to compute Doppler velocities and to create synoptic Doppler maps. ChroTel data cover the rising and decaying phase of Solar Cycle 24 on about 1000 days between 2012 and 2018. Based on these data, we automatically extract polar crown filaments with image-processing tools and study their properties. We compare contrast maps of polar crown filaments with those of quiet-Sun filaments. Furthermore, we present a super-synoptic map summarizing the entire ChroTel database. In summary, we provide statistical properties, i.e. number and location of filaments, area, and tilt angle for both the maximum and declining phase of Solar Cycle 24. This demonstrates that ChroTel provides a promising dataset to study the solar cycle. The cyclic behavior of polar crown filaments can be monitored by regular full-disk Hα observations. ChroTel provides such regular observations of the Sun in three chromospheric wavelengths. To analyze the cyclic behavior and the statistical properties of polar crown filaments, we have to extract the filaments from the images. Manual extraction is tedious, and extraction with morphological image processing tools produces a large number of false positive detections and the manual extraction of these takes too much time. Automatic object detection and extraction in a reliable manner allows us to process more data in a shorter time. We will present an overview of the ChroTel database and a proof of concept of a machine learning application, which allows us a unified extraction of, for example, filaments from ChroTel data. The chromospheric Hα spectral line dominates the spectrum of the Sun and other stars. In the stellar regime, this spectral line is already used as a powerful tracer of magnetic activity. For the Sun, other tracers are typically used to monitor solar activity. Nonetheless, the Sun is observed constantly in Hα with globally distributed ground-based full-disk imagers. The aim of this study is to introduce Hα as a tracer of solar activity and compare it to other established indicators. We discuss the newly created imaging Hα excess in the perspective of possible application for modelling of stellar atmospheres. In particular, we try to determine how constant is the mean intensity of the Hα excess and number density of low-activity regions between solar maximum and minimum. Furthermore, we investigate whether the active region coverage fraction or the changing emission strength in the active regions dominates time variability in solar Hα observations. We use ChroTel observations of full-disk Hα filtergrams and morphological image processing techniques to extract the positive and negative imaging Hα excess, for bright features (plage regions) and dark absorption features (filaments and sunspots), respectively. We describe the evolution of the Hα excess during Solar Cycle 24 and compare it to other well established tracers: the relative sunspot number, the F10.7 cm radio flux, and the Mg II index. Moreover, we discuss possible applications of the Hα excess for stellar activity diagnostics and the contamination of exoplanet transmission spectra. The positive and negative Hα excess follow the behavior of the solar activity over the course of the cycle. Thereby, positive Hα excess is closely correlated to the chromospheric Mg II index. On the other hand, the negative Hα excess, created from dark features like filaments and sunspots, is introduced as a tracer of solar activity for the first time. We investigated the mean intensity distribution for active regions for solar minimum and maximum and found that the shape of both distributions is very similar but with different amplitudes. This might be related with the relatively stable coronal temperature component during the solar cycle. Furthermore, we found that the coverage fraction of Hα excess and the Hα excess of bright features are strongly correlated, which will influence modelling of stellar and exoplanet atmospheres. High-resolution observations of polar crown and high-latitude filaments are scarce. We present a unique sample of such filaments observed in high-resolution Hα narrow-band filtergrams and broad-band images, which were obtained with a new fast camera system at the VTT. ChroTel provided full-disk context observations in Hα, Ca IIK, and He I 10830 {\AA}. The Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) provided line-of-sight magnetograms and ultraviolet (UV) 1700 {\AA} filtergrams, respectively. We study filigree in the vicinity of polar crown and high-latitude filaments and relate their locations to magnetic concentrations at the filaments' footpoints. Bright points are a well studied phenomenon in the photosphere at low latitudes, but they were not yet studied in the quiet network close to the poles. We examine size, area, and eccentricity of bright points and find that their morphology is very similar to their counterparts at lower latitudes, but their sizes and areas are larger. Bright points at the footpoints of polar crown filaments are preferentially located at stronger magnetic flux concentrations, which are related to bright regions at the border of supergranules as observed in UV filtergrams. Examining the evolution of bright points on three consecutive days reveals that their amount increases while the filament decays, which indicates they impact the equilibrium of the cool plasma contained in filaments.