@article{LiebigSarhanPrietzeletal.2018, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Th{\"u}nemann, Andreas F. and Bargheer, Matias and Koetz, Joachim}, title = {Undulated Gold Nanoplatelet Superstructures}, series = {Langmuir}, volume = {34}, journal = {Langmuir}, number = {15}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.7b02898}, pages = {4584 -- 4594}, year = {2018}, abstract = {Negatively charged flat gold nanotriangles, formed in a vesicular template phase and separated by an AOT-micelle-based depletion flocculation, were reloaded by adding a cationic polyelectrolyte, that is, a hyperbranched polyethylenimine (PEI). Heating the system to 100 degrees C in the presence of a gold chloride solution, the reduction process leads to the formation of gold nanoparticles inside the polymer shell surrounding the nanoplatelets. The gold nanoparticle formation is investigated by UV-vis spectroscopy, small-angle X-ray scattering, and dynamic light scattering measurements in combination with transmission electron microscopy. Spontaneously formed gold clusters in the hyperbranched PEI shell with an absorption maximum at 350 nm grow on the surface of the nanotriangles as hemispherical particles with diameters of similar to 6 nm. High-resolution micrographs show that the hemispherical gold particles are crystallized onto the {111} facets on the bottom and top of the platelet as well as on the edges without a grain boundary. Undulated gold nanoplatelet superstructures with special properties become available, which show a significantly modified performance in SERS-detected photocatalysis regarding both reactivity and enhancement factor.}, language = {en} } @phdthesis{Breuer2016, author = {Breuer, David}, title = {The plant cytoskeleton as a transportation network}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93583}, school = {Universit{\"a}t Potsdam}, pages = {164}, year = {2016}, abstract = {The cytoskeleton is an essential component of living cells. It is composed of different types of protein filaments that form complex, dynamically rearranging, and interconnected networks. The cytoskeleton serves a multitude of cellular functions which further depend on the cell context. In animal cells, the cytoskeleton prominently shapes the cell's mechanical properties and movement. In plant cells, in contrast, the presence of a rigid cell wall as well as their larger sizes highlight the role of the cytoskeleton in long-distance intracellular transport. As it provides the basis for cell growth and biomass production, cytoskeletal transport in plant cells is of direct environmental and economical relevance. However, while knowledge about the molecular details of the cytoskeletal transport is growing rapidly, the organizational principles that shape these processes on a whole-cell level remain elusive. This thesis is devoted to the following question: How does the complex architecture of the plant cytoskeleton relate to its transport functionality? The answer requires a systems level perspective of plant cytoskeletal structure and transport. To this end, I combined state-of-the-art confocal microscopy, quantitative digital image analysis, and mathematically powerful, intuitively accessible graph-theoretical approaches. This thesis summarizes five of my publications that shed light on the plant cytoskeleton as a transportation network: (1) I developed network-based frameworks for accurate, automated quantification of cytoskeletal structures, applicable in, e.g., genetic or chemical screens; (2) I showed that the actin cytoskeleton displays properties of efficient transport networks, hinting at its biological design principles; (3) Using multi-objective optimization, I demonstrated that different plant cell types sustain cytoskeletal networks with cell-type specific and near-optimal organization; (4) By investigating actual transport of organelles through the cell, I showed that properties of the actin cytoskeleton are predictive of organelle flow and provided quantitative evidence for a coordination of transport at a cellular level; (5) I devised a robust, optimization-based method to identify individual cytoskeletal filaments from a given network representation, allowing the investigation of single filament properties in the network context. The developed methods were made publicly available as open-source software tools. Altogether, my findings and proposed frameworks provide quantitative, system-level insights into intracellular transport in living cells. Despite my focus on the plant cytoskeleton, the established combination of experimental and theoretical approaches is readily applicable to different organisms. Despite the necessity of detailed molecular studies, only a complementary, systemic perspective, as presented here, enables both understanding of cytoskeletal function in its evolutionary context as well as its future technological control and utilization.