@phdthesis{Willig2019, author = {Willig, Lisa}, title = {Ultrafast magneto-optical studies of remagnetisation dynamics in transition metals}, doi = {10.25932/publishup-44194}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441942}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 113, XVII}, year = {2019}, abstract = {Ultrafast magnetisation dynamics have been investigated intensely for two decades. The recovery process after demagnetisation, however, was rarely studied experimentally and discussed in detail. The focus of this work lies on the investigation of the magnetisation on long timescales after laser excitation. It combines two ultrafast time resolved methods to study the relaxation of the magnetic and lattice system after excitation with a high fluence ultrashort laser pulse. The magnetic system is investigated by time resolved measurements of the magneto-optical Kerr effect. The experimental setup has been implemented in the scope of this work. The lattice dynamics were obtained with ultrafast X-ray diffraction. The combination of both techniques leads to a better understanding of the mechanisms involved in magnetisation recovery from a non-equilibrium condition. Three different groups of samples are investigated in this work: Thin Nickel layers capped with nonmagnetic materials, a continuous sample of the ordered L10 phase of Iron Platinum and a sample consisting of Iron Platinum nanoparticles embedded in a carbon matrix. The study of the remagnetisation reveals a general trend for all of the samples: The remagnetisation process can be described by two time dependences. A first exponential recovery that slows down with an increasing amount of energy absorbed in the system until an approximately linear time dependence is observed. This is followed by a second exponential recovery. In case of low fluence excitation, the first recovery is faster than the second. With increasing fluence the first recovery is slowed down and can be described as a linear function. If the pump-induced temperature increase in the sample is sufficiently high, a phase transition to a paramagnetic state is observed. In the remagnetisation process, the transition into the ferromagnetic state is characterised by a distinct transition between the linear and exponential recovery. From the combination of the transient lattice temperature Tp(t) obtained from ultrafast X-ray measurements and magnetisation M(t) gained from magneto-optical measurements we construct the transient magnetisation versus temperature relations M(Tp). If the lattice temperature remains below the Curie temperature the remagnetisation curve M(Tp) is linear and stays below the M(T) curve in equilibrium in the continuous transition metal layers. When the sample is heated above phase transition, the remagnetisation converges towards the static temperature dependence. For the granular Iron Platinum sample the M(Tp) curves for different fluences coincide, i.e. the remagnetisation follows a similar path irrespective of the initial laser-induced temperature jump.}, language = {en} } @article{WilligReppertDebetal.2019, author = {Willig, Lisa and Reppert, Alexander von and Deb, Marwan and Ganss, F. and Hellwig, O. and Bargheer, Matias}, title = {Finite-size effects in ultrafast remagnetization dynamics of FePt}, series = {Physical review : B, Condensed matter and materials physics}, volume = {100}, journal = {Physical review : B, Condensed matter and materials physics}, number = {22}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.100.224408}, pages = {6}, year = {2019}, abstract = {We investigate the ultrafast magnetization dynamics of FePt in the L1(0) phase after an optical heating pulse, as used in heat-assisted magnetic recording. We compare continuous and nano-granular thin films and emphasize the impact of the finite size on the remagnetization dynamics. The remagnetization speeds up significantly with increasing external magnetic field only for the continuous film, where domain-wall motion governs the dynamics. The ultrafast remagnetization dynamics in the continuous film are only dominated by heat transport in the regime of high magnetic fields, whereas the timescale required for cooling is prevalent in the granular film for all magnetic field strengths. These findings highlight the necessary conditions for studying the intrinsic heat transport properties in magnetic materials.}, language = {en} } @phdthesis{Willner2018, author = {Willner, Sven N.}, title = {Global economic response to flood damages under climate change}, school = {Universit{\"a}t Potsdam}, pages = {v, 247}, year = {2018}, abstract = {Climate change affects societies across the globe in various ways. In addition to gradual changes in temperature and other climatic variables, global warming is likely to increase intensity and frequency of extreme weather events. Beyond biophysical impacts, these also directly affect societal and economic activity. Additionally, indirect effects can occur; spatially, economic losses can spread along global supply-chains; temporally, climate impacts can change the economic development trajectory of countries. This thesis first examines how climate change alters river flood risk and its local socio-economic implications. Then, it studies the global economic response to river floods in particular, and to climate change in general. Changes in high-end river flood risk are calculated for the next three decades on a global scale with high spatial resolution. In order to account for uncertainties, this assessment makes use of an ensemble of climate and hydrological models as well as a river routing model, that is found to perform well regarding peak river discharge. The results show an increase in high-end flood risk in many parts of the world, which require profound adaptation efforts. This pressure to adapt is measured as the enhancement in protection level necessary to stay at historical high-end risk. In developing countries as well as in industrialized regions, a high pressure to adapt is observed - the former to increase low protection levels, the latter to maintain the low risk levels perceived in the past. Further in this thesis, the global agent-based dynamic supply-chain model acclimate is developed. It models the cascading of indirect losses in the global supply network. As an anomaly model its agents - firms and consumers - maximize their profit locally to respond optimally to local perturbations. Incorporating quantities as well as prices on a daily basis, it is suitable to dynamically resolve the impacts of unanticipated climate extremes. The model is further complemented by a static measure, which captures the inter-dependencies between sectors across regions that are only connected indirectly. These higher-order dependencies are shown to be important for a comprehensive assessment of loss-propagation and overall costs of local disasters. In order to study the economic response to river floods, the acclimate model is driven by flood simulations. Within the next two decades, the increase in direct losses can only partially be compensated by market adjustments, and total losses are projected to increase by 17\% without further adaptation efforts. The US and the EU are both shown to receive indirect losses from China, which is strongly affected directly. However, recent trends in the trade relations leave the EU in a better position to compensate for these losses. Finally, this thesis takes a broader perspective when determining the investment response to the climate change damages employing the integrated assessment model DICE. On an optimal economic development path, the increase in damages is anticipated as emissions and consequently temperatures increase. This leads to a significant devaluation of investment returns and the income losses from climate damages almost double. Overall, the results highlight the need to adapt to extreme weather events - local physical adaptation measures have to be combined with regional and global policy measures to prepare the global supply-chain network to climate change.}, language = {en} } @article{WillnerLevermannZhaoetal.2018, author = {Willner, Sven N. and Levermann, Anders and Zhao, Fang and Frieler, Katja}, title = {Adaptation required to preserve future high-end river flood risk at present levels}, series = {Science Advances}, volume = {4}, journal = {Science Advances}, number = {1}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aao1914}, pages = {8}, year = {2018}, abstract = {Earth's surface temperature will continue to rise for another 20 to 30 years even with the strongest carbon emission reduction currently considered. The associated changes in rainfall patterns can result in an increased flood risk worldwide. We compute the required increase in flood protection to keep high-end fluvial flood risk at present levels. The analysis is carried out worldwide for subnational administrative units. Most of the United States, Central Europe, and Northeast and West Africa, as well as large parts of India and Indonesia, require the strongest adaptation effort. More than half of the United States needs to at least double their protection within the next two decades. Thus, the need for adaptation to increased river flood is a global problem affecting industrialized regions as much as developing countries.}, language = {en} } @article{WillnerOttoLevermann2018, author = {Willner, Sven N. and Otto, Christian and Levermann, Anders}, title = {Global economic response to river floods}, series = {Nature climate change}, volume = {8}, journal = {Nature climate change}, number = {7}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-018-0173-2}, pages = {594 -- 598}, year = {2018}, abstract = {Increasing Earth's surface air temperature yields an intensification of its hydrological cycle. As a consequence, the risk of river floods will increase regionally within the next two decades due to the atmospheric warming caused by past anthropogenic greenhouse gas emissions. The direct economic losses caused by these floods can yield regionally heterogeneous losses and gains by propagation within the global trade and supply network. Here we show that, in the absence of large-scale structural adaptation, the total economic losses due to fluvial floods will increase in the next 20 years globally by 17\% despite partial compensation through market adjustment within the global trade network. China will suffer the strongest direct losses, with an increase of 82\%. The United States is mostly affected indirectly through its trade relations. By contrast to the United States, recent intensification of the trade relations with China leaves the European Union better prepared for the import of production losses in the future.