@article{GraetzSeissSpahn2018, author = {Gr{\"a}tz, Fabio M. and Seiss, Martin and Spahn, Frank}, title = {Formation of moon-induced gaps in dense planetary rings}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {862}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aace00}, pages = {9}, year = {2018}, abstract = {We develop an axisymmetric diffusion model to describe radial density profiles in the vicinity of tiny moons embedded in planetary rings. Our diffusion model accounts for the gravitational scattering of the ring particles by an embedded moon and for the viscous diffusion of the ring matter back into the gap. With test particle simulations, we show that the scattering of the ring particles passing the moon is larger for small impact parameters than estimated by Goldreich \& Tremaine and Namouni. This is significant for modeling the Keeler gap. We apply our model to the gaps of the moons Pan and Daphnis embedded in the outer A ring of Saturn with the aim to estimate the shear viscosity of the ring in the vicinity of the Encke and Keeler gap. In addition, we analyze whether tiny icy moons whose dimensions lie below Cassini's resolution capabilities would be able to explain the gap structure of the C ring and the Cassini division.}, language = {en} } @misc{BouchouleSchemmerHenkel2018, author = {Bouchoule, Isabelle and Schemmer, Max and Henkel, Carsten}, title = {Cooling phonon modes of a Bose condensate with uniform few body losses}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1029}, issn = {1866-8372}, doi = {10.25932/publishup-46881}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468811}, pages = {20}, year = {2018}, abstract = {We present a general analysis of the cooling produced by losses on condensates or quasi-condensates. We study how the occupations of the collective phonon modes evolve in time, assuming that the loss process is slow enough so that each mode adiabatically follows the decrease of the mean density. The theory is valid for any loss process whose rate is proportional to the jth power of the density, but otherwise spatially uniform. We cover both homogeneous gases and systems confined in a smooth potential. For a low-dimensional gas, we can take into account the modified equation of state due to the broadening of the cloud width along the tightly confined directions, which occurs for large interactions. We find that at large times, the temperature decreases proportionally to the energy scale mc2, where m is the mass of the particles and c the sound velocity. We compute the asymptotic ratio of these two quantities for different limiting cases: a homogeneous gas in any dimension and a one-dimensional gas in a harmonic trap.}, language = {en} } @phdthesis{Graetz2020, author = {Gr{\"a}tz, Fabio M.}, title = {Nonlinear diffusion in granular gases and dense planetary rings}, school = {Universit{\"a}t Potsdam}, pages = {101}, year = {2020}, abstract = {Small moonlets or moons embedded in dense planetary rings create S-shaped density modulations called propellers if their masses are smaller than a certain threshold, alternatively they create a circumferential gap in the disk if the embedded body's mass exceeds this threshold (Spahn and Sremčević, 2000). The gravitational perturber scatters the ring particles, depletes the disk's density, and, thus, clears a gap, whereas counteracting viscous diffusion of the ring material has the tendency to close the created gap, thereby forming a propeller. Propeller objects were predicted by Spahn and Sremčević (2000) and Sremčević et al. (2002) and were later discovered by the Cassini space probe (Tiscareno et al., 2006, Sremčević et al., 2007, Tiscareno et al., 2008, and Tiscareno et al., 2010). The ring moons Pan and Daphnis are massive enough to maintain the circumferential Encke and Keeler gaps in Saturn's A ring and were detected by Showalter (1991) and Porco (2005) in Voyager and Cassini images, respectively. In this thesis, a nonlinear axisymmetric diffusion model is developed to describe radial density profiles of circumferential gaps in planetary rings created by embedded moons (Grätz et al., 2018). The model accounts for the gravitational scattering of the ring particles by the embedded moon and for the counteracting viscous diffusion of the ring matter back into the gap. With test particle simulations it is shown that the scattering of the ring particles passing the moon is larger for small impact parameters than estimated by Goldreich and Tremaine (1980). This is especially significant for the modeling of the Keeler gap. The model is applied to the Encke and Keeler gaps with the aim to estimate the shear viscosity of the ring in their vicinities. In addition, the model is used to analyze whether tiny icy moons whose dimensions lie below Cassini's resolution capabilities would be able to cause the poorly understood gap structure of the C ring and the Cassini Division. One of the most intriguing facets of Saturn's rings are the extremely sharp edges of the Encke and Keeler gaps: UVIS-scans of their gap edges show that the optical depth drops from order unity to zero over a range of far less than 100 m, a spatial scale comparable to the ring's vertical extent. This occurs despite the fact that the range over which a moon transfers angular momentum onto the ring material is much larger. Borderies et al. (1982, 1989) have shown that this striking feature is likely related to the local reversal of the usually outward-directed viscous transport of angular momentum in strongly perturbed regions. We have revised the Borderies et al. (1989) model using a granular flow model to define the shear and bulk viscosities, ν and ζ, in order to incorporate the angular momentum flux reversal effect into the axisymmetric diffusion model for circumferential gaps presented in this thesis (Grätz et al., 2019). The sharp Encke and Keeler gap edges are modeled and conclusions regarding the shear and bulk viscosities of the ring are discussed. Finally, we explore the question of whether the radial density profile of the central and outer A ring, recently measured by Tiscareno and Harris (2018) in the highest resolution to date, and in particular, the sharp outer A ring edge can be modeled consistently from the balance of gravitational scattering by several outer moons and the mass and momentum transport. To this aim, the developed model is extended to account for the inward drifts caused by multiple discrete and overlapping resonances with multiple outer satellites and is then used to hydrodynamically simulate the normalized surface mass density profile of the A ring. This section of the thesis is based on studies by Tajeddine et al. (2017a) who recently discussed the common misconception that the 7:6 resonance with Janus alone maintains the outer A ring edge, showing that the combined effort of several resonances with several outer moons is required to confine the A ring as observed by the Cassini spacecraft.}, language = {en} } @article{VafinRiazantsevaPohl2019, author = {Vafin, Sergei and Riazantseva, Maria and Pohl, Martin}, title = {Coulomb collisions as a candidate for temperature anisotropy constraints in the solar wind}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {871}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/aafb11}, pages = {6}, year = {2019}, abstract = {Many solar wind observations at 1 au indicate that the proton (as well as electron) temperature anisotropy is limited. The data distribution in the (A(a), beta(a),(parallel to))-plane have a rhombic-shaped form around beta(a),(parallel to) similar to 1. The boundaries of the temperature anisotropy at beta(a),(parallel to) > 1 can be well explained by the threshold conditions of the mirror (whistler) and oblique proton (electron) firehose instabilities in a bi-Maxwellian plasma, whereas the physical mechanism of the similar restriction at beta(a),(parallel to) < 1 is still under debate. One possible option is Coulomb collisions, which we revisit in the current work. We derive the relaxation rate nu(A)(aa) of the temperature anisotropy in a bi-Maxwellian plasma that we then study analytically and by observed proton data from WIND. We found that nu(A)(pp) increases toward small beta(p),(parallel to) < 1. We matched the data distribution in the (A(p), beta(p),(parallel to))-plane with the constant contour nu(A)(pp) = 2.8 . 10(-6) s(-1), corresponding to the minimum value for collisions to play a role. This contour fits rather well the left boundary of the rhombic-shaped data distribution in the (A(p), beta(p),(parallel to))-plane. Thus, Coulomb collisions are an interesting candidate for explaining the limitations of the temperature anisotropy in the solar wind with small beta(a),(parallel to) < 1 at 1 au.}, language = {en} }