}, language = {en} } @article{BetkeLokstein2019, author = {Betke, Alexander and Lokstein, Heiko}, title = {Two-photon excitation spectroscopy of photosynthetic light-harvesting complexes and pigments}, series = {Faraday discussions}, volume = {216}, journal = {Faraday discussions}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-6640}, doi = {10.1039/c8fd00198g}, pages = {494 -- 506}, year = {2019}, abstract = {In addition to (bacterio)chlorophylls, (B)Chls, light-harvesting complexes (LHCs) bind carotenoids, and/or their oxygen derivatives, xanthophylls. Xanthophylls/carotenoids have pivotal functions in LHCs: in stabilization of the structure, as accessory light-harvesting pigments and, probably most importantly, in photoprotection. Xanthophylls are assumed to be involved in the not yet fully understood mechanism of energy-dependent (qE) non-photochemical quenching of Chl fluorescence (NPQ) in higher plants and algae. The so called "xanthophyll cycle" appears to be crucial in this regard. The molecular mechanism(s) of xanthophyll involvement in qE/NPQ have not been established, yet. Moreover, excitation energy transfer (EET) processes involving carotenoids are also difficult to study, due to the fact that transitions between the ground state (S-0, 1(1)A(g)(-)) and the lowest excited singlet state (S-1, 2(1)A(g)(-)) of carotenoids are optically one-photon forbidden ("dark"). Two-photon excitation spectroscopic techniques have been used for more than two decades to study one-photon forbidden states of carotenoids. In the current study, two-photon excitation profiles of LHCII samples containing different xanthophyll complements were measured in the presumed 1(1)A(g)(-) -> 2(1)A(g)(-) (S-0 -> S-1) transition spectral region of the xanthophylls, as well as for isolated chlorophylls a and b in solution. The results indicate that direct two-photon excitation of Chls in this spectral region is dominant over that by xanthophylls. Implications of the results for proposed mechanism(s) of qE/NPQ will be discussed.}, language = {en} } @phdthesis{Pruefer2014, author = {Pr{\"u}fer, Nicole}, title = {Untersuchungen zur pro-inflammatorischen Wirkung von Serum-Amyloid A in glatten Gef{\"a}ßmuskelzellen}, pages = {XIII, 98}, year = {2014}, language = {de} } @phdthesis{Goktas2019, author = {Goktas, Melis}, title = {Coiled coils as molecular force sensors for the extracellular matrix}, doi = {10.25932/publishup-42749}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427493}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 124}, year = {2019}, abstract = {Kraft spielt eine fundamentale Rolle bei der Regulation von biologischen Prozessen. Zellen messen mechanische Eigenschaften der extrazellul{\"a}ren Matrix und benutzen diese Information zur Regulierung ihrer Funktion. Dazu werden im Zytoskelett Kr{\"a}fte generiert und auf extrazellul{\"a}re Rezeptor-Ligand Wechselwirkungen {\"u}bertragen. Obwohl der grundlegende Einfluss von mechanischen Signalen f{\"u}r das Zellschicksal eindeutig belegt ist, sind die auf molekularer Ebene wirkenden Kr{\"a}fte kaum bekannt. Zur Messung dieser Kr{\"a}fte wurden verschiedene molekulare Kraftsensoren entwickelt, die ein mechanisches Inputsignal aufnehmen und in einen optischen Output (Fluoreszenz) umwandeln. Diese Arbeit etabliert einen neuen Kraftsensor-Baustein, der die mechanischen Eigenschaften der extrazellul{\"a}ren Matrix nachbildet. Dieser Baustein basiert auf nat{\"u}rlichen Matrixproteinen, sogenannten coiled coils (CCs), die α-helikale Strukturen im Zytoskelett und der Matrix formen. Eine Serie an CC-Heterodimeren wurde konzipiert und mittels Einzelmolek{\"u}l-Kraftspektroskopie und Molekulardynamik-Simulationen charakterisiert. Es wurde gezeigt, dass eine anliegende Scherkraft die Entfaltung der helikalen Struktur induziert. Die mechanische Stabilit{\"a}t (Separation der CC Helices) wird von der CC L{\"a}nge und der Zuggeschwindigkeit bestimmt. Im Folgenden wurden 2 CCs unterschiedlicher L{\"a}nge als Kraftsensoren verwendet, um die Adh{\"a}sionskr{\"a}fte von Fibroblasten und Endothelzellen zu untersuchen. Diese Kraftsensoren deuten an, dass diese Zelltypen unterschiedlich starke Kr{\"a}ften generieren und mittels Integrin-Rezeptoren