}, language = {en} } @phdthesis{Lepro2021, author = {Lepro, Valentino}, title = {Experimental and theoretical study on amoeboid cell-cargo active motion}, doi = {10.25932/publishup-49089}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-490890}, school = {Universit{\"a}t Potsdam}, pages = {xx, 114}, year = {2021}, abstract = {As society paves its way towards device miniaturization and precision medicine, micro-scale actuation and guided transport become increasingly prominent research fields, with high potential impact in both technological and clinical contexts. In order to accomplish directed motion of micron-sized objects, as biosensors and drug-releasing microparticles, towards specific target sites, a promising strategy is the use of living cells as smart biochemically-powered carriers, building the so-called bio-hybrid systems. Inspired by leukocytes, native cells of living organisms efficiently migrating to critical targets as tumor tissue, an emerging concept is to exploit the amoeboid crawling motility of such cells as mean of transport for drug delivery applications. In the research work described in this thesis, I synergistically applied experimental, computational and theoretical modeling approaches to investigate the behaviour and transport mechanism of a novel kind of bio-hybrid system for active transport at the micro-scale, referred to as cellular truck. This system consists of an amoeboid crawling cell, the carrier, attached to a microparticle, the cargo, which may ideally be drug-loaded for specific therapeutic treatments. For the purposes of experimental investigation, I employed the amoeba Dictyostelium discoideum as crawling cellular carrier, being a renowned model organism for leukocyte migration and, in general, for eukaryotic cell motility. The performed experiments revealed a complex recurrent cell-cargo relative motion, together with an intermittent motility of the cellular truck as a whole. The evidence suggests the presence of cargoes on amoeboid cells to act as mechanical stimulus leading cell polarization, thus promoting cell motility and giving rise to the observed intermittent dynamics of the truck. Particularly, bursts in cytoskeletal polarity along the cell-cargo axis have been found to occur in time with a rate dependent on cargo geometrical features, as particle diameter. Overall, the collected experimental evidence pointed out a pivotal role of cell-cargo interactions in the emergent cellular truck motion dynamics. Especially, they can determine the transport capabilities of amoeboid cells, as the cargo size significantly impacts the cytoskeletal activity and repolarization dynamics along the cell-cargo axis, the latter responsible for truck displacement and reorientation. Furthermore, I developed a modeling framework, built upon the experimental evidence on cellular truck behaviour, that connects the relative dynamics and interactions arising at the truck scale with the actual particle transport dynamics. In fact, numerical simulations of the proposed model successfully reproduced the phenomenology of the cell-cargo system, while enabling the prediction of the transport properties of cellular trucks over larger spatial and temporal scales. The theoretical analysis provided a deeper understanding of the role of cell-cargo interaction on mass transport, unveiling in particular how the long-time transport efficiency is governed by the interplay between the persistence time of cell polarity and time scales of the relative dynamics stemming from cell-cargo interaction. Interestingly, the model predicts the existence of an optimal cargo size, enhancing the diffusivity of cellular trucks; this is in line with previous independent experimental data, which appeared rather counterintuitive and had no explanation prior to this study. In conclusion, my research work shed light on the importance of cargo-carrier interactions in the context of crawling cell-mediated particle transport, and provides a prototypical, multifaceted framework for the analysis and modelling of such complex bio-hybrid systems and their perspective optimization.