@phdthesis{Haluska2004, author = {Haluska, Christopher K.}, title = {Interactions of functionalized vesicles in the presence of Europium (III) Chloride}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2482}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {We incorporate amphiphilic receptors bearing ß-diketone functional units into large (LUV's) and giant unilamellar vesicles (GUV's). Electrolyte solutions containing di- and trivalent ions were used to induce inter-membrane interactions. Measurements performed with isothermal titration calorimetry (ITC) revealed that interaction between EuCl3 and ß-diketone receptors was characterized by a molar enthalpy 126 ± 5 kcal/mole and an equilibrium binding constant 26 ± 4 mM-1. The results indicate a molecular complex formed binding two ß-diketone receptors to one Eu3+ ion. Dynamic light scattering (DLS) was used to follow changes in LUV diameter indicated in an increase in vesicle size distribution of on average 20 \%. Optical microscopy was employed to visualize the inter-membrane interaction measured using DLS and ITC. Depending on membrane composition of the functionalized vesicles we found that local injections of micromolar EuCl¬3 induced membrane pore formation and membrane fusion. Our collection of results leads to the conclusion that formation of intra-molecular ligand receptor complexes leads to pore formation and inter-membrane complex formation leads to membrane fusion. Detailed characterization of the fusion process shows that irreversible opening of the fusion pore can be extrapolated to times below 50 µsec. We have found that formation of membrane bound ligand (Eu3+)-receptor complexes provides versatility to the function of vesicle membranes.}, subject = {Biophysik}, language = {de} }