auf einen extrazellul{\"a}ren Liganden (RGD-Peptid) {\"u}bertragen. Dieses neue CC-basierte Sensordesign ist ein leistungsstarkes Werkzeug zur Betrachtung zellul{\"a}rer Kraftwahrnehmungsprozesse auf molekularer Ebene, das neue Erkenntnisse {\"u}ber die involvierten Mechanismen und Kr{\"a}fte an der Zell-Matrix-Schnittstelle erm{\"o}glicht. Dar{\"u}ber hinaus wird dieses Sensordesign auch Anwendung bei der Entwicklung mechanisch kontrollierter Biomaterialien finden. Dazu k{\"o}nnen mechanisch charakterisierte, und mit einem Fluoreszenzreporter versehene, CCs in Hydrogele eingef{\"u}gt werden. Dies erlaubt die Untersuchung der Zusammenh{\"a}nge zwischen molekularer und makroskopischer Mechanik und er{\"o}ffnet neue M{\"o}glichkeiten zur Diskriminierung von lokalen und globalen Faktoren, die die zellul{\"a}re Antwort auf mechanische Signale bestimmen.}, language = {en} } @article{YarmanKurbanoğluZebgeretal.2021, author = {Yarman, Aysu and Kurbanoğlu, Sevin{\c{c}} and Zebger, Ingo and Scheller, Frieder W.}, title = {Simple and robust}, series = {Sensors and actuators : B, Chemical : an international journal devoted to research and development of chemical transducers}, volume = {330}, journal = {Sensors and actuators : B, Chemical : an international journal devoted to research and development of chemical transducers}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0925-4005}, doi = {10.1016/j.snb.2020.129369}, pages = {12}, year = {2021}, abstract = {A spectrum of 7562 publications on Molecularly Imprinted Polymers (MIPs) has been presented in literature within the last ten years (Scopus, September 7, 2020). Around 10 \% of the papers published on MIPs describe the recognition of proteins. The straightforward synthesis of MIPs is a significant advantage as compared with the preparation of enzymes or antibodies. MIPs have been synthesized from only one up to six functional monomers while proteins are made up of 20 natural amino acids. Furthermore, they can be synthesized against structures of low immunogenicity and allow multi-analyte measurements via multi-target synthesis. Electrochemical methods allow simple polymer synthesis, removal of the template and readout. Among the different sensor configurations electrochemical MIP-sensors provide the broadest spectrum of protein analytes. The sensitivity of MIP-sensors is sufficiently high for biomarkers in the sub-nanomolar region, nevertheless the cross-reactivity of highly abundant proteins in human serum is still a challenge. MIPs for proteins offer innovative tools not only for clinical and environmental analysis, but also for bioimaging, therapy and protein engineering.}, language = {en} } @phdthesis{Sauter2016, author = {Sauter, J{\"o}rg}, title = {The molecular origin of plant cell wall swelling}, school = {Universit{\"a}t Potsdam}, pages = {iii, 127 S.}, year = {2016}, abstract = {In dieser Arbeit werden die Eigenschaften von hydratisierten Hemicellulose Polysacchariden mittels Computersimulation untersucht. Die hohe Quellfähigkeit von Materialien die aus diesen Molek{\"u}len bestehen, erlaubt die Erzeugung von zielgerichteter Bewegung in Planzenmaterialien, ausschließlich gesteuert durch Wasseraufnahme. Um den molekularen Ursprung dieses Quellvermögens zu untersuchen wird, im Vergleich mit Experimenten, ein atomistisches Modell f{\"u}r Hemicellulose Polysaccharide entwickelt und getestet. Unter Verwendung dieses Modells werden Simulationen von kleinen Polysacchariden benutzt um die Wechselwirkungen mit Wasser, den Einfluss von Wasser auf die Konformationsfreiheit der Molek{\"u}le, und die Quellfähigkeit, quantifiziert durch den osmotischen Druck, zu verstehen. Es wird gezeigt, dass verzweigte und lineare Polysaccharide unterschiedliche Hydratisierungseingenschaften im Vergleich zu lineare Polysacchariden aufweisen. Um das Quellverhalten auf Längen- und Zeitskalen untersuchen zu können die {\"u}ber die Begrenzungen atomistischer Simulationen hinausgehen, wurde eine Prozedur entwickelt um {\"u}bertragbare vergröberte Modelle herzuleiten. Die Übertragbarkeit der vegröberten Modelle wird gezeigt, sowohl {\"u}ber unterschiedliche Polysaccharidkonzentrationen als auch {\"u}ber unterschiedliche Polymerlängen. Daher erlaubt die Prozedur die Konstruktion von großen vergröberter Systemen ausgehend von kleinen atomistischen Referenzsystemen. Abschließend wird das vergröberte Modell verwendet um zu zeigen, dass lineare und verzweigte Polysaccharide ein unterschiedliches Quellverhalten aufweisen, wenn sie mit einem Wasserbad gekoppelt werden.}, language = {en} }