}, language = {en} } @misc{ThapaWyłomańskaSikoraetal.2021, author = {Thapa, Samudrajit and Wyłomańska, Agnieszka and Sikora, Grzegorz and Wagner, Caroline E. and Krapf, Diego and Kantz, Holger and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Leveraging large-deviation statistics to decipher the stochastic properties of measured trajectories}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1118}, issn = {1866-8372}, doi = {10.25932/publishup-49349}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-493494}, pages = {24}, year = {2021}, abstract = {Extensive time-series encoding the position of particles such as viruses, vesicles, or individualproteins are routinely garnered insingle-particle tracking experiments or supercomputing studies.They contain vital clues on how viruses spread or drugs may be delivered in biological cells.Similar time-series are being recorded of stock values in financial markets and of climate data.Such time-series are most typically evaluated in terms of time-averaged mean-squareddisplacements (TAMSDs), which remain random variables for finite measurement times. Theirstatistical properties are different for differentphysical stochastic processes, thus allowing us toextract valuable information on the stochastic process itself. To exploit the full potential of thestatistical information encoded in measured time-series we here propose an easy-to-implementand computationally inexpensive new methodology, based on deviations of the TAMSD from itsensemble average counterpart. Specifically, we use the upper bound of these deviations forBrownian motion (BM) to check the applicability of this approach to simulated and real data sets.By comparing the probability of deviations fordifferent data sets, we demonstrate how thetheoretical bound for BM reveals additional information about observed stochastic processes. Weapply the large-deviation method to data sets of tracer beads tracked in aqueous solution, tracerbeads measured in mucin hydrogels, and of geographic surface temperature anomalies. Ouranalysis shows how the large-deviation properties can be efficiently used as a simple yet effectiveroutine test to reject the BM hypothesis and unveil relevant information on statistical propertiessuch as ergodicity breaking and short-time correlations.}, language = {en} } @article{KlugeSchewe2021, author = {Kluge, Lucas and Schewe, Jacob}, title = {Evaluation and extension of the radiation model for internal migration}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.054311}, pages = {9}, year = {2021}, abstract = {Human migration is often studied using gravity models. These models, however, have known limitations, including analytic inconsistencies and a dependence on empirical data to calibrate multiple parameters for the region of interest. Overcoming these limitations, the radiation model has been proposed as an alternative, universal approach to predicting different forms of human mobility, but has not been adopted for studying migration. Here we show, using data on within-country migration from the USA and Mexico, that the radiation model systematically underpredicts long-range moves, while the traditional gravity model performs well for large distances. The universal opportunity model, an extension of the radiation model, shows an improved fit of long-range moves compared to the original radiation model, but at the cost of introducing two additional parameters. We propose a more parsimonious extension of the radiation model that introduces a single parameter. We demonstrate that it fits the data over the full distance spectrum and also-unlike the universal opportunity model-preserves the analytical property of the original radiation model of being equivalent to a gravity model in the limit of a uniform population distribution.}, language = {en} } @phdthesis{Brugger2021, author = {Brugger, Julia}, title = {Modeling changes in climate during past mass extinctions}, doi = {10.25932/publishup-53246}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-532468}, school = {Universit{\"a}t Potsdam}, pages = {V, 217}, year = {2021}, abstract = {The evolution of life on Earth has been driven by disturbances of different types and magnitudes over the 4.6 million years of Earth's history (Raup, 1994, Alroy, 2008). One example for such disturbances are mass extinctions which are characterized by an exceptional increase in the extinction rate affecting a great number of taxa in a short interval of geologic time (Sepkoski, 1986). During the 541 million years of the Phanerozoic, life on Earth suffered five exceptionally severe mass extinctions named the "Big Five Extinctions". Many mass extinctions are linked to changes in climate (Feulner, 2009). Hence, the study of past mass extinctions is not only intriguing, but can also provide insights into the complex nature of the Earth system. This thesis aims at deepening our understanding of the triggers of mass extinctions and how they affected life. To accomplish this, I investigate changes