@phdthesis{Brose2020, author = {Brose, Robert}, title = {From dawn till dusk}, doi = {10.25932/publishup-47086}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470865}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 146}, year = {2020}, abstract = {Supernova remnants are believed to be the source of cosmic rays with energies up to 10^15 eV that are produced within our Galaxy. The acceleration mechanism associated with the collision-less shocks in supernova remnants - diffusive shock acceleration - predicts a spectral index of the accelerated non-thermal particles of s = 2. However, measurements of non-thermal emission in radio, X-rays and gamma-rays reveal significant deviations of the particles spectral index from the canonical value of s = 2. The youngest Galactic supernova remnant G1.9+0.3 is an interesting target for next-generation gamma-ray observatories. So far, the remnant is only detected in the radio and the X-ray bands, but its young age of ≈100 yrs and inferred shock speed of ≈ 14, 000 km/s could make it an efficient particle accelerator. I performed spherical symmetric 1D simulations with the RATPaC code, in which I simultaneously solved the transport equation for cosmic rays, the transport equation for magnetic turbulence, and the hydro-dynamical equations for the gas flow. Separately computed distributions of the particles accelerated at the forward and the reverse shock were then used to calculate the spectra of synchrotron, inverse Compton, and Pion-decay radiation from the source. The emission from G1.9+0.3 can be self-consistently explained within the test-particle limit. I find that the X-ray flux is dominated by emission from the forward shock while most of the radio emission originates near the reverse shock, which makes G1.9+0.3 the first remnant with non-thermal radiation detected from the reverse shock. The flux of very-high-energy gamma-ray emission from G1.9+0.3 is expected to be close to the sensitivity threshold of the Cherenkov Telescope Array. The limited time available to grow large-scale turbulence limits the maximum energy of particles to values below 100 TeV, hence G1.9+0.3 is not a PeVatron. Although there are many models for the acceleration of cosmic rays in Supernova remnants, the escape of cosmic rays from these sources is yet understudied. I use our time-dependent acceleration code RATPaC to study the acceleration of cosmic rays and their escape in post-adiabatic Supernova remnants and calculate the subsequent gamma-ray emission from inverse-Compton scattering and Pion decay. My simulations span 100,000 years, thus covering the free-expansion, the Sedov-Taylor, and the beginning of the post-adiabatic phase of the remnant's evolution. At later stages of the evolution cosmic rays over a wide range of energy can reside outside of the remnant, creating spectra that are softer than predicted by standard diffusive shock acceleration and feature breaks in the 10 - 100 GeV-range. The total spectrum of cosmic rays released into the interstellar medium has a spectral index of s ≈ 2.4 above roughly 10 GeV which is close to that required by Galactic propagation models. I further find the gamma-ray luminosity to peak around an age of 4,000 years for inverse-Compton-dominated high-energy emission. Remnants expanding in low-density media emit generally more inverse-Compton radiation matching the fact that the brightest known supernova remnants - RCW86, Vela Jr, HESSJ1721-347 and RXJ1713.7-3946 - are all expanding in low density environments. The importance of feedback from the cosmic-rays on the hydrodynamical evolution of the remnants is debated as a possibility to obtain soft cosmic-ray spectra at low energies. I performed spherically symmetric 1-D simulations with a modified version of the RATPaC code, in which I simultaneously solve the transport equation for cosmic rays and the hydrodynamical equations, including the back-reaction of the cosmic-ray pressure on the flow profiles. Besides the known modification of the flow profiles and the consequently curved cosmic-ray spectra, steady-state models for non-linear diffusive shock acceleration overpredict the total compression ratio that can be reached with cosmic-ray feedback, as there is limited time for building these modifications. Further, I find modifications to the downstream flow structure that change the evolutionary behavior of the remnant and trigger a cosmic-ray-induced instability close to the contact discontinuity, if and when the cosmic-ray pressure becomes dominant there.