}, language = {en} } @misc{Winkler2011, type = {Master Thesis}, author = {Winkler, Michael}, title = {Thinning and turbulence in aqueous films}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53107}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {This thesis covers the topic "Thinning and Turbulence in Aqueous Films". Experimental studies in two-dimensional systems gained an increasing amount of attention during the last decade. Thin liquid films serve as paradigms of atmospheric convection, thermal convection in the Earth's mantle or turbulence in magnetohydrodynamics. Recent research on colloids, interfaces and nanofluids lead to advances in the developtment of micro-mixers (lab-on-a-chip devices). In this project a detailed description of a thin film experiment with focus on the particular surface forces is presented. The impact of turbulence on the thinning of liquid films which are oriented parallel to the gravitational force is studied. An experimental setup was developed which permits the capturing of thin film interference patterns under controlled surface and atmospheric conditions. The measurement setup also serves as a prototype of a mixer on the basis of thermally induced turbulence in liquid thin films with thicknesses in the nanometer range. The convection is realized by placing a cooled copper rod in the center of the film. The temperature gradient between the rod and the atmosphere results in a density gradient in the liquid film, so that different buoyancies generate turbulence. In the work at hand the thermally driven convection is characterized by a newly developed algorithm, named Cluster Imaging Velocimetry (CIV). This routine determines the flow relevant vector fields (velocity and deformation). On the basis of these insights the flow in the experiment was investigated with respect to its mixing properties. The mixing characteristics were compared to theoretical models and mixing efficiency of the flow scheme calculated. The gravitationally driven thinning of the liquid film was analyzed under the influence of turbulence. Strong shear forces lead to the generation of ultra-thin domains which consist of Newton black film. Due to the exponential expansion of the thin areas and the efficient mixing, this two-phase flow rapidly turns into the convection of only ultra-thin film. This turbulence driven transition was observed and quantified for the first time. The existence of stable convection in liquid nanofilms was proven for the first time in the context of this work.}, language = {en} } @article{WisotzkiBaconBrinchmannetal.2018, author = {Wisotzki, Lutz and Bacon, R. and Brinchmann, J. and Cantalupo, S. and Richter, Philipp and Schaye, J. and Schmidt, Kasper Borello and Urrutia, Tanya and Weilbacher, Peter Michael and Akhlaghi, M. and Bouche, N. and Contini, T. and Guiderdoni, B. and Herenz, E. C. and Inami, H. and Kerutt, Josephine Victoria and Leclercq, F. and Marino, R. A. and Maseda, M. and Monreal-Ibero, A. and Nanayakkara, T. and Richard, J. and Saust, R. and Steinmetz, Matthias and Wendt, Martin}, title = {Nearly all the sky is covered by Lyman-alpha emission around high-redshift galaxies}, series = {Nature : the international weekly journal of science}, volume = {562}, journal = {Nature : the international weekly journal of science}, number = {7726}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/s41586-018-0564-6}, pages = {229 -- 232}, year = {2018}, abstract = {Galaxies are surrounded by large reservoirs of gas, mostly hydrogen, that are fed by inflows from the intergalactic medium and by outflows from galactic winds. Absorption-line measurements along the lines of sight to bright and rare background quasars indicate that this circumgalactic medium extends far beyond the starlight seen in galaxies, but very little is known about its spatial distribution. The Lyman-alpha transition of atomic hydrogen at a wavelength of 121.6 nanometres is an important tracer of warm (about 104 kelvin) gas in and around galaxies, especially at cosmological redshifts greater than about 1.6 at which the spectral line becomes observable from the ground. Tracing cosmic hydrogen through its Lyman-a emission has been a long-standing goal of observational astrophysics(1-3), but the extremely low surface brightness of the spatially extended emission is a formidable obstacle. A new window into circumgalactic environments was recently opened by the discovery of ubiquitous extended Lyman-alpha emission from hydrogen around high-redshift galaxies(4,5). Such measurements were previously limited to especially favourable systems(6-8) or to the use of massive statistical averaging(9,10) because of the faintness of this emission. Here we report observations of low-surface-brightness Lyman-alpha emission surrounding faint galaxies at redshifts between 3 and 6. We find that the projected sky coverage approaches 100 per cent. The corresponding rate of incidence (the mean number of Lyman-alpha emitters penetrated by any arbitrary line of sight) is well above unity and similar to the incidence rate of high-column-density absorbers frequently detected in the spectra of distant quasars(11-14). This similarity suggests that most circumgalactic atomic hydrogen at these redshifts has now been detected in emission.}, language = {en} } @unpublished{WittKurthsKrauseetal.1994, author = {Witt, Annette and Kurths, J{\"u}rgen and Krause, F. and Fischer, K.}, title = {On the validity of a model for the reversals of the Earth's magnetic field}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13460}, year = {1994}, abstract = {We have used techniques of nonlinear dynamics to compare a special model for the reversals of the Earth's magnetic field with the observational data. Although this model is rather simple, there is no essential difference to the data by means of well-known characteristics, such as correlation function and probability distribution. Applying methods of symbolic dynamics we have found that the considered model is not able to describe the dynamical properties of the observed process. These significant differences are expressed by algorithmic complexity and Renyi information.}, language = {en} } @unpublished{WittNeimanKurths1997, author = {Witt, Annette and Neiman, Alexander and Kurths, J{\"u}rgen}, title = {Characterizing the dynamics of stochastic bistable systems by measures of complexity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14556}, year = {1997}, abstract = {The dynamics of noisy bistable systems is analyzed by means of Lyapunov exponents and measures of complexity. We consider both the classical Kramers problem with additive white noise and the case when the barrier fluctuates due to additional external colored noise. In case of additive noise we calculate the Lyapunov exponents and all measures of complexity analytically as functions of the noise intensity resp. the mean escape time. For the problem of fluctuating barrier the usual description of the dynamics with the mean escape time is not sufficient. The application of the concept of measures of complexity allows to describe the structures of motion in more detail. Most complexity measures sign the value of correlation time at which the phenomenon of resonant activation occurs with an extremum.}, language = {en} } @article{WojcikBrinkmannZduneketal.2020, author = {Wojcik, Michal and Brinkmann, Pia and Zdunek, Rafał and Riebe, Daniel and Beitz, Toralf and Merk, Sven and Cieslik, Katarzyna and Mory, David and Antonczak, Arkadiusz}, title = {Classification of copper minerals by handheld laser-induced breakdown spectroscopy and nonnegative tensor factorisation}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s20185152}, pages = {17}, year = {2020}, abstract = {Laser-induced breakdown spectroscopy (LIBS) analysers are becoming increasingly common for material classification purposes. However, to achieve good classification accuracy, mostly noncompact units are used based on their stability and reproducibility. In addition, computational algorithms that require significant hardware resources are commonly applied. For performing measurement campaigns in hard-to-access environments, such as mining sites, there is a need for compact, portable, or even handheld devices capable of reaching high measurement accuracy. The optics and hardware of small (i.e., handheld) devices are limited by space and power consumption and require a compromise of the achievable spectral quality. As long as the size of such a device is a major constraint, the software is the primary field for improvement. In this study, we propose a novel combination of handheld LIBS with non-negative tensor factorisation to investigate its classification capabilities of copper minerals. The proposed approach is based on the extraction of source spectra for each mineral (with the use of tensor methods) and their labelling based on the percentage contribution within the dataset. These latent spectra are then used in a regression model for validation purposes. The application of such an approach leads to an increase in the classification score by approximately 5\% compared to that obtained using commonly used classifiers such as support vector machines, linear discriminant analysis, and the k-nearest neighbours algorithm.}, language = {en} } @article{WolfGuehr2019, author = {Wolf, Thomas and G{\"u}hr, Markus}, title = {Photochemical pathways in nucleobases measured with an X-ray FEL}, series = {Philosophical Transactions of the Royal Society of London, Series A : Mathematical, Physical and Engineering Sciences}, volume = {377}, journal = {Philosophical Transactions of the Royal Society of London, Series A : Mathematical, Physical and Engineering Sciences}, number = {2145}, publisher = {Royal Society}, address = {London}, issn = {1364-503X}, doi = {10.1098/rsta.2017.0473}, pages = {12}, year = {2019}, abstract = {The conversion of light energy into other molecular energetic degrees of freedom is often dominated by ultrafast, non-adiabatic processes. Femtosecond spectroscopy with optical pulses has helped in shaping our understanding of crucial processes in molecular energy-conversion. The advent of new, ultrashort and bright X-ray free electron laser sources opens the possibility to use X-ray-typical element and site sensitivity for ultrafast molecular research. We present two types of spectroscopy, ultrafast Auger and ultrafast X-ray absorption spectroscopy, and discuss their sensitivity to molecular processes. While Auger spectroscopy is able to monitor bond distance changes in the vicinity of an X-ray created core hole, near-edge absorption spectroscopy can deliver high-fidelity information on non-adiabatic transitions involving lone-pair orbitals. We demonstrate these features on the example of the UV-excited nucleobase thymine, investigated at the oxygen K-edge. We find a C-O bond elongation in the Auger data in addition to pi pi*/n pi* non-adiabatic transition in X-ray near-edge absorption. We compare the results from both methods and draw a conclusive scenario of non-adiabatic molecular relaxation after UV excitation.}, language = {en} } @article{WolfHolzmeierWagneretal.2017, author = {Wolf, Thomas J. A. and Holzmeier, Fabian and Wagner, Isabella and Berrah, Nora and Bostedt, Christoph and Bozek, John and Bucksbaum, Philip H. and Coffee, Ryan and Cryan, James and Farrell, Joe and Feifel, Raimund and Martinez, Todd J. and McFarland, Brian and Mucke, Melanie and Nandi, Saikat and Tarantelli, Francesco and Fischer, Ingo and G{\"u}hr, Markus}, title = {Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra}, series = {Applied Sciences}, volume = {7}, journal = {Applied Sciences}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app7070681}, year = {2017}, abstract = {Molecules often fragment after photoionization in the gas phase. Usually, this process can only be investigated spectroscopically as long as there exists electron correlation between the photofragments. Important parameters, like their kinetic energy after separation, cannot be investigated. We are reporting on a femtosecond time-resolved Auger electron spectroscopy study concerning the photofragmentation dynamics of thymine. We observe the appearance of clearly distinguishable signatures from thymine′s neutral photofragment isocyanic acid. Furthermore, we observe a time-dependent shift of its spectrum, which we can attribute to the influence of the charged fragment on the Auger electron. This allows us to map our time-dependent dataset onto the fragmentation coordinate. The time dependence of the shift supports efficient transformation of the excess energy gained from photoionization into kinetic energy of the fragments. Our method is broadly applicable to the investigation of photofragmentation processes.