@misc{Mulansky2009, type = {Master Thesis}, author = {Mulansky, Mario}, title = {Localization properties of nonlinear disordered lattices}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-31469}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {In this thesis, the properties of nonlinear disordered one dimensional lattices is investigated. Part I gives an introduction to the phenomenon of Anderson Localization, the Discrete Nonlinear Schroedinger Equation and its properties as well as the generalization of this model by introducing the nonlinear index α. In Part II, the spreading behavior of initially localized states in large, disordered chains due to nonlinearity is studied. Therefore, different methods to measure localization are discussed and the structural entropy as a measure for the peak structure of probability distributions is introduced. Finally, the spreading exponent for several nonlinear indices is determined numerically and compared with analytical approximations. Part III deals with the thermalization in short disordered chains. First, the term thermalization and its application to the system in use is explained. Then, results of numerical simulations on this topic are presented where the focus lies especially on the energy dependence of the thermalization properties. A connection with so-called breathers is drawn.}, language = {en} } @phdthesis{Clodong2004, author = {Clodong, S{\´e}bastien}, title = {Recurrent outbreaks in ecology : chaotic dynamics in complex networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001626}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Gegenstand der Dissertation ist die Untersuchung von wiederkehrenden Ausbr{\"u}chen (wie z.B. Epidemien) in der Natur. Dies gelang anhand von Modellen, die die Dynamik von Phytoplankton und die Ausbreitung von Krankheiten zwischen St{\"a}dten beschreiben. Diese beide Systeme bilden hervorragende Beispiele f{\"u}r solche Ph{\"a}nomene. Die Frage, ob die in der Zeit wiederkehrenden Ausbr{\"u}che ein Ausdruck chaotischer Dynamik sein k{\"o}nnen, ist aktuell in der {\"O}kologie und fasziniert Wissenschaftler dieser Disziplin. Wir konnten zeigen, dass sich das Plankton-Modell im Falle von periodischem Antreiben {\"u}ber die N{\"a}hrstoffe in einem chaotischen Regime befindet. Diese Dynamik wurde als die komplexe Wechselwirkung zweier Oszillatoren verstanden. Ebenfalls wurde die Ausbreitung von Epidemien in Netzwerken wechselwirkender St{\"a}dte mit unterschiedlichen Gr{\"o}ssen untersucht. Daf{\"u}r wurde zun{\"a}chst die Kopplung zwischen zwei St{\"a}dten als Verh{\"a}ltnis der Stadtgr{\"o}ssen eingef{\"u}hrt. Es konnte gezeigt werden, dass das System sich in einem globalen zweij{\"a}hrigen Zyklus, der auch in den realen Daten beobachtet wird, befinden kann. Der Effekt von Heterogenit{\"a}t in der Gr{\"o}sseverteilung ist durch gewichtete Kopplung von generischen Modellen (Zelt- und Logistische Abbildung) in Netzwerken im Detail untersucht worden. Eine neue Art von Kopplungsfunktion mit nichtlinearer S{\"a}ttigung wurde eingef{\"u}hrt, um die Stabilit{\"a}t des Systems zu gew{\"a}hrleisten. Diese Kopplung beinhaltet einen Parameter, der es erlaubt, die Netzwerktopologie von globaler Kopplung in gerichtete Netzwerke gleichm{\"a}ssig umzuwandeln. Die Dynamik des Systems wurde anhand von Bifurkationsdiagrammen untersucht. Zum Verst{\"a}ndnis dieser Dynamik wurde eine effektive Theorie, die die beobachteten Bifurkationen sehr gut nachahmt, entwickelt.}, language = {en} } @phdthesis{Schneider2004, author = {Schneider, Judith}, title = {Dynamical structures and manifold detection in 2D and 3D chaotic flows}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001696}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {In dieser Arbeit werden die dynamischen Strukturen und Mannigfaltigkeiten in geschlossenen chaotischen Systemen untersucht. Das Wissen um diese dynamischen Strukturen (und Mannigfaltigkeiten) ist von Bedeutung, da sie uns einen ersten {\"U}berblick {\"u}ber die Dynamik des Systems geben, dass heisst, mit ihrer Hilfe sind wir in der Lage, das System zu charakterisieren und eventuell sogar seine Dynamik vorherzusagen. Die Visualisierung der dynamischen Strukturen, speziell in geschlossenen chaotischen Systemen, ist ein schwieriger und oft langer Prozess. Hier werden wir die sogenannte 'Leaking-Methode' (an