@article{TotzEliseevPetrietal.2018, author = {Totz, Sonja Juliana and Eliseev, Alexey V. and Petri, Stefan and Flechsig, Michael and Caesar, Levke and Petoukhov, Vladimir and Coumou, Dim}, title = {The dynamical core of the Aeolus 1.0 statistical-dynamical atmosphere model}, series = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, volume = {11}, journal = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-11-665-2018}, pages = {665 -- 679}, year = {2018}, abstract = {Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0. The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower troposphere mass flux show good results in particular in the Northern Hemisphere. In the Southern Hemisphere, the model tends to produce too-weak zonal-mean zonal winds and a too-narrow Hadley circulation. We discuss possible reasons for these model biases as well as planned future model improvements and applications.}, language = {en} }