}, language = {en} } @misc{WolfHolzmeierWagneretal.2017, author = {Wolf, Thomas J. A. and Holzmeier, Fabian and Wagner, Isabella and Berrah, Nora and Bostedt, Christoph and Bozek, John and Bucksbaum, Philip H. and Coffee, Ryan and Cryan, James and Farrell, Joe and Feifel, Raimund and Martinez, Todd J. and McFarland, Brian and Mucke, Melanie and Nandi, Saikat and Tarantelli, Francesco and Fischer, Ingo and G{\"u}hr, Markus}, title = {Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402692}, pages = {11}, year = {2017}, abstract = {Molecules often fragment after photoionization in the gas phase. Usually, this process can only be investigated spectroscopically as long as there exists electron correlation between the photofragments. Important parameters, like their kinetic energy after separation, cannot be investigated. We are reporting on a femtosecond time-resolved Auger electron spectroscopy study concerning the photofragmentation dynamics of thymine. We observe the appearance of clearly distinguishable signatures from thymine′s neutral photofragment isocyanic acid. Furthermore, we observe a time-dependent shift of its spectrum, which we can attribute to the influence of the charged fragment on the Auger electron. This allows us to map our time-dependent dataset onto the fragmentation coordinate. The time dependence of the shift supports efficient transformation of the excess energy gained from photoionization into kinetic energy of the fragments. Our method is broadly applicable to the investigation of photofragmentation processes.}, language = {en} } @article{WolfParrishMyhreetal.2019, author = {Wolf, Thomas J. A. and Parrish, Robert M. and Myhre, Rolf H. and Martinez, Todd J. and Koch, Henrik and G{\"u}hr, Markus}, title = {Observation of Ultrafast Intersystem Crossing in Thymine by Extreme Ultraviolet Time-Resolved Photoelectron Spectroscopy}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {123}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {32}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.9b05573}, pages = {6897 -- 6903}, year = {2019}, abstract = {We studied the photoinduced ultrafast relaxation dynamics of the nucleobase thymine using gas-phase time-resolved photoelectron spectroscopy. By employing extreme ultraviolet pulses from high harmonic generation for photoionization, we substantially extend our spectral observation window with respect to previous studies. This enables us to follow relaxation of the excited state population all the way to low-lying electronic states including the ground state. In thymine, we observe relaxation from the optically bright (1)pi pi* state of thymine to a dark (1)n pi* state within 80 +/- 30 fs. The (1)n pi* state relaxes further within 3.5 +/- 0.3 ps to a low-lying electronic state. By comparison with quantum chemical simulations, we can unambiguously assign its spectroscopic signature to the (3)pi pi* state. Hence, our study draws a comprehensive picture of the relaxation mechanism of thymine including ultrafast intersystem crossing to the triplet manifold.}, language = {en} } @phdthesis{Wolff2020, author = {Wolff, Christian Michael}, title = {Identification and reduction of losses in perovskite solar cells}, doi = {10.25932/publishup-47930}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-479301}, school = {Universit{\"a}t Potsdam}, pages = {x, 158}, year = {2020}, abstract = {Perovskite solar cells have become one of the most studied systems in the quest for new, cheap and efficient solar cell materials. Within a decade device efficiencies have risen to >25\% in single-junction and >29\% in tandem devices on top of silicon. This rapid improvement was in many ways fortunate, as e. g. the energy levels of commonly used halide perovskites are compatible with already existing materials from other photovoltaic technologies such as dye-sensitized or organic solar cells. Despite this rapid success, fundamental working principles must be understood to allow concerted further improvements. This thesis focuses on a comprehensive understanding of recombination processes in functioning devices. First the impact the energy level alignment between the perovskite and the electron transport layer based on fullerenes is investigated. This controversial topic is comprehensively addressed and recombination is mitigated through reducing the energy difference between the perovskite conduction band minimum and the LUMO of the fullerene. Additionally, an insulating blocking layer is introduced, which is even more effective in reducing this recombination, without compromising carrier collection and thus efficiency. With the rapid efficiency development (certified efficiencies have broken through the 20\% ceiling) and thousands of researchers working on perovskite-based optoelectronic devices, reliable protocols on how to reach these efficiencies are lacking. Having established robust methods for >20\% devices, while keeping track of possible pitfalls, a detailed description of the fabrication of perovskite solar cells at the highest efficiency level (>20\%) is provided. The fabrication of low-temperature p-i-n structured devices is described, commenting on important factors such as practical experience, processing atmosphere \& temperature, material purity and solution age. Analogous to reliable fabrication methods, a method to identify recombination losses is needed to further improve efficiencies. Thus, absolute photoluminescence is identified as a direct way to quantify the Quasi-Fermi level splitting of the perovskite absorber (1.21eV) and interfacial recombination losses the transport layers impose, reducing the latter to ~1.1eV. Implementing very thin interlayers at both the p- and n-interface (PFN-P2 and LiF, respectively), these losses are suppressed, enabling a VOC of up to 1.17eV. Optimizing the device dimensions and the bandgap, 20\% devices with 1cm2 active area are demonstrated. Another important consideration is the solar cells' stability if subjected to field-relevant stressors during operation. In particular these are heat, light, bias or a combination thereof. Perovskite layers - especially those incorporating organic cations - have been shown to degrade if subjected to these stressors. Keeping in mind that several interlayers have been successfully used to mitigate recombination losses, a family of perfluorinated self-assembled monolayers (X-PFCn, where X denotes I/Br and n = 7-12) are introduced as interlayers at the n-interface. Indeed, they reduce interfacial recombination losses enabling device efficiencies up to 21.3\%. Even more importantly they improve the stability of the devices. The solar cells with IPFC10 are stable over 3000h stored in the ambient and withstand a harsh 250h of MPP at 85◦C without appreciable efficiency losses. To advance further and improve device efficiencies, a sound understanding of the photophysics of a device is imperative. Many experimental observations in recent years have however drawn an inconclusive picture, often suffering from technical of physical impediments, disguising e. g. capacitive discharge as recombination dynamics. To circumvent these obstacles, fully operational, highly efficient perovskites solar cells are investigated by a combination of multiple optical and optoelectronic probes, allowing to draw a conclusive picture of the recombination dynamics in operation. Supported by drift-diffusion simulations, the device recombination dynamics can be fully described by a combination of first-, second- and third-order recombination and JV curves as well as luminescence efficiencies over multiple illumination intensities are well described within the model. On this basis steady state carrier densities, effective recombination constants, densities-of-states and effective masses are calculated, putting the devices at the brink of the radiative regime. Moreover, a comprehensive review of recombination in state-of-the-art devices is given, highlighting the importance of interfaces in nonradiative recombination. Different strategies to assess these are discussed, before emphasizing successful strategies to reduce interfacial recombination and pointing towards the necessary steps to further improve device efficiency and stability. Overall, the main findings represent an advancement in understanding loss mechanisms in highly efficient solar cells. Different reliable optoelectronic techniques are used and interfacial losses are found to be of grave importance for both efficiency and stability. Addressing the interfaces, several interlayers are introduced, which mitigate recombination losses and degradation.}, language = {en} } @misc{WolffCanilRehermannetal.2020, author = {Wolff, Christian Michael and Canil, Laura and Rehermann, Carolin and Nguyen, Ngoc Linh and Zu, Fengshuo and Ralaiarisoa, Maryline and Caprioglio, Pietro and Fiedler, Lukas and Stolterfoht, Martin and Kogikoski, Junior, Sergio and Bald, Ilko and Koch, Norbert and Unger, Eva L. and Dittrich, Thomas and Abate, Antonio and Neher, Dieter}, title = {Correction to 'Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells' (2020, 14 (2), 1445-1456)}, series = {ACS nano}, volume = {14}, journal = {ACS nano}, number = {11}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1936-0851}, doi = {10.1021/acsnano.0c08081}, pages = {16156 -- 16156}, year = {2020}, language = {en} } @article{WoodfieldGlauertMeniettietal.2019, author = {Woodfield, Emma E. and Glauert, Saraha A. and Menietti, J. Douglas and Averkamp, Terrance F. and Horne, Richard B. and Shprits, Yuri Y.}, title = {Rapid Electron Acceleration in Low-Density Regions of Saturn's Radiation Belt by Whistler Mode Chorus Waves}, series = {Geophysical research letters}, volume = {46}, journal = {Geophysical research letters}, number = {13}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL083071}, pages = {7191 -- 7198}, year = {2019}, abstract = {Electron acceleration at Saturn due to whistler mode chorus waves has previously been assumed to be ineffective; new data closer to the planet show it can be very rapid (factor of 104 flux increase at 1 MeV in 10 days compared to factor of 2). A full survey of chorus waves at Saturn is combined with an improved plasma density model to show that where the plasma frequency falls below the gyrofrequency additional strong resonances are observed favoring electron acceleration. This results in strong chorus acceleration between approximately 2.5 R-S and 5.5 R-S outside which adiabatic transport may dominate. Strong pitch angle dependence results in butterfly pitch angle distributions that flatten over a few days at 100s keV, tens of days at MeV energies which may explain observations of butterfly distributions of MeV electrons near L = 3. Including cross terms in the simulations increases the tendency toward butterfly distributions. Plain Language Summary Radiation belts are hazardous regions found around several of the planets in our Solar System. They consist of very hot, electrically charged particles trapped in the magnetic field of the planet. At Saturn the most important way to heat these particles has for many years been thought to involve the particles drifting closer toward the planet. This paper adds to the emerging idea at Saturn that a different way to heat the particles is also possible where the heating is done by waves, in a similar way to what we find at the Earth. We use recent information from the Cassini spacecraft on the number and location of particles and also of the waves strength and location combined with computer simulations to show that a particular wave called chorus is excellent at heating the particles where the surrounding number of cold particles is low.