}, language = {en} } @article{GarbeAlbrechtLevermannetal.2020, author = {Garbe, Julius and Albrecht, Torsten and Levermann, Anders and Donges, Jonathan and Winkelmann, Ricarda}, title = {The hysteresis of the Antarctic Ice Sheet}, series = {Nature : the international weekly journal of science}, volume = {585}, journal = {Nature : the international weekly journal of science}, number = {7826}, publisher = {Macmillan Publishers Limited}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/s41586-020-2727-5}, pages = {538 -- 544}, year = {2020}, abstract = {More than half of Earth's freshwater resources are held by the Antarctic Ice Sheet, which thus represents by far the largest potential source for global sea-level rise under future warming conditions(1). Its long-term stability determines the fate of our coastal cities and cultural heritage. Feedbacks between ice, atmosphere, ocean, and the solid Earth give rise to potential nonlinearities in its response to temperature changes. So far, we are lacking a comprehensive stability analysis of the Antarctic Ice Sheet for different amounts of global warming. Here we show that the Antarctic Ice Sheet exhibits a multitude of temperature thresholds beyond which ice loss is irreversible. Consistent with palaeodata(2)we find, using the Parallel Ice Sheet Model(3-5), that at global warming levels around 2 degrees Celsius above pre-industrial levels, West Antarctica is committed to long-term partial collapse owing to the marine ice-sheet instability. Between 6 and 9 degrees of warming above pre-industrial levels, the loss of more than 70 per cent of the present-day ice volume is triggered, mainly caused by the surface elevation feedback. At more than 10 degrees of warming above pre-industrial levels, Antarctica is committed to become virtually ice-free. The ice sheet's temperature sensitivity is 1.3 metres of sea-level equivalent per degree of warming up to 2 degrees above pre-industrial levels, almost doubling to 2.4 metres per degree of warming between 2 and 6 degrees and increasing to about 10 metres per degree of warming between 6 and 9 degrees. Each of these thresholds gives rise to hysteresis behaviour: that is, the currently observed ice-sheet configuration is not regained even if temperatures are reversed to present-day levels. In particular, the West Antarctic Ice Sheet does not regrow to its modern extent until temperatures are at least one degree Celsius lower than pre-industrial levels. Our results show that if the Paris Agreement is not met, Antarctica's long-term sea-level contribution will dramatically increase and exceed that of all other sources.
Modelling shows that the Antarctic Ice Sheet exhibits multiple temperature thresholds beyond which ice loss would become irreversible, and once melted, the ice sheet can regain its previous mass only if the climate cools well below pre-industrial temperatures.}, language = {en} } @phdthesis{Wang2020, author = {Wang, Jingwen}, title = {Electret properties of polypropylene with surface chemical modification and crystalline reconstruction}, doi = {10.25932/publishup-47027}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470271}, school = {Universit{\"a}t Potsdam}, pages = {vi, 121}, year = {2020}, abstract = {As one of the most-produced commodity polymers, polypropylene draws considerable scientific and commercial interest as an electret material. In the present thesis, the influence of the surface chemical modification and crystalline reconstruction on the electret properties of the polypropylene thin films will be discussed. The chemical treatment with orthophosphoric acid can significantly improve the surface charge stability of the polypropylene electrets by introducing phosphorus- and oxygen-containing structures onto the modified surface. The thermally stimulated discharge measurement and charge profiling by means of piezoelectrically generated pressure steps are used to investigate the electret behaviour. It is concluded that deep traps of limited number density are created during the treatment with inorganic chemicals. Hence, the improvement dramatically decreases when the surface-charge density is substantially higher than ±1.2×10^(-3) C·m^(-2). The newly formed traps also show a higher trapping energy for negative charges. The energetic distributions of the traps in the non-treated and chemically treated samples offer an insight regarding the surface and foreign-chemical dominance on the charge storage and transport in the polypropylene electrets. Additionally, different electret properties are observed on the polypropylene films with the spherulitic and transcrystalline structures. It indicates the dependence of the charge storage and transport on the crystallite and molecular orientations in the crystalline phase. In general, a more diverse crystalline growth in the spherulitic samples can result in a more complex energetic trap distribution, in comparison to that in a transcrystalline polypropylene. The double-layer transcrystalline polypropylene film with a crystalline interface in the middle can be obtained by crystallising the film in contact with rough moulding surfaces on both sides. A layer of heterocharges appears on each side of the interface in the double-layer transcrystalline polypropylene electrets after the thermal poling. However, there is no charge captured within the transcrystalline layers. The phenomenon reveals the importance of the crystalline interface in terms of creating traps with the higher activation energy in polypropylene. The present studies highlight the fact that even slight variations in the polypropylene film may lead to dramatic differences in its electret properties.