@article{BeckusEliaz2021, author = {Beckus, Siegfried and Eliaz, Latif}, title = {Eigenfunctions growth of R-limits on graphs}, series = {Journal of spectral theory / European Mathematical Society}, volume = {11}, journal = {Journal of spectral theory / European Mathematical Society}, number = {4}, publisher = {EMS Press, an imprint of the European Mathematical Society - EMS - Publishing House GmbH, Institut f{\"u}r Mathematik, Technische Universit{\"a}t}, address = {Berlin}, issn = {1664-039X}, doi = {10.4171/JST/389}, pages = {1895 -- 1933}, year = {2021}, abstract = {A characterization of the essential spectrum of Schrodinger operators on infinite graphs is derived involving the concept of R-limits. This concept, which was introduced previously for operators on N and Z(d) as "right-limits," captures the behaviour of the operator at infinity. For graphs with sub-exponential growth rate, we show that each point in sigma(ss)(H) corresponds to a bounded generalized eigenfunction of a corresponding R-limit of H. If, additionally, the graph is of uniform sub-exponential growth, also the converse inclusion holds.}, language = {en} } @article{BeckusPinchover2020, author = {Beckus, Siegfried and Pinchover, Yehuda}, title = {Shnol-type theorem for the Agmon ground state}, series = {Journal of spectral theory}, volume = {10}, journal = {Journal of spectral theory}, number = {2}, publisher = {EMS Publishing House}, address = {Z{\"u}rich}, issn = {1664-039X}, doi = {10.4171/JST/296}, pages = {355 -- 377}, year = {2020}, abstract = {LetH be a Schrodinger operator defined on a noncompact Riemannianmanifold Omega, and let W is an element of L-infinity (Omega; R). Suppose that the operator H + W is critical in Omega, and let phi be the corresponding Agmon ground state. We prove that if u is a generalized eigenfunction ofH satisfying vertical bar u vertical bar <= C-phi in Omega for some constant C > 0, then the corresponding eigenvalue is in the spectrum of H. The conclusion also holds true if for some K is an element of Omega the operator H admits a positive solution in (Omega) over bar = Omega \ K, and vertical bar u vertical bar <= C psi in (Omega) over bar for some constant C > 0, where psi is a positive solution of minimal growth in a neighborhood of infinity in Omega. Under natural assumptions, this result holds also in the context of infinite graphs, and Dirichlet forms.}, language = {en} } @article{BaerMazzeo2021, author = {B{\"a}r, Christian and Mazzeo, Rafe}, title = {Manifolds with many Rarita-Schwinger fields}, series = {Communications in mathematical physics}, volume = {384}, journal = {Communications in mathematical physics}, number = {1}, publisher = {Springer}, address = {Berlin}, issn = {0010-3616}, doi = {10.1007/s00220-021-04030-0}, pages = {533 -- 548}, year = {2021}, abstract = {The Rarita-Schwinger operator is the twisted Dirac operator restricted to 3/2-spinors. Rarita-Schwinger fields are solutions of this operator which are in addition divergence-free. This is an overdetermined problem and solutions are rare; it is even more unexpected for there to be large dimensional spaces of solutions. In this paper we prove the existence of a sequence of compact manifolds in any given dimension greater than or equal to 4 for which the dimension of the space of Rarita-Schwinger fields tends to infinity. These manifolds are either simply connected Kahler-Einstein spin with negative Einstein constant, or products of such spaces with flat tori. Moreover, we construct Calabi-Yau manifolds of even complex dimension with more linearly independent Rarita-Schwinger fields than flat tori of the same dimension.}, language = {en} } @article{Clavier2021, author = {Clavier, Pierre J.}, title = {Borel-{\´E}calle resummation of a two-point function}, series = {Annales Henri Poincar{\´e} : a journal of theoretical and mathematical physics / ed. jointly by the Institut Henri Poincar{\´e} and by the Swiss Physical Society}, volume = {22}, journal = {Annales Henri Poincar{\´e} : a journal of theoretical and mathematical physics / ed. jointly by the Institut Henri Poincar{\´e} and by the Swiss Physical Society}, number = {6}, publisher = {Springer}, address = {Cham}, issn = {1424-0637}, doi = {10.1007/s00023-021-01057-w}, pages = {2103 -- 2136}, year = {2021}, abstract = {We provide an overview of the tools and techniques of resurgence theory used in the Borel-ecalle resummation method, which we then apply to the massless Wess-Zumino model. Starting from already known results on the anomalous dimension of the Wess-Zumino model, we solve its renormalisation group equation for the two-point function in a space of formal series. We show that this solution is 1-Gevrey and that its Borel transform is resurgent. The Schwinger-Dyson equation of the model is then used to prove an asymptotic exponential bound for the Borel transformed two-point function on a star-shaped domain of a suitable ramified complex plane. This proves that the two-point function of the Wess-Zumino model is Borel-ecalle summable.