}, language = {en} } @article{WoodfieldHorneGlauertetal.2018, author = {Woodfield, Emma E. and Horne, Richard B. and Glauert, S. A. and Menietti, J. D. and Shprits, Yuri Y. and Kurth, William S.}, title = {Formation of electron radiation belts at Saturn by Z-mode wave acceleration}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-07549-4}, pages = {7}, year = {2018}, abstract = {At Saturn electrons are trapped in the planet's magnetic field and accelerated to relativistic energies to form the radiation belts, but how this dramatic increase in electron energy occurs is still unknown. Until now the mechanism of radial diffusion has been assumed but we show here that in-situ acceleration through wave particle interactions, which initial studies dismissed as ineffectual at Saturn, is in fact a vital part of the energetic particle dynamics there. We present evidence from numerical simulations based on Cassini spacecraft data that a particular plasma wave, known as Z-mode, accelerates electrons to MeV energies inside 4 RS (1 RS = 60,330 km) through a Doppler shifted cyclotron resonant interaction. Our results show that the Z-mode waves observed are not oblique as previously assumed and are much better accelerators than O-mode waves, resulting in an electron energy spectrum that closely approaches observed values without any transport effects included.}, language = {en} } @phdthesis{Wu2010, author = {Wu, Ye}, title = {Nonlinear dynamics in complex networks and modeling human dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-47358}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Durch große Datenmengen k{\"o}nnen die Forscher die Eigenschaften komplexer Systeme untersuchen, z.B. komplexe Netzwerk und die Dynamik des menschlichen Verhaltens. Eine große Anzahl an Systemen werden als große und komplexe Netzwerke dargestellt, z.B. das Internet, Stromnetze, Wirtschaftssysteme. Immer mehr Forscher haben großes Interesse an der Dynamik des komplexen Netzwerks. Diese Arbeit besteht aus den folgenden drei Teilen. Der erste Teil ist ein einfacher dynamischer Optimierungs-Kopplungs-Mechanismus, aber sehr wirksam. Durch den Mechanismus kann synchronisation in komplexen Netzwerken mit und ohne Zeitverz{\"o}gerung realisiert, und die F{\"a}higkeit der Synchronisation von small-world und scale-free Netze verbessert werden. Im zweiten Teil geht um die Verst{\"a}rkung der Robustheit der scale-free Netze im Zusammenhang mit der Gemeinden-Struktur. Einige Reaktionsmuster und topologische Gemeinden sind einheitlich. Die Ergebnisse zeigen einen neuen Aspekt der Beziehung zwischen den Funktionen und der Netzwerk-Topologie von komplexen Netzwerken. Im dritten Teil welche eine wichtige Rolle in komplexen Netzwerken spielt, wird die Verhaltens-Dynamik der menschliche Mitteilung durch Daten- und Modellanalysierung erforscht, dann entsteht ein neues Mitteilungsmodell. Mit Hilfe von einem Interaktion priority-Queue Model kann das neue Modell erkl{\"a}rt werden. Mit Hilfe des Models k{\"o}nnen viele praktische Interaktions-Systeme erkl{\"a}rt werden, z.B. E-Mail und Briefe (oder Post). Mit Hilfe meiner Untersuchung kann man menschliches Verhalten auf der Individuums- und Netzwerkebene neu kennenlernen. Im vierter Teil kann ich nachweisen, dass menschliches Kommentar-Verhalten in on-line Sozialsystemen, eine andere Art der Interaktionsdynamik von Mensch non-Poisson ist und dieses am Modell erkl{\"a}ren. Mit Hilfe der non-Poisson Prozesse kann man das pers{\"o}nliche Anziehungskraft-Modell besser verstehen. Die Ergebnisse sind hilfreich zum Kennenlernen des Musters des menschlichen Verhaltens in on-line Gesellschaften und der Entwicklung von {\"o}ffentlicher Meinung nicht nur in der virtuellen Gesellschaftn sondern auch in der Realgesellschaft. Am Ende geht es um eine Prognose von menschlicher Dynamik und komplexen Netzwerken.}, language = {en} } @article{WulffMientusNowaketal.2022, author = {Wulff, Peter and Mientus, Lukas and Nowak, Anna and Borowski, Andreas}, title = {Utilizing a pretrained language model (BERT) to classify preservice physics teachers' written reflections}, series = {International journal of artificial intelligence in education}, journal = {International journal of artificial intelligence in education}, number = {33}, publisher = {Springer}, address = {New York}, issn = {1560-4292}, doi = {10.1007/s40593-022-00290-6}, pages = {439 -- 466}, year = {2022}, abstract = {Computer-based analysis of preservice teachers' written reflections could enable educational scholars to design personalized and scalable intervention measures to support reflective writing. Algorithms and technologies in the domain of research related to artificial intelligence have been found to be useful in many tasks related to reflective writing analytics such as classification of text segments. However, mostly shallow learning algorithms have been employed so far. This study explores to what extent deep learning approaches can improve classification performance for segments of written reflections. To do so, a pretrained language model (BERT) was utilized to classify segments of preservice physics teachers' written reflections according to elements in a reflection-supporting model. Since BERT has been found to advance performance in many tasks, it was hypothesized to enhance classification performance for written reflections as well. We also compared the performance of BERT with other deep learning architectures and examined conditions for best performance. We found that BERT outperformed the other deep learning architectures and previously reported performances with shallow learning algorithms for classification of segments of reflective writing. BERT starts to outperform the other models when trained on about 20 to 30\% of the training data. Furthermore, attribution analyses for inputs yielded insights into important features for BERT's classification decisions. Our study indicates that pretrained language models such as BERT can boost performance for language-related tasks in educational contexts such as classification.}, language = {en} } @article{WunderlingWilleitDongesetal.2020, author = {Wunderling, Nico and Willeit, Matteo and Donges, Jonathan and Winkelmann, Ricarda}, title = {Global warming due to loss of large ice masses and Arctic summer sea ice}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-020-18934-3}, pages = {14}, year = {2020}, abstract = {Several large-scale cryosphere elements such as the Arctic summer sea ice, the mountain glaciers, the Greenland and West Antarctic Ice Sheet have changed substantially during the last century due to anthropogenic global warming. However, the impacts of their possible future disintegration on global mean temperature (GMT) and climate feedbacks have not yet been comprehensively evaluated. Here, we quantify this response using an Earth system model of intermediate complexity. Overall, we find a median additional global warming of 0.43 degrees C (interquartile range: 0.39-0.46 degrees C) at a CO2 concentration of 400 ppm. Most of this response (55\%) is caused by albedo changes, but lapse rate together with water vapour (30\%) and cloud feedbacks (15\%) also contribute significantly. While a decay of the ice sheets would occur on centennial to millennial time scales, the Arctic might become ice-free during summer within the 21st century. Our findings imply an additional increase of the GMT on intermediate to long time scales. The disintegration of cryosphere elements such as the Arctic summer sea ice, mountain glaciers, Greenland and West Antarctica is associated with temperature and radiative feedbacks. In this work, the authors quantify these feedbacks and find an additional global warming of 0.43 degrees C.}, language = {en} } @article{WuerfelPerdigonToroKurpiersetal.2019, author = {W{\"u}rfel, Uli and Perdig{\´o}n-Toro, Lorena and Kurpiers, Jona and Wolff, Christian Michael and Caprioglio, Pietro and Rech, Jeromy James and Zhu, Jingshuai and Zhan, Xiaowei and You, Wei and Shoaee, Safa and Neher, Dieter and Stolterfoht, Martin}, title = {Recombination between Photogenerated and Electrode-Induced Charges Dominates the Fill Factor Losses in Optimized Organic Solar Cells}, series = {The journal of physical chemistry letters}, volume = {10}, journal = {The journal of physical chemistry letters}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.9b01175}, pages = {3473 -- 3480}, year = {2019}, abstract = {Charge extraction in organic solar cells (OSCs) is commonly believed to be limited by bimolecular recombination of photogenerated charges. However, the fill factor of OSCs is usually almost entirely governed by recombination processes that scale with the first order of the light intensity. This linear loss was often interpreted to be a consequence of geminate or trap-assisted recombination. Numerical simulations show that this linear dependence is a direct consequence of the large amount of excess dark charge near the contact. The first-order losses increase with decreasing mobility of minority carriers, and we discuss the impact of several material and device parameters on this loss mechanism. This work highlights that OSCs are especially vulnerable to injected charges as a result of their poor charge transport properties. This implies that dark charges need to be better accounted for when interpreting electro-optical measurements and charge collection based on simple figures of merit.}, language = {en} } @article{XiongFangOsipovetal.2018, author = {Xiong, Hui and Fang, Li and Osipov, Timur and Kling, Nora G. and Wolf, Thomas J. A. and Sistrunk, Emily and Obaid, Razib and G{\"u}hr, Markus and Berrah, Nora}, title = {Fragmentation of endohedral fullerene Ho3N@C-80 in an intense femtosecond near-infrared laser field}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {97}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.97.023419}, pages = {7}, year = {2018}, abstract = {The fragmentation of gas phase endohedral fullerene, Ho3N@C-80, was investigated using femtosecond near-infrared laser pulses with an ion velocity map imaging spectrometer. We observed that Ho+ abundance associated with carbon cage opening dominates at an intensity of 1.1 x 10(14) W/cm(2). As the intensity increases, the Ho+ yield associated with multifragmentation of the carbon cage exceeds the prominence of Ho+ associated with the gentler carbon cage opening. Moreover, the power law dependence of Ho+ on laser intensity indicates that the transition of the most likely fragmentation mechanisms occurs around 2.0 x 10(14) W/cm(2).