}, language = {en} } @article{PhuongHosseiniSandbergetal.2020, author = {Phuong, Le Quang and Hosseini, Seyed Mehrdad and Sandberg, Oskar J. and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells}, series = {Solar RRL}, volume = {5}, journal = {Solar RRL}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202000649}, pages = {6}, year = {2020}, abstract = {The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.}, language = {en} } @article{TokmoldinHosseiniRaoufietal.2020, author = {Tokmoldin, Nurlan and Hosseini, Seyed Mehrdad and Raoufi, Meysam and Phuong, Le Quang and Sandberg, Oskar J. and Guan, Huilan and Zou, Yingping and Neher, Dieter and Shoaee, Safa}, title = {Extraordinarily long diffusion length in PM6:Y6 organic solar cells}, series = {Journal of materials chemistry : A, materials for energy and sustainability}, volume = {8}, journal = {Journal of materials chemistry : A, materials for energy and sustainability}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7488}, doi = {10.1039/d0ta03016c}, pages = {7854 -- 7860}, year = {2020}, abstract = {The PM6:Y6 bulk-heterojunction (BHJ) blend system achieves high short-circuit current (J(SC)) values in thick photovoltaic junctions. Here we analyse these solar cells to understand the observed independence of the short-circuit current upon photoactive layer thickness. We employ a range of optoelectronic measurements and analyses, including Mott-Schottky analysis, CELIV, photoinduced absorption spectroscopy, mobility measurements and simulations, to conclude that, the invariant photocurrent for the devices with different active layer thicknesses is associated with the Y6's diffusion length exceeding 300 nm in case of a 300 nm thick cell. This is despite unintentional doping that occurs in PM6 and the associated space-charge effect, which is expected to be even more profound upon photogeneration. This extraordinarily long diffusion length - which is an order of magnitude larger than typical values for organics - dominates transport in the flat-band region of thick junctions. Our work suggests that the performance of the doped PM6:Y6 organic solar cells resembles that of inorganic devices with diffusion transport playing a pivotal role. Ultimately, this is expected to be a key requirement for the fabrication of efficient, high-photocurrent, thick organic solar cells.}, language = {en} } @article{ZuSchultzWolffetal.2020, author = {Zu, Fengshuo and Schultz, Thorsten and Wolff, Christian Michael and Shin, Dongguen and Frohloff, Lennart and Neher, Dieter and Amsalem, Patrick and Koch, Norbert}, title = {Position-locking of volatile reaction products by atmosphere and capping layers slows down photodecomposition of methylammonium lead triiodide perovskite}, series = {RSC Advances}, volume = {10}, journal = {RSC Advances}, number = {30}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/d0ra03572f}, pages = {17534 -- 17542}, year = {2020}, abstract = {The remarkable progress of metal halide perovskites in photovoltaics has led to the power conversion efficiency approaching 26\%. However, practical applications of perovskite-based solar cells are challenged by the stability issues, of which the most critical one is photo-induced degradation. Bare CH3NH3PbI3 perovskite films are known to decompose rapidly, with methylammonium and iodine as volatile species and residual solid PbI2 and metallic Pb, under vacuum under white light illumination, on the timescale of minutes. We find, in agreement with previous work, that the degradation is non-uniform and proceeds predominantly from the surface, and that illumination under N-2 and ambient air (relative humidity 20\%) does not induce substantial degradation even after several hours. Yet, in all cases the release of iodine from the perovskite surface is directly identified by X-ray photoelectron spectroscopy. This goes in hand with a loss of organic cations and the formation of metallic Pb. When CH3NH3PbI3 films are covered with a few nm thick organic capping layer, either charge selective or non-selective, the rapid photodecomposition process under ultrahigh vacuum is reduced by more than one order of magnitude, and becomes similar in timescale to that under N-2 or air. We conclude that the light-induced decomposition reaction of CH3NH3PbI3, leading to volatile methylammonium and iodine, is largely reversible as long as these products are restrained from leaving the surface. This is readily achieved by ambient atmospheric pressure, as well as a thin organic capping layer even under ultrahigh vacuum. In addition to explaining the impact of gas pressure on the stability of this perovskite, our results indicate that covalently "locking" the position of perovskite components at the surface or an interface should enhance the overall photostability.