@inproceedings{LilliestamDuGilmanovaetal.2023, author = {Lilliestam, Johan and Du, Fengli and Gilmanova, Alina and Mehos, Mark and Wang, Zhifeng and Thonig, Richard}, title = {Scaling up CSP}, series = {AIP conference proceedings}, volume = {2815}, booktitle = {AIP conference proceedings}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1551-7616}, doi = {10.1063/5.0148709}, pages = {10}, year = {2023}, abstract = {Concentrating solar power (CSP) is one of the few scalable technologies capable of delivering dispatchable renewable power. Therefore, many expect it to shoulder a significant share of system balancing in a renewable electricity future powered by cheap, intermittent PV and wind power: the IEA, for example, projects 73 GW CSP by 2030 and several hundred GW by 2050 in its Net-Zero by 2050 pathway. In this paper, we assess how fast CSP can be expected to scale up and how long time it would take to get new, high-efficiency CSP technologies to market, based on observed trends and historical patterns. We find that to meaningfully contribute to net-zero pathways the CSP sector needs to reach and exceed the maximum historical annual growth rate of 30\%/year last seen between 2010-2014 and maintain it for at least two decades. Any CSP deployment in the 2020s will rely mostly on mature existing technologies, namely parabolic trough and molten-salt towers, but likely with adapted business models such as hybrid CSP-PV stations, combining the advantages of higher-cost dispatchable and low-cost intermittent power. New third-generation CSP designs are unlikely to play a role in markets during the 2020s, as they are still at or before the pilot stage and, judging from past pilot-to-market cycles for CSP, they will likely not be ready for market deployment before 2030. CSP can contribute to low-cost zero-emission energy systems by 2050, but to make that happen, at the scale foreseen in current energy models, ambitious technology-specific policy support is necessary, as soon as possible and in several countries.}, language = {en} } @article{ThonigGilmanovaZhanetal.2022, author = {Thonig, Richard and Gilmanova, Alina and Zhan, Jing and Lilliestam, Johan}, title = {Chinese CSP for the world?}, series = {AIP conference proceedings}, journal = {AIP conference proceedings}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1551-7616}, doi = {10.1063/5.0085752}, pages = {1 -- 11}, year = {2022}, abstract = {For three consecutive five-year plans since 2006, China has worked on building up an internationally competitive CSP industry and value chain. One big milestone in commercializing proprietary Chinese CSP technology was the 2016 demonstration program of 20 commercial-scale projects. China sought to increase and demonstrate capacities for domestic CSP technology development and deployment. At the end of the 13th five-year period, we take stock of the demonstrated progress of the Chinese CSP industry towards delivering internationally competitive CSP projects. We find that in January 2021, eight commercial-scale projects, in total 500 MW, have been completed and three others were under construction in China. In addition, Chinese EPC's have participated in three international CSP projects, although proprietary Chinese CSP designs have not been applied outside China. The largest progress has been made in molten-salt tower technology, with several projects by different companies completed and operating successfully: here, the aims were met, and Chinese companies are now at the global forefront of this segment. Further efforts for large-scale demonstration are needed, however, for other CSP technologies, including parabolic trough - with additional demonstration hindered by a lack of further deployment policies. In the near future, Chinese companies seek to employ the demonstrated capabilities in the tower segment abroad and are developing projects using Chinese technology, financing, and components in several overseas markets. If successful, this will likely lead to increasing competition and further cost reductions for the global CSP sector.}, language = {en} }