}, language = {en} } @article{XiongMignoletFangetal.2017, author = {Xiong, Hui and Mignolet, Benoit and Fang, Li and Osipov, Timur and Wolf, Thomas J. A. and Sistrunk, Emily and G{\"u}hr, Markus and Remacle, Francoise and Berrah, Nora}, title = {The Role of Super-Atom Molecular Orbitals in Doped Fullerenes in a Femtosecond Intense Laser Field}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-00124-9}, pages = {8}, year = {2017}, abstract = {The interaction of gas phase endohedral fullerene Ho3N@C-80 with intense (0.1-5 x 10(14) W/cm(2)), short (30 fs), 800 nm laser pulses was investigated. The power law dependence of Ho3N@C-80(q+), q = 1-2, was found to be different from that of C-60. Time-dependent density functional theory computations revealed different light-induced ionization mechanisms. Unlike in C-60, in doped fullerenes, the breaking of the cage spherical symmetry makes super atomic molecular orbital (SAMO) states optically active. Theoretical calculations suggest that the fast ionization of the SAMO states in Ho3N@C-80 is responsible for the n = 3 power law for singly charged parent molecules at intensities lower than 1.2 x 10(14) W/cm(2).}, language = {en} } @article{XuDengSandev2020, author = {Xu, Pengbo and Deng, Weihua and Sandev, Trifce}, title = {Levy walk with parameter dependent velocity}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {53}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {11}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ab7420}, pages = {26}, year = {2020}, abstract = {To analyze stochastic processes, one often uses integral transform (Fourier and Laplace) methods. However, for the time-space coupled cases, e.g. the Levy walk, sometimes the integral transform method may fail. Here we provide a Hermite polynomial expansion approach, being complementary to the integral transform method, to the Levy walk. Two approaches are compared for some already known results. We also consider the generalized Levy walk with parameter dependent velocity. Namely, we consider the Levy walk with velocity which depends on the walking length or on the duration of each step. Some interesting features of the generalized Levy walk are observed, including the special shapes of the probability density function, the first passage time distributions, and various diffusive behaviors of the mean squared displacement.}, language = {en} } @article{XuMetzlerWang2022, author = {Xu, Pengbo and Metzler, Ralf and Wang, Wanli}, title = {Infinite density and relaxation for Levy walks in an external potential}, series = {Physical review}, volume = {105}, journal = {Physical review}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.105.044118}, pages = {15}, year = {2022}, abstract = {Levy walks are continuous-time random-walk processes with a spatiotemporal coupling of jump lengths and waiting times. We here apply the Hermite polynomial method to study the behavior of LWs with power-law walking time density for four different cases. First we show that the known result for the infinite density of an unconfined, unbiased LW is consistently recovered. We then derive the asymptotic behavior of the probability density function (PDF) for LWs in a constant force field, and we obtain the corresponding qth-order moments. In a harmonic external potential we derive the relaxation dynamic of the LW. For the case of a Poissonian walking time an exponential relaxation behavior is shown to emerge. Conversely, a power-law decay is obtained when the mean walking time diverges. Finally, we consider the case of an unconfined, unbiased LW with decaying speed v(r ) = v0/./r. When the mean walking time is finite, a universal Gaussian law for the position-PDF of the walker is obtained explicitly.}, language = {en} } @article{XuZhouMetzleretal.2020, author = {Xu, Pengbo and Zhou, Tian and Metzler, Ralf and Deng, Weihua}, title = {L{\´e}vy walk dynamics in an external harmonic potential}, series = {Physical review : E, Statistical, nonlinear, and soft matter physics}, volume = {101}, journal = {Physical review : E, Statistical, nonlinear, and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.101.062127}, pages = {12}, year = {2020}, abstract = {Levy walks (LWs) are spatiotemporally coupled random-walk processes describing superdiffusive heat conduction in solids, propagation of light in disordered optical materials, motion of molecular motors in living cells, or motion of animals, humans, robots, and viruses. We here investigate a key feature of LWs-their response to an external harmonic potential. In this generic setting for confined motion we demonstrate that LWs equilibrate exponentially and may assume a bimodal stationary distribution. We also show that the stationary distribution has a horizontal slope next to a reflecting boundary placed at the origin, in contrast to correlated superdiffusive processes. Our results generalize LWs to confining forces and settle some longstanding puzzles around LWs.}, language = {en} } @misc{XuZhouMetzleretal.2022, author = {Xu, Pengbo and Zhou, Tian and Metzler, Ralf and Deng, Weihua}, title = {Stochastic harmonic trapping of a L{\´e}vy walk: transport and first-passage dynamics under soft resetting strategies}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56040}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560402}, pages = {1 -- 28}, year = {2022}, abstract = {We introduce and study a L{\´e}vy walk (LW) model of particle spreading with a finite propagation speed combined with soft resets, stochastically occurring periods in which an harmonic external potential is switched on and forces the particle towards a specific position. Soft resets avoid instantaneous relocation of particles that in certain physical settings may be considered unphysical. Moreover, soft resets do not have a specific resetting point but lead the particle towards a resetting point by a restoring Hookean force. Depending on the exact choice for the LW waiting time density and the probability density of the periods when the harmonic potential is switched on, we demonstrate a rich emerging response behaviour including ballistic motion and superdiffusion. When the confinement periods of the soft-reset events are dominant, we observe a particle localisation with an associated non-equilibrium steady state. In this case the stationary particle probability density function turns out to acquire multimodal states. Our derivations are based on Markov chain ideas and LWs with multiple internal states, an approach that may be useful and flexible for the investigation of other generalised random walks with soft and hard resets. The spreading efficiency of soft-rest LWs is characterised by the first-passage time statistic.}, language = {en} } @article{XuZhouMetzleretal.2022, author = {Xu, Pengbo and Zhou, Tian and Metzler, Ralf and Deng, Weihua}, title = {Stochastic harmonic trapping of a L{\´e}vy walk}, series = {New journal of physics : the open-access journal for physics / Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics}, volume = {24}, journal = {New journal of physics : the open-access journal for physics / Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics}, number = {3}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/ac5282}, pages = {1 -- 28}, year = {2022}, abstract = {We introduce and study a L{\´e}vy walk (LW) model of particle spreading with a finite propagation speed combined with soft resets, stochastically occurring periods in which an harmonic external potential is switched on and forces the particle towards a specific position. Soft resets avoid instantaneous relocation of particles that in certain physical settings may be considered unphysical. Moreover, soft resets do not have a specific resetting point but lead the particle towards a resetting point by a restoring Hookean force. Depending on the exact choice for the LW waiting time density and the probability density of the periods when the harmonic potential is switched on, we demonstrate a rich emerging response behaviour including ballistic motion and superdiffusion. When the confinement periods of the soft-reset events are dominant, we observe a particle localisation with an associated non-equilibrium steady state. In this case the stationary particle probability density function turns out to acquire multimodal states. Our derivations are based on Markov chain ideas and LWs with multiple internal states, an approach that may be useful and flexible for the investigation of other generalised random walks with soft and hard resets. The spreading efficiency of soft-rest LWs is characterised by the first-passage time statistic.}, language = {en} } @article{XuLiuLietal.2020, author = {Xu, Yong and Liu, Xuemei and Li, Yongge and Metzler, Ralf}, title = {Heterogeneous diffusion processes and nonergodicity with Gaussian colored noise in layered diffusivity landscapes}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {102}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.102.062106}, pages = {16}, year = {2020}, abstract = {Heterogeneous diffusion processes (HDPs) with space-dependent diffusion coefficients D(x) are found in a number of real-world systems, such as for diffusion of macromolecules or submicron tracers in biological cells. Here, we examine HDPs in quenched-disorder systems with Gaussian colored noise (GCN) characterized by a diffusion coefficient with a power-law dependence on the particle position and with a spatially random scaling exponent. Typically, D(x) is considered to be centerd at the origin and the entire x axis is characterized by a single scaling exponent a. In this work we consider a spatially random scenario: in periodic intervals ("layers") in space D(x) is centerd to the midpoint of each interval. In each interval the scaling exponent alpha is randomly chosen from a Gaussian distribution. The effects of the variation of the scaling exponents, the periodicity of the domains ("layer thickness") of the diffusion coefficient in this stratified system, and the correlation time of the GCN are analyzed numerically in detail. We discuss the regimes of superdiffusion, subdiffusion, and normal diffusion realisable in this system. We observe and quantify the domains where nonergodic and non-Gaussian behaviors emerge in this system. Our results provide new insights into the understanding of weak ergodicity breaking for HDPs driven by colored noise, with potential applications in quenched layered systems, typical model systems for diffusion in biological cells and tissues, as well as for diffusion in geophysical systems.}, language = {en} } @article{XueLiuWangetal.2019, author = {Xue, Rui and Liu, Ruo-Yu and Wang, Xiang-Yu and Yan, Huirong and B{\"o}ttcher, Markus}, title = {On the minimum jet power of TeV BL Lac objects in the p-gamma model}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {871}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaf720}, pages = {10}, year = {2019}, abstract = {We study the requirement of the jet power in the conventional p-gamma models (photopion production and Bethe-Heitler pair production) for TeV BL Lac objects. We select a sample of TeV BL Lac objects whose spectral energy distributions are difficult to explain by the one-zone leptonic model. Based on the relation between the p-gamma interaction efficiency and the opacity of gamma gamma absorption, we find that the detection of TeV emission poses upper limits on the p-gamma interaction efficiencies in these sources and hence minimum jet powers can be derived accordingly. We find that the obtained minimum jet powers exceed the Eddington luminosity of the supermassive black holes (SMBHs). Implications for the accretion mode of the SMBHs in these BL Lac objects and the origin of their TeV emissions are discussed.