@article{ZhouZemanovaZamoraetal.2006, author = {Zhou, Changsong and Zemanova, Lucia and Zamora, Gorka and Hilgetag, Claus C. and Kurths, J{\"u}rgen}, title = {Hierarchical organization unveiled by functional connectivity in complex brain networks}, series = {Physical review letters}, volume = {97}, journal = {Physical review letters}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.97.238103}, pages = {4}, year = {2006}, abstract = {How do diverse dynamical patterns arise from the topology of complex networks? We study synchronization dynamics in the cortical brain network of the cat, which displays a hierarchically clustered organization, by modeling each node (cortical area) with a subnetwork of interacting excitable neurons. We find that in the biologically plausible regime the dynamics exhibits a hierarchical modular organization, in particular, revealing functional clusters coinciding with the anatomical communities at different scales. Our results provide insights into the relationship between network topology and functional organization of complex brain networks.}, language = {en} } @article{ZemanovaZhouKurths2006, author = {Zemanova, Lucia and Zhou, Changsong and Kurths, J{\"u}rgen}, title = {Structural and functional clusters of complex brain networks}, series = {Physica, D, Nonlinear phenomena}, volume = {224}, journal = {Physica, D, Nonlinear phenomena}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-2789}, doi = {10.1016/j.physd.2006.09.008}, pages = {202 -- 212}, year = {2006}, abstract = {Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on the corticocortical network of the cat by modeling each node (cortical area) of the network with a sub-network of interacting excitable neurons. We find that the network displays clustered synchronization behavior, and the dynamical clusters coincide with the topological community structures observed in the anatomical network. Our results provide insights into the relationship between the global organization and the functional specialization of the brain cortex.}, language = {en} }