in climate during two of the Big Five extinctions using a coupled climate model. During the Devonian (419.2-358.9 million years ago) the first vascular plants and vertebrates evolved on land while extinction events occurred in the ocean (Algeo et al., 1995). The causes of these formative changes, their interactions and their links to changes in climate are still poorly understood. Therefore, we explore the sensitivity of the Devonian climate to various boundary conditions using an intermediate-complexity climate model (Brugger et al., 2019). In contrast to Le Hir et al. (2011), we find only a minor biogeophysical effect of changes in vegetation cover due to unrealistically high soil albedo values used in the earlier study. In addition, our results cannot support the strong influence of orbital parameters on the Devonian climate, as simulated with a climate model with a strongly simplified ocean model (De Vleeschouwer et al., 2013, 2014, 2017). We can only reproduce the changes in Devonian climate suggested by proxy data by decreasing atmospheric CO2. Still, finding agreement between the evolution of sea surface temperatures reconstructed from proxy data (Joachimski et al., 2009) and our simulations remains challenging and suggests a lower δ18O ratio of Devonian seawater. Furthermore, our study of the sensitivity of the Devonian climate reveals a prevailing mode of climate variability on a timescale of decades to centuries. The quasi-periodic ocean temperature fluctuations are linked to a physical mechanism of changing sea-ice cover, ocean convection and overturning in high northern latitudes. In the second study of this thesis (Dahl et al., under review) a new reconstruction of atmospheric CO2 for the Devonian, which is based on CO2-sensitive carbon isotope fractionation in the earliest vascular plant fossils, suggests a much earlier drop of atmo- spheric CO2 concentration than previously reconstructed, followed by nearly constant CO2 concentrations during the Middle and Late Devonian. Our simulations for the Early Devonian with identical boundary conditions as in our Devonian sensitivity study (Brugger et al., 2019), but with a low atmospheric CO2 concentration of 500 ppm, show no direct conflict with available proxy and paleobotanical data and confirm that under the simulated climatic conditions carbon isotope fractionation represents a robust proxy for atmospheric CO2. To explain the earlier CO2 drop we suggest that early forms of vascular land plants have already strongly influenced weathering. This new perspective on the Devonian questions previous ideas about the climatic conditions and earlier explanations for the Devonian mass extinctions. The second mass extinction investigated in this thesis is the end-Cretaceous mass extinction (66 million years ago) which differs from the Devonian mass extinctions in terms of the processes involved and the timescale on which the extinctions occurred. In the two studies presented here (Brugger et al., 2017, 2021), we model the climatic effects of the Chicxulub impact, one of the proposed causes of the end-Cretaceous extinction, for the first millennium after the impact. The light-dimming effect of stratospheric sulfate aerosols causes severe cooling, with a decrease of global annual mean surface air temperature of at least 26◦C and a recovery to pre-impact temperatures after more than 30 years. The sudden surface cooling of the ocean induces deep convection which brings nutrients from the deep ocean via upwelling to the surface ocean. Using an ocean biogeochemistry model we explore the combined effect of ocean mixing and iron-rich dust originating from the impactor on the marine biosphere. As soon as light levels have recovered, we find a short, but prominent peak in marine net primary productivity. This newly discovered mechanism could result in toxic effects for marine near-surface ecosystems. Comparison of our model results to proxy data (Vellekoop et al., 2014, 2016, Hull et al., 2020) suggests that carbon release from the terrestrial biosphere is required in addition to the carbon dioxide which can be attributed to the target material. Surface ocean acidification caused by the addition of carbon dioxide and sulfur is only moderate. Taken together, the results indicate a significant contribution of the Chicxulub impact to the end-Cretaceous mass extinction by triggering multiple stressors for the Earth system. Although the sixth extinction we face today is characterized by human intervention in nature, this thesis shows that we can gain many insights into future extinctions from studying past mass extinctions, such as the importance of the rate of change (Rothman, 2017), the interplay of multiple stressors (Gunderson et al., 2016), and changes in the carbon cycle (Rothman, 2017, Tierney et al., 2020).}, language = {en} }