}, language = {en} } @phdthesis{Xue2004, author = {X{\"u}, Chenggang}, title = {Preparation and characterization of vapour deposited films based on substituted 2,5-diphenyl-1,3,4-oxadiazole derivatives}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001358}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Diese Arbeit befasst sich mit dem Einfluss der molekularen Struktur von 2,5-Diphenyl-1,3,4-Oxadiazol-Derivaten auf die Pr{\"a}parierung d{\"u}nner Schichten mittels Vakuumdeposition. D{\"u}nne Schichten von diesen Substanzen wurden auf Si/SiO2 aufgedampft und ihre Struktur systematisch mittels XSR, AFM und IR untersucht. Das Ergebnis zeigt, dass die Schichtstrukturen offenbar von Substratetemperatur (Ts) abh{\"a}ngig sind. Im untersuchten Ts-Bereich bilden etherverbr{\"u}ckte Oxadiazole immer geordnete Schichten und die Schichtperiodicit{\"a}t h{\"a}ngt linear von der L{\"a}ngen der aliphatischen Ketten, w{\"a}hrend sich bei den amidverbr{\"u}ckten Oxadiazolen nur bei hohen Ts geordnete Schichten bilden k{\"o}nnen. Diese Unterschiede sind auf die intermolekularen Wasserstoffbr{\"u}cken zur{\"u}ckzuf{\"u}hren. Der Tilt-Winkel der Molek{\"u}le ist durch die Wechselwirkung zwischen dem aromatischen Teil bestimmt. Die Wechselwirkungen zwischen den Kopfgruppen k{\"o}nnen durch Tempern abgeschw{\"a}cht werden und f{\"u}hren zur Strukturumwandlung von Schichten, die auf etherverbr{\"u}ckten Oxadiazolen basieren. Alle Schichten von etherverbr{\"u}ckten Oxadiazolen haben Doppelschicht-Struktur, aber amidverbr{\"u}ckte Oxadiazole bilden nur Doppelschicht-Strukturen, wenn die Molek{\"u}le eine Kopfgruppe besitzen.}, language = {en} } @phdthesis{Yadavalli2014, author = {Yadavalli, Nataraja Sekhar}, title = {Advances in experimental methods to probe surface relief grating formation mechanism in photosensitive materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71213}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {When azobenzene-modified photosensitive polymer films are irradiated with light interference patterns, topographic variations in the film develop that follow the electric field vector distribution resulting in the formation of surface relief grating (SRG). The exact correspondence of the electric field vector orientation in interference pattern in relation to the presence of local topographic minima or maxima of SRG is in general difficult to determine. In my thesis, we have established a systematic procedure to accomplish the correlation between different interference patterns and the topography of SRG. For this, we devise a new setup combining an atomic force microscope and a two-beam interferometer (IIAFM). With this set-up, it is possible to track the topography change in-situ, while at the same time changing polarization and phase of the impinging interference pattern. To validate our results, we have compared two photosensitive materials named in short as PAZO and trimer. This is the first time that an absolute correspondence between the local distribution of electric field vectors of interference pattern and the local topography of the relief grating could be established exhaustively. In addition, using our IIAFM we found that for a certain polarization combination of two orthogonally polarized interfering beams namely SP (↕, ↔) interference pattern, the topography forms SRG with only half the period of the interference patterns. Exploiting this phenomenon we are able to fabricate surface relief structures below diffraction limit with characteristic features measuring only 140 nm, by using far field optics with a wavelength of 491 nm. We have also probed for the stresses induced during the polymer mass transport by placing an ultra-thin gold film on top (5-30 nm). During irradiation, the metal film not only deforms along with the SRG formation, but ruptures in regular and complex manner. The morphology of the cracks differs strongly depending on the electric field distribution in the interference pattern even when the magnitude and the kinetic of the strain are kept constant. This implies a complex local distribution of the opto-mechanical stress along the topography grating. The neutron reflectivity measurements of the metal/polymer interface indicate the penetration of metal layer within the polymer resulting in the formation of bonding layer that confirms the transduction of light induced stresses in the polymer layer to a metal film.}, language = {en} } @misc{YadavalliLoebnerPapkeetal.2018, author = {Yadavalli, Nataraja Sekhar and Loebner, Sarah and Papke, Thomas and Sava, Elena and Hurduc, Nicolae and Santer, Svetlana}, title = {A comparative study of photoinduced deformation in azobenzene containing polymer films}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {458}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413510}, year = {2018}, abstract = {In this paper two groups supporting different views on the mechanism of light induced polymer deformation argue about the respective underlying theoretical conceptions, in order to bring this interesting debate to the attention of the scientific community. The group of Prof. Nicolae Hurduc supports the model claiming that the cyclic isomerization of azobenzenes may cause an athermal transition of the glassy azobenzene containing polymer into a fluid state, the so-called photo-fluidization concept. This concept is quite convenient for an intuitive understanding of the deformation process as an anisotropic flow of the polymer material. The group of Prof. Svetlana Santer supports the re-orientational model where the mass-transport of the polymer material accomplished during polymer deformation is stated to be generated by the light-induced re-orientation of the azobenzene side chains and as a consequence of the polymer backbone that in turn results in local mechanical stress, which is enough to irreversibly deform an azobenzene containing material even in the glassy state. For the debate we chose three polymers differing in the glass transition temperature, 32 °C, 87 °C and 95 °C, representing extreme cases of flexible and rigid materials. Polymer film deformation occurring during irradiation with different interference patterns is recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. We also demonstrated the unique behaviour of azobenzene containing polymeric films to switch the topography in situ and reversibly by changing the irradiation conditions. We discuss the results of reversible deformation of three polymers induced by irradiation with intensity (IIP) and polarization (PIP) interference patterns, and the light of homogeneous intensity in terms of two approaches: the re-orientational and the photo-fluidization concepts. Both agree in that the formation of opto-mechanically induced stresses is a necessary prerequisite for the process of deformation. Using this argument, the deformation process can be characterized either as a flow or mass transport.}, language = {en} } @article{YanXueJiangetal.2022, author = {Yan, Xiaoli and Xue, Zhike and Jiang, Chaowei and Priest, E. R. and Kliem, Bernhard and Yang, Liheng and Wang, Jincheng and Kong, Defang and Song, Yongliang and Feng, Xueshang and Liu, Zhong}, title = {Fast plasmoid-mediated reconnection in a solar flare}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-28269-w}, pages = {14}, year = {2022}, abstract = {Magnetic reconnection is a multi-faceted process of energy conversion in astrophysical, space and laboratory plasmas that operates at microscopic scales but has macroscopic drivers and consequences. Solar flares present a key laboratory for its study, leaving imprints of the microscopic physics in radiation spectra and allowing the macroscopic evolution to be imaged, yet a full observational characterization remains elusive. Here we combine high resolution imaging and spectral observations of a confined solar flare at multiple wavelengths with data-constrained magnetohydrodynamic modeling to study the dynamics of the flare plasma from the current sheet to the plasmoid scale. The analysis suggests that the flare resulted from the interaction of a twisted magnetic flux rope surrounding a filament with nearby magnetic loops whose feet are anchored in chromospheric fibrils. Bright cusp-shaped structures represent the region around a reconnecting separator or quasi-separator (hyperbolic flux tube). The fast reconnection, which is relevant for other astrophysical environments, revealed plasmoids in the current sheet and separatrices and associated unresolved turbulent motions. Solar flares provide wide range of observational details about fundamental processes involved. Here, the authors show evidence for magnetic reconnection in a strong confined solar flare displaying all four reconnection flows with plasmoids in the current sheet and the separatrices.}, language = {en} } @misc{YangGuehrVecchioneetal.2016, author = {Yang, Jie and Guehr, Markus and Vecchione, Theodore and Robinson, Matthew Scott and Li, Renkai and Hartmann, Nick and Shen, Xiaozhe and Coffee, Ryan and Corbett, Jeff and Fry, Alan and Gaffney, Kelly and Gorkhover, Tais and Hast, Carsten and Jobe, Keith and Makasyuk, Igor and Reid, Alexander and Robinson, Joseph and Vetter, Sharon and Wang, Fenglin and Weathersby, Stephen and Yoneda, Charles and Wang, Xijie and Centurion, Martin}, title = {Femtosecond gas phase electron diffraction with MeV electrons}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394989}, pages = {19}, year = {2016}, abstract = {We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.}, language = {en} } @article{YangZhuWolfetal.2018, author = {Yang, Jie and Zhu, Xiaolei and Wolf, Thomas J. A. and Li, Zheng and Nunes, Jo{\~a}o Pedro Figueira and Coffee, Ryan and Cryan, James P. and G{\"u}hr, Markus and Hegazy, Kareem and Heinz, Tony F. and Jobe, Keith and Li, Renkai and Shen, Xiaozhe and Veccione, Theodore and Weathersby, Stephen and Wilkin, Kyle J. and Yoneda, Charles and Zheng, Qiang and Martinez, Todd J. and Centurion, Martin and Wang, Xijie}, title = {Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction}, series = {Science}, volume = {361}, journal = {Science}, number = {6397}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aat0049}, pages = {64 -- 67}, year = {2018}, abstract = {Conical intersections play a critical role in excited-state dynamics of polyatomic molecules because they govern the reaction pathways of many nonadiabatic processes. However, ultrafast probes have lacked sufficient spatial resolution to image wave-packet trajectories through these intersections directly. Here, we present the simultaneous experimental characterization of one-photon and two-photon excitation channels in isolated CF3I molecules using ultrafast gas-phase electron diffraction. In the two-photon channel, we have mapped out the real-space trajectories of a coherent nuclear wave packet, which bifurcates onto two potential energy surfaces when passing through a conical intersection. In the one-photon channel, we have resolved excitation of both the umbrella and the breathing vibrational modes in the CF3 fragment in multiple nuclear dimensions. These findings benchmark and validate ab initio nonadiabatic dynamics calculations.