}, language = {en} } @article{SinghMetzlerSandev2020, author = {Singh, Rishu Kumar and Metzler, Ralf and Sandev, Trifce}, title = {Resetting dynamics in a confining potential}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {53}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {50}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/abc83a}, pages = {28}, year = {2020}, abstract = {We study Brownian motion in a confining potential under a constant-rate resetting to a reset position x(0). The relaxation of this system to the steady-state exhibits a dynamic phase transition, and is achieved in a light cone region which grows linearly with time. When an absorbing boundary is introduced, effecting a symmetry breaking of the system, we find that resetting aids the barrier escape only when the particle starts on the same side as the barrier with respect to the origin. We find that the optimal resetting rate exhibits a continuous phase transition with critical exponent of unity. Exact expressions are derived for the mean escape time, the second moment, and the coefficient of variation (CV).}, language = {en} } @phdthesis{Wolff2020, author = {Wolff, Christian Michael}, title = {Identification and reduction of losses in perovskite solar cells}, doi = {10.25932/publishup-47930}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-479301}, school = {Universit{\"a}t Potsdam}, pages = {x, 158}, year = {2020}, abstract = {Perovskite solar cells have become one of the most studied systems in the quest for new, cheap and efficient solar cell materials. Within a decade device efficiencies have risen to >25\% in single-junction and >29\% in tandem devices on top of silicon. This rapid improvement was in many ways fortunate, as e. g. the energy levels of commonly used halide perovskites are compatible with already existing materials from other photovoltaic technologies such as dye-sensitized or organic solar cells. Despite this rapid success, fundamental working principles must be understood to allow concerted further improvements. This thesis focuses on a comprehensive understanding of recombination processes in functioning devices. First the impact the energy level alignment between the perovskite and the electron transport layer based on fullerenes is investigated. This controversial topic is comprehensively addressed and recombination is mitigated through reducing the energy difference between the perovskite conduction band minimum and the LUMO of the fullerene. Additionally, an insulating blocking layer is introduced, which is even more effective in reducing this recombination, without compromising carrier collection and thus efficiency. With the rapid efficiency development (certified efficiencies have broken through the 20\% ceiling) and thousands of researchers working on perovskite-based optoelectronic devices, reliable protocols on how to reach these efficiencies are lacking. Having established robust methods for >20\% devices, while keeping track of possible pitfalls, a detailed description of the fabrication of perovskite solar cells at the highest efficiency level (>20\%) is provided. The fabrication of low-temperature p-i-n structured devices is described, commenting on important factors such as practical experience, processing atmosphere \& temperature, material purity and solution age. Analogous to reliable fabrication methods, a method to identify recombination losses is needed to further improve efficiencies. Thus, absolute photoluminescence is identified as a direct way to quantify the Quasi-Fermi level splitting of the perovskite absorber (1.21eV) and interfacial recombination losses the transport layers impose, reducing the latter to ~1.1eV. Implementing very thin interlayers at both the p- and n-interface (PFN-P2 and LiF, respectively), these losses are suppressed, enabling a VOC of up to 1.17eV. Optimizing the device dimensions and the bandgap, 20\% devices with 1cm2 active area are demonstrated. Another important consideration is the solar cells' stability if subjected to field-relevant stressors during operation. In particular these are heat, light, bias or a combination thereof. Perovskite layers - especially those incorporating organic cations - have been shown to degrade if subjected to these stressors. Keeping in mind that several interlayers have been successfully used to mitigate recombination losses, a family of perfluorinated self-assembled monolayers (X-PFCn, where X denotes I/Br and n = 7-12) are introduced as interlayers at the n-interface. Indeed, they reduce interfacial recombination losses enabling device efficiencies up to 21.3\%. Even more importantly they improve the stability of the devices. The solar cells with IPFC10 are stable over 3000h stored in the ambient and withstand a harsh 250h of MPP at 85◦C without appreciable efficiency losses. To advance further and improve device efficiencies, a sound understanding of the photophysics of a device is imperative. Many experimental observations