Beispielen einfacher mathematischer Modelle wie der B{\"a}cker- oder der Sinus Abbildung) vorstellen, mit deren Hilfe wir die M{\"o}glichkeit haben, Teile der Mannigfaltigkeiten des chaotischen Sattels des Systems zu visualisieren. Vergleiche zwischen den gewonnenen Strukturen und Strukturen die durch chemische oder biologische Reaktionen hervorgerufen werden, werden anhand eines kinematischen Modells des Golfstroms durchgef{\"u}hrt. Es wird gezeigt, dass mittels der Leaking-Methode dynamische Strukturen auch in Umweltsystemen sichtbar gemacht werden k{\"o}nnen. Am Beispiel eines realistischen Modells des Mittelmeeres erweitern wir die Leaking-Methode zur sogenannten 'Exchange-Methode'. Diese erlaubt es den Transport zwischen zwei Regionen zu charakterisieren, die Transport-Routen und Austausch-Bassins sichtbar zu machen und die Austausch-Zeiten zu berechnen. Austausch-Bassins und Zeiten werden f{\"u}r die n{\"o}rdliche und s{\"u}dliche Region des westlichen Mittelmeeres pr{\"a}sentiert. Weiterhin werden Mischungseigenschaften im Erdmantel charakterisiert und die geometrischen Eigenschaften von Mannigfaltigkeiten in einem 3dimensionalen mathematischen Modell (ABC-Abbildung) untersucht.}, language = {en} } @phdthesis{RomanoBlasco2004, author = {Romano Blasco, M. Carmen}, title = {Synchronization analysis by means of recurrences in phase space}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001756}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Die t{\"a}gliche Erfahrung zeigt uns, daß bei vielen physikalischen Systemen kleine {\"A}nderungen in den Anfangsbedingungen auch zu kleinen {\"A}nderungen im Verhalten des Systems f{\"u}hren. Wenn man z.B. das Steuerrad beim Auto fahren nur ein wenig zur Seite dreht, unterscheidet sich die Richtung des Wagens auch nur wenig von der urspr{\"u}nglichen Richtung. Aber es gibt auch Situationen, f{\"u}r die das Gegenteil dieser Regel zutrifft. Die Folge von Kopf und Zahl, die wir erhalten, wenn wir eine M{\"u}nze werfen, zeigt ein irregul{\"a}res oder chaotisches Zeitverhalten, da winzig kleine {\"A}nderungen in den Anfangsbedingungen, die z.B. durch leichte Drehung der Hand hervorgebracht werden, zu vollkommen verschiedenen Resultaten f{\"u}hren. In den letzten Jahren hat man sehr viele nichtlineare Systeme mit schnellen Rechnern untersucht und festgestellt, daß eine sensitive Abh{\"a}ngigkeit von den Anfangsbedingungen, die zu einem chaotischen Verhalten f{\"u}hrt, keinesfalls die Ausnahme darstellt, sondern eine typische Eigenschaft vieler Systeme ist. Obwohl chaotische Systeme kleinen {\"A}nderungen in den Anfangsbedingungen gegen{\"u}ber sehr empfindlich reagieren, k{\"o}nnen sie synchronisieren wenn sie durch eine gemeinsame {\"a}ußere Kraft getrieben werden, oder wenn sie miteinander gekoppelt sind. Das heißt, sie vergessen ihre Anfangsbedingungen und passen ihre Rhythmen aneinander. Diese Eigenschaft chaotischer Systeme hat viele Anwendungen, wie z.B. das Design von Kommunikationsger{\"a}te und die verschl{\"u}sselte {\"U}bertragung von Mitteilungen. Abgesehen davon, findet man Synchronisation in nat{\"u}rlichen Systemen, wie z.B. das Herz-Atmungssystem, raumverteilte {\"o}kologische Systeme, die Magnetoenzephalographische Aktivit{\"a}t von Parkinson Patienten, etc. In solchen komplexen Systemen ist es nicht trivial Synchronisation zu detektieren und zu quantifizieren. Daher ist es notwendig, besondere mathematische Methoden zu entwickeln, die diese Aufgabe erledigen. Das ist das Ziel dieser Arbeit. Basierend auf dergrundlegenden Idee von Rekurrenzen (Wiederkehr) von Trajektorien dynamischer Systeme, sind verschiedene Maße entwickelt worden, die Synchronisation in chaotischen und komplexen Systemen detektieren. Das Wiederkehr von Trajektorien erlaubt uns Vorhersagen {\"u}ber den zuk{\"u}nftigen Zustand eines Systems zu treffen. Wenn man diese Eigenschaft der Wiederkehr von zwei interagierenden Systemen vergleicht, kann man Schl{\"u}sse {\"u}ber ihre dynamische Anpassung oder Synchronisation ziehen. Ein wichtiger Vorteil der Rekurrenzmaße f{\"u}r Synchronisation ist die Robustheit gegen Rauschen und Instationari{\"a}t. Das erlaubt eine Synchronisationsanalyse in Systemen durchzuf{\"u}hren, die bisher nicht darauf untersucht werden konnten.}, language = {en} } @phdthesis{Goldobin2007, author = {Goldobin, Denis S.