}, language = {en} } @article{YangJaiserStilleretal.2006, author = {Yang, Xiao Hui and Jaiser, Frank and Stiller, Burkhard and Neher, Dieter and Galbrecht, Frank and Scherf, Ullrich}, title = {Efficient polymer electrophosphoreseent devices with interfacial layers}, series = {Advanced functional materials}, volume = {16}, journal = {Advanced functional materials}, number = {16}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.200500834}, pages = {2156 -- 2162}, year = {2006}, abstract = {It is shown that several polymers can form insoluble interfacial layers on a poly (ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) layer after annealing of the double-layer structure. The thickness of the interlayer is dependent on the characteristics of the underlying PEDOT.PSS and the molecular weight of the polymers. It is further shown that the electronic structures of the interlayer polymers have a significant effect on the properties of red-light-emitting polymer-based electrophosphorescent devices. Upon increasing the highest occupied molecular orbital and lowest unoccupied molecular orbital positions, a significant increase in current density and device efficiency is observed. This is attributed to efficient blocking of electrons in combination with direct injection of holes from the interlayer to the phosphorescent dye. Upon proper choice of the interlayer polymer, efficient red, polymer-based electrophosphorescent devices with a peak luminance efficiency of 5.5 cd A(-1) (external quantum efficiency = 6 \%) and a maximum power-conversion efficiency of 5 Im W-1 can be realized.}, language = {en} } @article{YarmanKurbanoğluZebgeretal.2021, author = {Yarman, Aysu and Kurbanoğlu, Sevin{\c{c}} and Zebger, Ingo and Scheller, Frieder W.}, title = {Simple and robust}, series = {Sensors and actuators : B, Chemical : an international journal devoted to research and development of chemical transducers}, volume = {330}, journal = {Sensors and actuators : B, Chemical : an international journal devoted to research and development of chemical transducers}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0925-4005}, doi = {10.1016/j.snb.2020.129369}, pages = {12}, year = {2021}, abstract = {A spectrum of 7562 publications on Molecularly Imprinted Polymers (MIPs) has been presented in literature within the last ten years (Scopus, September 7, 2020). Around 10 \% of the papers published on MIPs describe the recognition of proteins. The straightforward synthesis of MIPs is a significant advantage as compared with the preparation of enzymes or antibodies. MIPs have been synthesized from only one up to six functional monomers while proteins are made up of 20 natural amino acids. Furthermore, they can be synthesized against structures of low immunogenicity and allow multi-analyte measurements via multi-target synthesis. Electrochemical methods allow simple polymer synthesis, removal of the template and readout. Among the different sensor configurations electrochemical MIP-sensors provide the broadest spectrum of protein analytes. The sensitivity of MIP-sensors is sufficiently high for biomarkers in the sub-nanomolar region, nevertheless the cross-reactivity of highly abundant proteins in human serum is still a challenge. MIPs for proteins offer innovative tools not only for clinical and environmental analysis, but also for bioimaging, therapy and protein engineering.}, language = {en} } @article{YazmaciyanStolterfohtBurnetal.2018, author = {Yazmaciyan, Aren and Stolterfoht, Martin and Burn, Paul L. and Lin, Qianqian and Meredith, Paul and Armin, Ardalan}, title = {Recombination losses above and below the transport percolation threshold in bulk heterojunction organic solar cells}, series = {Advanced energy materials}, volume = {8}, journal = {Advanced energy materials}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201703339}, pages = {8}, year = {2018}, abstract = {Achieving the highest power conversion efficiencies in bulk heterojunction organic solar cells requires a morphology that delivers electron and hole percolation pathways for optimized transport, plus sufficient donor:acceptor contact area for near unity charge transfer state formation. This is a significant structural challenge, particularly in semiconducting polymer:fullerene systems. This balancing act in the model high efficiency PTB7:PC70BM blend is studied by tuning the donor:acceptor ratio, with a view to understanding the recombination loss mechanisms above and below the fullerene transport percolation threshold. The internal quantum efficiency is found to be strongly correlated to the slower carrier mobility in agreement with other recent studies. Furthermore, second-order recombination losses dominate the shape of the current density-voltage curve in efficient blend combinations, where the fullerene phase is percolated. However, below the charge transport percolation threshold, there is an electric-field dependence of first-order losses, which includes electric-field-dependent photogeneration. In the intermediate regime, the fill factor appears to be limited by both first- and second-order losses. These findings provide additional basic understanding of the interplay between the bulk heterojunction morphology and the order of recombination in organic solar cells. They also shed light on the limitations of widely used transport models below the percolation threshold.}, language = {en} } @misc{YeZhangWarbyetal.2022, author = {Ye, Fangyuan and Zhang, Shuo and Warby, Jonathan and Wu, Jiawei and Gutierrez-Partida, Emilio and Lang, Felix and Shah, Sahil and Saglamkaya, Elifnaz and Sun, Bowen and Zu, Fengshuo and Shoaee, Safa and Wang, Haifeng and Stiller, Burkhard and Neher, Dieter and Zhu, Wei-Hong and Stolterfoht, Martin and Wu, Yongzhen}, title = {Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1317}, issn = {1866-8372}, doi = {10.25932/publishup-58770}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587705}, pages = {12}, year = {2022}, abstract = {Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23\% with a low non-radiative voltage loss of 110 mV, and retain >97\% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.}, language = {en} } @article{YeZhangWarbyetal.2022, author = {Ye, Fangyuan and Zhang, Shuo and Warby, Jonathan and Wu, Jiawei and Gutierrez-Partida, Emilio and Lang, Felix and Shah, Sahil and Saglamkaya, Elifnaz and Sun, Bowen and Zu, Fengshuo and Shoai, Safa and Wang, Haifeng and Stiller, Burkhard and Neher, Dieter and Zhu, Wei-Hong and Stolterfoht, Martin and Wu, Yongzhen}, title = {Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-34203-x}, pages = {12}, year = {2022}, abstract = {Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23\% with a low non-radiative voltage loss of 110 mV, and retain >97\% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.}, language = {en} } @article{YeKurthHospodarskyetal.2018, author = {Ye, S. -Y. and Kurth, William S. and Hospodarsky, George B. and Persoon, Ann M. and Gurnett, Don A. and Morooka, Michiko and Wahlund, Jan-Erik and Hsu, Hsiang-Wen and Seiss, Martin and Srama, Ralf}, title = {Cassini RPWS dust observation near the Janus/Epimetheus orbit}, series = {Journal of geophysical research : Space physics}, volume = {123}, journal = {Journal of geophysical research : Space physics}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2017JA025112}, pages = {4952 -- 4960}, year = {2018}, abstract = {During the Ring Grazing orbits near the end of Cassini mission, the spacecraft crossed the equatorial plane near the orbit of Janus/Epimetheus (similar to 2.5 Rs). This region is populated with dust particles that can be detected by the Radio and Plasma Wave Science (RPWS) instrument via an electric field antenna signal. Analysis of the voltage waveforms recorded on the RPWS antennas provides estimations of the density and size distribution of the dust particles. Measured RPWS profiles, fitted with Lorentzian functions, are shown to be mostly consistent with the Cosmic Dust Analyzer, the dedicated dust instrument on board Cassini. The thickness of the dusty ring varies between 600 and 1,000 km. The peak location shifts north and south within 100 km of the ring plane, likely a function of the precession phase of Janus orbit.}, language = {en} } @phdthesis{Yeldesbay2014, author = {Yeldesbay, Azamat}, title = {Complex regimes of synchronization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-73348}, school = {Universit{\"a}t Potsdam}, pages = {ii, 60}, year = {2014}, abstract = {Synchronization is a fundamental phenomenon in nature. It can be considered as a general property of self-sustained oscillators to adjust their rhythm in the presence of an interaction. In this work we investigate complex regimes of synchronization phenomena by means of theoretical analysis, numerical modeling, as well as practical analysis of experimental data. As a subject of our investigation we consider chimera state, where due to spontaneous symmetry-breaking of an initially homogeneous oscillators lattice split the system into two parts with different dynamics. Chimera state as a new synchronization phenomenon was first found in non-locally coupled oscillators system, and has attracted a lot of attention in the last decade. However, the recent studies indicate that this state is also possible in globally coupled systems. In the first part of this work, we show under which conditions the chimera-like state appears in a system of globally coupled identical oscillators with intrinsic delayed feedback. The results of the research explain how initially monostable oscillators became effectivly bistable in the presence of the coupling and create a mean field that sustain the coexistence of synchronized and desynchronized states. Also we discuss other examples, where chimera-like state appears due to frequency dependence of the phase shift in the bistable system. In the second part, we make further investigation of this topic by modeling influence of an external periodic force to an oscillator with intrinsic delayed feedback. We made stability analysis of the synchronized state and constructed Arnold tongues. The results explain formation of the chimera-like state and hysteric behavior of the synchronization area. Also, we consider two sets of parameters of the oscillator with symmetric and asymmetric Arnold tongues, that correspond to mono- and bi-stable regimes of the oscillator. In the third part, we demonstrate the results of the work, which was done in collaboration with our colleagues from Psychology Department of University of Potsdam. The project aimed to study the effect of the cardiac rhythm on human perception of time using synchronization analysis. From our part, we made a statistical analysis of the data obtained from the conducted experiment on free time interval reproduction task. We examined how ones heartbeat influences the time perception and searched for possible phase synchronization between heartbeat cycles and time reproduction responses. The findings support the prediction that cardiac cycles can serve as input signals, and is used for reproduction of time intervals in the range of several seconds.}, language = {en} } @article{YestePrimusAlcantaraetal.2020, author = {Yeste, Maria Pilar and Primus, Philipp-Alexander and Alcantara, Rodrigo and Cauqui, Miguel Angel and Calvino, Juan Jose and Pintado, Jos{\´e} Mar{\´i}a and Blanco, Ginesa}, title = {Surface characterization of two Ce0.62Zr0.38O2 mixed oxides with different reducibility}, series = {Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces}, volume = {503}, journal = {Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-4332}, doi = {10.1016/j.apsusc.2019.144255}, pages = {9}, year = {2020}, abstract = {This paper presents a study of the surface properties of two Ce/Zr mixed oxides with different reducibility, obtained by applying distinct thermal ageing treatments to an oxide with the composition Ce0.62Zr0.38O2. The surface composition was investigated by XPS. Chemical reactivity of the surface was studied by adsorption of the probe molecules CO2, D-2 and methanol. Nanostructural characterization was carried out by XRD, Raman and high-resolution Eu3+ spectroscopy (FLNS). The characterization showed only slight variations in surface composition and bulk Ce-Zr distribution, but hardy differences concerning the type and strength of acidic surface centres, as well as strong differences in the ability to dissociate hydrogen. Structural variations between both samples were identified by comparing the optical spectra of Eu3+ in surface doped samples.