in recent years have however drawn an inconclusive picture, often suffering from technical of physical impediments, disguising e. g. capacitive discharge as recombination dynamics. To circumvent these obstacles, fully operational, highly efficient perovskites solar cells are investigated by a combination of multiple optical and optoelectronic probes, allowing to draw a conclusive picture of the recombination dynamics in operation. Supported by drift-diffusion simulations, the device recombination dynamics can be fully described by a combination of first-, second- and third-order recombination and JV curves as well as luminescence efficiencies over multiple illumination intensities are well described within the model. On this basis steady state carrier densities, effective recombination constants, densities-of-states and effective masses are calculated, putting the devices at the brink of the radiative regime. Moreover, a comprehensive review of recombination in state-of-the-art devices is given, highlighting the importance of interfaces in nonradiative recombination. Different strategies to assess these are discussed, before emphasizing successful strategies to reduce interfacial recombination and pointing towards the necessary steps to further improve device efficiency and stability. Overall, the main findings represent an advancement in understanding loss mechanisms in highly efficient solar cells. Different reliable optoelectronic techniques are used and interfacial losses are found to be of grave importance for both efficiency and stability. Addressing the interfaces, several interlayers are introduced, which mitigate recombination losses and degradation.}, language = {en} } @article{SajediKrivenkovMarchenkoetal.2020, author = {Sajedi, Maryam and Krivenkov, Maxim and Marchenko, Dmitry and Varykhalov, Andrei and Sanchez-Barriga, Jaime and Rienks, Emile D. L. and Rader, Oliver}, title = {Absence of a giant Rashba effect in the valence band of lead halide perovskites}, series = {Physical review : B, Condensed matter and materials physics}, volume = {102}, journal = {Physical review : B, Condensed matter and materials physics}, number = {8}, publisher = {American Institute of Physics; American Physical Society (APS)}, address = {Woodbury, NY}, issn = {2469-9950}, doi = {10.1103/PhysRevB.102.081116}, pages = {6}, year = {2020}, abstract = {For hybrid organic-inorganic as well as all-inorganic lead halide perovskites a Rashba effect has been invoked to explain the high efficiency in energy conversion by prohibiting direct recombination. Both a bulk and surface Rashba effect have been predicted. In the valence band of methylammonium (MA) lead bromide a Rashba effect has been reported by angle-resolved photoemission and circular dichroism with giant values of 7-11 eV angstrom. We present band dispersion measurements of MAPbBr(3) and spin-resolved photoemission of CsPbBr3 to show that a large Rashba effect detectable by photoemission or circular dichroism does not exist and cannot be the origin of the high effciency.}, language = {en} } @misc{PhuongHosseiniSandbergetal.2020, author = {Phuong, Le Quang and Hosseini, Seyed Mehrdad and Sandberg, Oskar J. and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-57001}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570018}, pages = {8}, year = {2020}, abstract = {The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.}, language = {en} } @article{WunderlingWilleitDongesetal.2020, author = {Wunderling, Nico and Willeit, Matteo and Donges, Jonathan and Winkelmann, Ricarda}, title = {Global warming due to loss of large ice masses and Arctic summer sea ice}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-020-18934-3}, pages = {14}, year = {2020}, abstract = {Several large-scale cryosphere elements such as the Arctic summer sea ice, the mountain glaciers, the Greenland and West Antarctic Ice Sheet have changed substantially during the last century due to anthropogenic global warming. However, the impacts of their possible future disintegration on global mean temperature (GMT) and climate feedbacks have not yet been comprehensively evaluated. Here, we quantify this response using an Earth system model of intermediate complexity. Overall, we find a median additional global warming of 0.43 degrees C (interquartile range: 0.39-0.46 degrees C) at a CO2 concentration of 400 ppm. Most of this response (55\%) is caused by albedo changes, but lapse rate together with water vapour (30\%) and cloud feedbacks (15\%) also contribute significantly. While a decay of the ice sheets would occur on centennial to millennial time scales, the Arctic might become ice-free during summer within the 21st century. Our findings imply an additional increase of the GMT on intermediate to long time scales. The disintegration of cryosphere elements such as the Arctic summer sea ice, mountain glaciers, Greenland and West Antarctica is associated with temperature and radiative feedbacks. In this work, the authors quantify these feedbacks and find an additional global warming of 0.43 degrees C.