}, title = {Coherence and synchronization of noisy-driven oscillators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15047}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {In the present dissertation paper we study problems related to synchronization phenomena in the presence of noise which unavoidably appears in real systems. One part of the work is aimed at investigation of utilizing delayed feedback to control properties of diverse chaotic dynamic and stochastic systems, with emphasis on the ones determining predisposition to synchronization. Other part deals with a constructive role of noise, i.e. its ability to synchronize identical self-sustained oscillators. First, we demonstrate that the coherence of a noisy or chaotic self-sustained oscillator can be efficiently controlled by the delayed feedback. We develop the analytical theory of this effect, considering noisy systems in the Gaussian approximation. Possible applications of the effect for the synchronization control are also discussed. Second, we consider synchrony of limit cycle systems (in other words, self-sustained oscillators) driven by identical noise. For weak noise and smooth systems we proof the purely synchronizing effect of noise. For slightly different oscillators and/or slightly nonidentical driving, synchrony becomes imperfect, and this subject is also studied. Then, with numerics we show moderate noise to be able to lead to desynchronization of some systems under certain circumstances. For neurons the last effect means "antireliability" (the "reliability" property of neurons is treated to be important from the viewpoint of information transmission functions), and we extend our investigation to neural oscillators which are not always limit cycle ones. Third, we develop a weakly nonlinear theory of the Kuramoto transition (a transition to collective synchrony) in an ensemble of globally coupled oscillators in presence of additional time-delayed coupling terms. We show that a linear delayed feedback not only controls the transition point, but effectively changes the nonlinear terms near the transition. A purely nonlinear delayed coupling does not affect the transition point, but can reduce or enhance the amplitude of collective oscillations.}, language = {en} } @phdthesis{Mulansky2012, author = {Mulansky, Mario}, title = {Chaotic diffusion in nonlinear Hamiltonian systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63180}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {This work investigates diffusion in nonlinear Hamiltonian systems. The diffusion, more precisely subdiffusion, in such systems is induced by the intrinsic chaotic behavior of trajectories and thus is called chaotic diffusion''. Its properties are studied on the example of one- or two-dimensional lattices of harmonic or nonlinear oscillators with nearest neighbor couplings. The fundamental observation is the spreading of energy for localized initial conditions. Methods of quantifying this spreading behavior are presented, including a new quantity called excitation time. This new quantity allows for a more precise analysis of the spreading than traditional methods. Furthermore, the nonlinear diffusion equation is introduced as a phenomenologic description of the spreading process and a number of predictions on the density dependence of the spreading are drawn from this equation. Two mathematical techniques for analyzing nonlinear Hamiltonian systems are introduced. The first one is based on a scaling analysis of the Hamiltonian equations and the results are related to similar scaling properties of the NDE. From this relation, exact spreading predictions are deduced. Secondly, the microscopic dynamics at the edge of spreading states are thoroughly analyzed, which again suggests a scaling behavior that can be related to the NDE. Such a microscopic treatment of chaotically spreading states in nonlinear Hamiltonian systems has not been done before and the results present a new technique of connecting microscopic dynamics with macroscopic descriptions like the nonlinear diffusion equation. All theoretical results are supported by heavy numerical simulations, partly obtained on one of Europe's fastest supercomputers located in Bologna, Italy. In the end, the highly interesting case of harmonic oscillators with random frequencies and nonlinear coupling is studied, which resembles to some extent the famous Discrete Anderson Nonlinear Schroedinger Equation. For this model, a deviation from the widely believed power-law spreading is observed in numerical experiments. Some ideas on a theoretical explanation for this deviation are presented, but a conclusive theory could not be found due to the complicated phase space structure in this case. Nevertheless, it is hoped that the techniques and results presented in this work will help to eventually understand this controversely discussed case as well.