}, language = {en} } @phdthesis{Yin2009, author = {Yin, Chunhong}, title = {The interplay of nanostructure and efficiency of polymer solar cells}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29054}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {The aim of this thesis is to achieve a deep understanding of the working mechanism of polymer based solar cells and to improve the device performance. Two types of the polymer based solar cells are studied here: all-polymer solar cells comprising macromolecular donors and acceptors based on poly(p-phenylene vinylene) and hybrid cells comprising a PPV copolymer in combination with a novel small molecule electron acceptor. To understand the interplay between morphology and photovoltaic properties in all-polymer devices, I compared the photocurrent characteristics and excited state properties of bilayer and blend devices with different nano-morphology, which was fine tuned by using solvents with different boiling points. The main conclusion from these complementary measurements was that the performance-limiting step is the field-dependent generation of free charge carriers, while bimolecular recombination and charge extraction do not compromise device performance. These findings imply that the proper design of the donor-acceptor heterojunction is of major importance towards the goal of high photovoltaic efficiencies. Regarding polymer-small molecular hybrid solar cells I combined the hole-transporting polymer M3EH-PPV with a novel Vinazene-based electron acceptor. This molecule can be either deposited from solution or by thermal evaporation, allowing for a large variety of layer architectures to be realized. I then demonstrated that the layer architecture has a large influence on the photovoltaic properties. Solar cells with very high fill factors of up to 57 \% and an open circuit voltage of 1V could be achieved by realizing a sharp and well-defined donor-acceptor heterojunction. In the past, fill factors exceeding 50 \% have only been observed for polymers in combination with soluble fullerene-derivatives or nanocrystalline inorganic semiconductors as the electron-accepting component. The finding that proper processing of polymer-vinazene devices leads to similar high values is a major step towards the design of efficient polymer-based solar cells.}, language = {en} } @phdthesis{Yin2010, author = {Yin, Fan}, title = {Mathematic approaches for the calibration of the CHAMP satellite magnetic field measurements}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41201}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {CHAMP (CHAllenging Minisatellite Payload) is a German small satellite mission to study the earth's gravity field, magnetic field and upper atmosphere. Thanks to the good condition of the satellite so far, the planned 5 years mission is extended to year 2009. The satellite provides continuously a large quantity of measurement data for the purpose of Earth study. The measurements of the magnetic field are undertaken by two Fluxgate Magnetometers (vector magnetometer) and one Overhauser Magnetometer (scalar magnetometer) flown on CHAMP. In order to ensure the quality of the data during the whole mission, the calibration of the magnetometers has to be performed routinely in orbit. The scalar magnetometer serves as the magnetic reference and its readings are compared with the readings of the vector magnetometer. The readings of the vector magnetometer are corrected by the parameters that are derived from this comparison, which is called the scalar calibration. In the routine processing, these calibration parameters are updated every 15 days by means of scalar calibration. There are also magnetic effects coming from the satellite which disturb the measurements. Most of them have been characterized during tests before launch. Among them are the remanent magnetization of the spacecraft and fields generated by currents. They are all considered to be constant over the mission life. The 8 years of operation experience allow us to investigate the long-term behaviors of the magnetometers and the satellite systems. According to the investigation, it was found that for example the scale factors of the FGM show obvious long-term changes which can be described by logarithmic functions. The other parameters (offsets and angles between the three components) can be considered constant. If these continuous parameters are applied for the FGM data processing, the disagreement between the OVM and the FGM readings is limited to \pm1nT over the whole mission. This demonstrates, the magnetometers on CHAMP exhibit a very good stability. However, the daily correction of the parameter Z component offset of the FGM improves the agreement between the magnetometers markedly. The Z component offset plays a very important role for the data quality. It exhibits a linear relationship with the standard deviation of the disagreement between the OVM and the FGM readings. After Z offset correction, the errors are limited to \pm0.5nT (equivalent to a standard deviation of 0.2nT). We improved the corrections of the spacecraft field which are not taken into account in the routine processing. Such disturbance field, e.g. from the power supply system of the satellite, show some systematic errors in the FGM data and are misinterpreted in 9-parameter calibration, which brings false local time related variation of the calibration parameters. These corrections are made by applying a mathematical model to the measured currents. This non-linear model is derived from an inversion technique. If the disturbance field of the satellite body are fully corrected, the standard deviation of scalar error \triangle B remains about 0.1nT. Additionally, in order to keep the OVM readings a reliable standard, the imperfect coefficients of the torquer current correction for the OVM are redetermined by solving a minimization problem. The temporal variation of the spacecraft remanent field is investigated. It was found that the average magnetic moment of the magneto-torquers reflects well the moment of the satellite. This allows for a continuous correction of the spacecraft field. The reasons for the possible unknown systemic error are discussed in this thesis. Particularly, both temperature uncertainties and time errors have influence on the FGM data. Based on the results of this thesis the data processing of future magnetic missions can be designed in an improved way. In particular, the upcoming ESA mission Swarm can take advantage of our findings and provide all the auxiliary measurements needed for a proper recovery of the ambient magnetic field.}, language = {en} } @article{YochelisBetaGov2020, author = {Yochelis, Arik and Beta, Carsten and Gov, Nir S.}, title = {Excitable solitons}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {101}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {Melville, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.101.022213}, pages = {6}, year = {2020}, abstract = {Excitable pulses are among the most widespread dynamical patterns that occur in many different systems, ranging from biological cells to chemical reactions and ecological populations. Traditionally, the mutual annihilation of two colliding pulses is regarded as their prototypical signature. Here we show that colliding excitable pulses may exhibit solitonlike crossover and pulse nucleation if the system obeys a mass conservation constraint. In contrast to previous observations in systems without mass conservation, these alternative collision scenarios are robustly observed over a wide range of parameters. We demonstrate our findings using a model of intracellular actin waves since, on time scales of wave propagations over the cell scale, cells obey conservation of actin monomers. The results provide a key concept to understand the ubiquitous occurrence of actin waves in cells, suggesting why they are so common, and why their dynamics is robust and long-lived.}, language = {en} } @article{YoungUedaGuehretal.2018, author = {Young, Linda and Ueda, Kiyoshi and G{\"u}hr, Markus and Bucksbaum, Philip H. and Simon, Marc and Mukamel, Shaul and Rohringer, Nina and Prince, Kevin C. and Masciovecchio, Claudio and Meyer, Michael and Rudenko, Artem and Rolles, Daniel and Bostedt, Christoph and Fuchs, Matthias and Reis, David A. and Santra, Robin and Kapteyn, Henry and Murnane, Margaret and Ibrahim, Heide and Legare, Francois and Vrakking, Marc and Isinger, Marcus and Kroon, David and Gisselbrecht, Mathieu and W{\"o}rner, Hans Jakob and Leone, Stephen R.}, title = {Roadmap of ultrafast x-ray atomic and molecular physics}, series = {Journal of physics : B, Atomic, molecular and optical physics}, volume = {51}, journal = {Journal of physics : B, Atomic, molecular and optical physics}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0953-4075}, doi = {10.1088/1361-6455/aa9735}, pages = {45}, year = {2018}, abstract = {X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (10(20) W cm(-2)) of x-rays at wavelengths down to similar to 1 Angstrom, and HHG provides unprecedented time resolution (similar to 50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of similar to 280 eV (44 Angstroms) and the bond length in methane of similar to 1 Angstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Angstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Angstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science.}, language = {en} } @misc{YoungUedaGuehretal.2018, author = {Young, Linda and Ueda, Kiyoshi and G{\"u}hr, Markus and Bucksbaum, Philip H. and Simon, Marc and Mukamel, Shaul and Rohringer, Nina and Prince, Kevin C. and Masciovecchio, Claudio and Meyer, Michael and Rudenko, Artem and Rolles, Daniel and Bostedt, Christoph and Fuchs, Matthias and Reis, David A. and Santra, Robin and Kapteyn, Henry and Murnane, Margaret and Ibrahim, Heide and L{\´e}gar{\´e}, Fran{\c{c}}ois and Vrakking, Marc and Isinger, Marcus and Kroon, David and Gisselbrecht, Mathieu and L'Huillier, Anne and W{\"o}rner, Hans Jakob and Leone, Stephen R.}, title = {Roadmap of ultrafast x-ray atomic and molecular physics}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {668}, issn = {1866-8372}, doi = {10.25932/publishup-42423}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424238}, pages = {46}, year = {2018}, abstract = {X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm-2) of x-rays at wavelengths down to ~1 {\AA}ngstrom, and HHG provides unprecedented time resolution (~50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ~280 eV (44 {\AA}ngstroms) and the bond length in methane of ~1 {\AA}ngstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and {\AA}ngstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at {\AA}ngstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science.}, language = {en} }