@article{SchmaelzlinMoralejoGersondeetal.2018, author = {Schm{\"a}lzlin, Elmar Gerd and Moralejo, Benito and Gersonde, Ingo and Schleusener, Johannes and Darvin, Maxim E. and Thiede, Gisela and Roth, Martin M.}, title = {Nonscanning large-area Raman imaging for ex vivo/in vivo skin cancer discrimination}, series = {Journal of biomedical optics}, volume = {23}, journal = {Journal of biomedical optics}, number = {10}, publisher = {SPIE}, address = {Bellingham}, issn = {1083-3668}, doi = {10.1117/1.JBO.23.10.105001}, pages = {11}, year = {2018}, abstract = {Imaging Raman spectroscopy can be used to identify cancerous tissue. Traditionally, a step-by-step scanning of the sample is applied to generate a Raman image, which, however, is too slow for routine examination of patients. By transferring the technique of integral field spectroscopy (IFS) from astronomy to Raman imaging, it becomes possible to record entire Raman images quickly within a single exposure, without the need for a tedious scanning procedure. An IFS-based Raman imaging setup is presented, which is capable of measuring skin ex vivo or in vivo. It is demonstrated how Raman images of healthy and cancerous skin biopsies were recorded and analyzed. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.}, language = {en} } @article{SarhanKoopmanPudelletal.2019, author = {Sarhan, Radwan Mohamed and Koopman, Wouter-Willem Adriaan and Pudell, Jan-Etienne and Stete, Felix and R{\"o}ssle, Matthias and Herzog, Marc and Schmitt, Clemens Nikolaus Zeno and Liebig, Ferenc and Koetz, Joachim and Bargheer, Matias}, title = {Scaling up nanoplasmon catalysis}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {123}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {14}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.8b12574}, pages = {9352 -- 9357}, year = {2019}, abstract = {Nanoscale heating by optical excitation of plasmonic nanoparticles offers a new perspective of controlling chemical reactions, where heat is not spatially uniform as in conventional macroscopic heating but strong temperature gradients exist around microscopic hot spots. In nanoplasmonics, metal particles act as a nanosource of light, heat, and energetic electrons driven by resonant excitation of their localized surface plasmon resonance. As an example of the coupling reaction of 4-nitrothiophenol into 4,4′-dimercaptoazobenzene, we show that besides the nanoscopic heat distribution at hot spots, the microscopic distribution of heat dictated by the spot size of the light focus also plays a crucial role in the design of plasmonic nanoreactors. Small sizes of laser spots enable high intensities to drive plasmon-assisted catalysis. This facilitates the observation of such reactions by surface-enhanced Raman scattering, but it challenges attempts to scale nanoplasmonic chemistry up to large areas, where the excess heat must be dissipated by one-dimensional heat transport.}, language = {en} }