}, language = {en} } @article{DereudreHoudebert2018, author = {Dereudre, David and Houdebert, Pierre}, title = {Sharp phase transition for the continuum Widom-Rowlinson model}, series = {Annales de l'Institut Henri Poincar{\´e}. B, Probability and statistics}, volume = {57}, journal = {Annales de l'Institut Henri Poincar{\´e}. B, Probability and statistics}, number = {1}, publisher = {Association des Publications de l'Institut Henri Poincar{\´e}}, address = {Bethesda, Md.}, issn = {0246-0203}, doi = {10.1214/20-AIHP1082}, pages = {387 -- 407}, year = {2018}, abstract = {The Widom-Rowlinson model (or the Area-interaction model) is a Gibbs point process in R-d with the formal Hamiltonian defined as the volume of Ux epsilon omega B1(x), where. is a locally finite configuration of points and B-1(x) denotes the unit closed ball centred at x. The model is also tuned by two other parameters: the activity z > 0 related to the intensity of the process and the inverse temperature beta >= 0 related to the strength of the interaction. In the present paper we investigate the phase transition of the model in the point of view of percolation theory and the liquid-gas transition. First, considering the graph connecting points with distance smaller than 2r > 0, we show that for any beta >= 0, there exists 0 <(similar to a)(zc) (beta, r) < +infinity such that an exponential decay of connectivity at distance n occurs in the subcritical phase (i.e. z <(similar to a)(zc) (beta, r)) and a linear lower bound of the connection at infinity holds in the supercritical case (i.e. z >(similar to a)(zc) (beta, r)). These results are in the spirit of recent works using the theory of randomised tree algorithms (Probab. Theory Related Fields 173 (2019) 479-490, Ann. of Math. 189 (2019) 75-99, Duminil-Copin, Raoufi and Tassion (2018)). Secondly we study a standard liquid-gas phase transition related to the uniqueness/non-uniqueness of Gibbs states depending on the parameters z, beta. Old results (Phys. Rev. Lett. 27 (1971) 1040-1041, J. Chem. Phys. 52 (1970) 1670-1684) claim that a non-uniqueness regime occurs for z = beta large enough and it is conjectured that the uniqueness should hold outside such an half line ( z = beta >= beta(c) > 0). We solve partially this conjecture in any dimension by showing that for beta large enough the non-uniqueness holds if and only if z = beta. We show also that this critical value z = beta corresponds to the percolation threshold (similar to a)(zc) (beta, r) = beta for beta large enough, providing a straight connection between these two notions of phase transition.}, language = {en} } @article{GottwaldReich2021, author = {Gottwald, Georg A. and Reich, Sebastian}, title = {Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observations}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {31}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {10}, publisher = {AIP}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/5.0066080}, pages = {8}, year = {2021}, abstract = {We present a supervised learning method to learn the propagator map of a dynamical system from partial and noisy observations. In our computationally cheap and easy-to-implement framework, a neural network consisting of random feature maps is trained sequentially by incoming observations within a data assimilation procedure. By employing Takens's embedding theorem, the network is trained on delay coordinates. We show that the combination of random feature maps and data assimilation, called RAFDA, outperforms standard random feature maps for which the dynamics is learned using batch data.}, language = {en} } @article{GottwaldReich2021, author = {Gottwald, Georg A. and Reich, Sebastian}, title = {Supervised learning from noisy observations}, series = {Physica : D, Nonlinear phenomena}, volume = {423}, journal = {Physica : D, Nonlinear phenomena}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-2789}, doi = {10.1016/j.physd.2021.132911}, pages = {15}, year = {2021}, abstract = {Data-driven prediction and physics-agnostic machine-learning methods have attracted increased interest in recent years achieving forecast horizons going well beyond those to be expected for chaotic dynamical systems. In a separate strand of research data-assimilation has been successfully used to optimally combine forecast models and their inherent uncertainty with incoming noisy observations. The key idea in our work here is to achieve increased forecast capabilities by judiciously combining machine-learning algorithms and data assimilation. We combine the physics-agnostic data -driven approach of random feature maps as a forecast model within an ensemble Kalman filter data assimilation procedure. The machine-learning model is learned sequentially by incorporating incoming noisy observations. We show that the obtained forecast model has remarkably good forecast skill while being computationally cheap once trained. Going beyond the task of forecasting, we show that our method can be used to generate reliable ensembles for probabilistic forecasting as well as to learn effective model closure in multi-scale systems. (C) 2021 Elsevier B.V. All rights reserved.