}, language = {en} } @phdthesis{Topaj2001, author = {Topaj, Dmitri}, title = {Synchronization transitions in complex systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000367}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Gegenstand dieser Arbeit ist die Untersuchung generischer Synchronisierungsph{\"a}nomene in interagierenden komplexen Systemen. Diese Ph{\"a}nomene werden u.a. in gekoppelten deterministischen chaotischen Systemen beobachtet. Bei sehr schwachen Interaktionen zwischen individuellen Systemen kann ein {\"U}bergang zum schwach koh{\"a}renten Verhalten der Systeme stattfinden. In gekoppelten zeitkontinuierlichen chaotischen Systemen manifestiert sich dieser {\"U}bergang durch den Effekt der Phasensynchronisierung, in gekoppelten chaotischen zeitdiskreten Systemen durch den Effekt eines nichtverschwindenden makroskopischen Feldes. Der {\"U}bergang zur Koh{\"a}renz in einer Kette lokal gekoppelter Oszillatoren, beschrieben durch Phasengleichungen, wird im Bezug auf die Symmetrien des Systems untersucht. Es wird gezeigt, daß die durch die Symmetrien verursachte Reversibilit{\"a}t des Systems nichttriviale topologische Eigenschaften der Trajektorien bedingt, so daß das als dissipativ konstruierte System in einem ganzen Parameterbereich quasi-Hamiltonische Z{\"u}ge aufweist, d.h. das Phasenvolumen ist im Schnitt erhalten, und die Lyapunov-Exponenten sind paarweise symmetrisch. Der {\"U}bergang zur Koh{\"a}renz in einem Ensemble global gekoppelter chaotischer Abbildungen wird durch den Verlust der Stabilit{\"a}t des entkoppelten Zustandes beschrieben. Die entwickelte Methode besteht darin, die Selbstkonsistenz des makroskopischen Feldes aufzuheben, und das Ensemble in Analogie mit einem Verst{\"a}rkerschaltkreis mit R{\"u}ckkopplung durch eine komplexe lineare {\"U}bertragungssfunktion zu charakterisieren. Diese Theorie wird anschließend f{\"u}r einige theoretisch interessanten F{\"a}lle verallgemeinert.}, language = {en} } @phdthesis{Zillmer2003, author = {Zillmer, R{\"u}diger}, title = {Statistical properties and scaling of the Lyapunov exponents in stochastic systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001147}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Die vorliegende Arbeit umfaßt drei Abhandlungen, welche allgemein mit einer stochastischen Theorie f{\"u}r die Lyapunov-Exponenten befaßt sind. Mit Hilfe dieser Theorie werden universelle Skalengesetze untersucht, die in gekoppelten chaotischen und ungeordneten Systemen auftreten. Zun{\"a}chst werden zwei zeitkontinuierliche stochastische Modelle f{\"u}r schwach gekoppelte chaotische Systeme eingef{\"u}hrt, um die Skalierung der Lyapunov-Exponenten mit der Kopplungsst{\"a}rke ('coupling sensitivity of chaos') zu untersuchen. Mit Hilfe des Fokker-Planck-Formalismus werden Skalengesetze hergeleitet, die von Ergebnissen numerischer Simulationen best{\"a}tigt werden. Anschließend wird gezeigt, daß 'coupling sensitivity' im Fall gekoppelter ungeordneter Ketten auftritt, wobei der Effekt sich durch ein singul{\"a}res Anwachsen der Lokalisierungsl{\"a}nge {\"a}ußert. Numerische Ergebnisse f{\"u}r gekoppelte Anderson-Modelle werden bekr{\"a}ftigt durch analytische Resultate f{\"u}r gekoppelte raumkontinuierliche Schr{\"o}dinger-Gleichungen. Das resultierende Skalengesetz f{\"u}r die Lokalisierungsl{\"a}nge {\"a}hnelt der Skalierung der Lyapunov-Exponenten gekoppelter chaotischer Systeme. Schließlich wird die Statistik der exponentiellen Wachstumsrate des linearen Oszillators mit parametrischem Rauschen studiert. Es wird gezeigt, daß die Verteilung des zeitabh{\"a}ngigen Lyapunov-Exponenten von der Normalverteilung abweicht. Mittels der verallgemeinerten Lyapunov-Exponenten wird der Parameterbereich bestimmt, in welchem die Abweichungen von der Normalverteilung signifikant sind und Multiskalierung wesentlich wird.}, language = {en} }