}, language = {en} } @misc{GrisicHuisingaReinischetal.2017, author = {Grisic, Ana-Marija and Huisinga, Wilhelm and Reinisch, W. and Kloft, Charlotte}, title = {P485 Dosing infliximab in Crohn's disease}, series = {Journal of Crohn's and Colitis}, volume = {11}, journal = {Journal of Crohn's and Colitis}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1873-9946}, doi = {10.1093/ecco-jcc/jjx002.609}, pages = {S325 -- S326}, year = {2017}, abstract = {Background: Infliximab (IFX), an anti-TNF monoclonal antibody approved for the treatment of inflammatory bowel disease, is dosed per kg body weight (BW). However, the rationale for body size adjustment has not been unequivocally demonstrated [1], and first attempts to improve IFX therapy have been undertaken [2]. The aim of our study was to assess the impact of different dosing strategies (i.e. body size-adjusted and fixed dosing) on drug exposure and pharmacokinetic (PK) target attainment. For this purpose, a comprehensive simulation study was performed, using patient characteristics (n=116) from an in-house clinical database. Methods: IFX concentration-time profiles of 1000 virtual, clinically representative patients were generated using a previously published PK model for IFX in patients with Crohn's disease [3]. For each patient 1000 profiles accounting for PK variability were considered. The IFX exposure during maintenance treatment after the following dosing strategies was compared: i) fixed dose, and per ii) BW, iii) lean BW (LBW), iv) body surface area (BSA), v) height (HT), vi) body mass index (BMI) and vii) fat-free mass (FFM)). For each dosing strategy the variability in maximum concentration Cmax, minimum concentration Cmin (= C8weeks) and area under the concentration-time curve (AUC), as well as percent of patients achieving the PK target, Cmin=3 μg/mL [4] were assessed. Results: For all dosing strategies the variability of Cmin (CV ≈110\%) was highest, compared to Cmax and AUC, and was of similar extent regardless of dosing strategy. The proportion of patients reaching the PK target (≈⅓ was approximately equal for all dosing strategies.}, language = {en} } @article{HanischLudewig2022, author = {Hanisch, Florian and Ludewig, Matthias}, title = {A rigorous construction of the supersymmetric path integral associated to a compact spin manifold}, series = {Communications in mathematical physics}, volume = {391}, journal = {Communications in mathematical physics}, number = {3}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0010-3616}, doi = {10.1007/s00220-022-04336-7}, pages = {1209 -- 1239}, year = {2022}, abstract = {We give a rigorous construction of the path integral in N = 1/2 supersymmetry as an integral map for differential forms on the loop space of a compact spin manifold. It is defined on the space of differential forms which can be represented by extended iterated integrals in the sense of Chen and Getzler-Jones-Petrack. Via the iterated integral map, we compare our path integral to the non-commutative loop space Chern character of Guneysu and the second author. Our theory provides a rigorous background to various formal proofs of the Atiyah-Singer index theorem for twisted Dirac operators using supersymmetric path integrals, as investigated by Alvarez-Gaume, Atiyah, Bismut and Witten.}, language = {en} } @article{KleinRosenberger2021, author = {Klein, Markus and Rosenberger, Elke}, title = {The tunneling effect for Schr{\"o}dinger operators on a vector bundle}, series = {Analysis and mathematical physics}, volume = {11}, journal = {Analysis and mathematical physics}, number = {2}, publisher = {Springer International Publishing AG}, address = {Cham (ZG)}, issn = {1664-2368}, doi = {10.1007/s13324-021-00485-5}, pages = {35}, year = {2021}, abstract = {In the semiclassical limit (h) over bar -> 0, we analyze a class of self-adjoint Schrodinger operators H-(h) over bar = (h) over bar L-2 + (h) over barW + V center dot id(E) acting on sections of a vector bundle E over an oriented Riemannian manifold M where L is a Laplace type operator, W is an endomorphism field and the potential energy V has non-degenerate minima at a finite number of points m(1),... m(r) is an element of M, called potential wells. Using quasimodes of WKB-type near m(j) for eigenfunctions associated with the low lying eigenvalues of H-(h) over bar, we analyze the tunneling effect, i.e. the splitting between low lying eigenvalues, which e.g. arises in certain symmetric configurations. Technically, we treat the coupling between different potential wells by an interaction matrix and we consider the case of a single minimal geodesic (with respect to the associated Agmon metric) connecting two potential wells and the case of a submanifold of minimal geodesics of dimension l + 1. This dimension l determines the polynomial prefactor for exponentially small eigenvalue splitting.}, language = {en} }