}, language = {en} } @article{HosseiniTokmoldinLeeetal.2020, author = {Hosseini, Seyed Mehrdad and Tokmoldin, Nurlan and Lee, Young Woong and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Putting order into PM6:Y6 solar cells to reduce the langevin recombination in 400 nm thick junction}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202000498}, pages = {7}, year = {2020}, abstract = {Increasing the active layer thickness without sacrificing the power conversion efficiency (PCE) is one of the great challenges faced by organic solar cells (OSCs) for commercialization. Recently, PM6:Y6 as an OSC based on a non-fullerene acceptor (NFA) has excited the community because of its PCE reaching as high as 15.9\%; however, by increasing the thickness, the PCE drops due to the reduction of the fill factor (FF). This drop is attributed to change in mobility ratio with increasing thickness. Furthermore, this work demonstrates that by regulating the packing and the crystallinity of the donor and the acceptor, through volumetric content of chloronaphthalene (CN) as a solvent additive, one can improve the FF of a thick PM6:Y6 device (approximate to 400 nm) from 58\% to 68\% (PCE enhances from 12.2\% to 14.4\%). The data indicate that the origin of this enhancement is the reduction of the structural and energetic disorders in the thick device with 1.5\% CN compared with 0.5\% CN. This correlates with improved electron and hole mobilities and a 50\% suppressed bimolecular recombination, such that the non-Langevin reduction factor is 180 times. This work reveals the role of disorder on the charge extraction and bimolecular recombination of NFA-based OSCs.}, language = {en} } @article{GarciaBenitoQuartiQuelozetal.2020, author = {Garc{\´i}a-Benito, In{\´e}s and Quarti, Claudio and Queloz, Valentin I. E. and Hofstetter, Yvonne J. and Becker-Koch, David and Caprioglio, Pietro and Neher, Dieter and Orlandi, Simonetta and Cavazzini, Marco and Pozzi, Gianluca and Even, Jacky and Nazeeruddin, Mohammad Khaja and Vaynzof, Yana and Grancini, Giulia}, title = {Fluorination of organic spacer impacts on the structural and optical response of 2D perovskites}, series = {Frontiers in Chemistry}, volume = {7}, journal = {Frontiers in Chemistry}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-2646}, doi = {10.3389/fchem.2019.00946}, pages = {1 -- 11}, year = {2020}, abstract = {Low-dimensional hybrid perovskites have triggered significant research interest due to their intrinsically tunable optoelectronic properties and technologically relevant material stability. In particular, the role of the organic spacer on the inherent structural and optical features in two-dimensional (2D) perovskites is paramount for material optimization. To obtain a deeper understanding of the relationship between spacers and the corresponding 2D perovskite film properties, we explore the influence of the partial substitution of hydrogen atoms by fluorine in an alkylammonium organic cation, resulting in (Lc)(2)PbI4 and (Lf)(2)PbI4 2D perovskites, respectively. Consequently, optical analysis reveals a clear 0.2 eV blue-shift in the excitonic position at room temperature. This result can be mainly attributed to a band gap opening, with negligible effects on the exciton binding energy. According to Density Functional Theory (DFT) calculations, the band gap increases due to a larger distortion of the structure that decreases the atomic overlap of the wavefunctions and correspondingly bandwidth of the valence and conduction bands. In addition, fluorination impacts the structural rigidity of the 2D perovskite, resulting in a stable structure at room temperature and the absence of phase transitions at a low temperature, in contrast to the widely reported polymorphism in some non-fluorinated materials that exhibit such a phase transition. This indicates that a small perturbation in the material structure can strongly influence the overall structural stability and related phase transition of 2D perovskites, making them more robust to any phase change. This work provides key information on how the fluorine content in organic spacer influence the structural distortion of 2D perovskites and their optical properties which possess remarkable importance for future optoelectronic applications, for instance in the field of light-emitting devices or sensors.}, language = {en} } @article{VarykhalovFreyseAguileraetal.2020, author = {Varykhalov, Andrei and Freyse, Friedrich and Aguilera, Irene and Battiato, Marco and Krivenkov, Maxim and Marchenko, Dmitry and Bihlmayer, Gustav and Blugel, Stefan and Rader, Oliver and Sanchez-Barriga, Jaime}, title = {Effective mass enhancement and ultrafast electron dynamics of Au(111) surface state coupled to a quantum well}, series = {Physical Review Research}, volume = {2}, journal = {Physical Review Research}, number = {1}, publisher = {American Physical Society}, address = {Ridge, NY}, issn = {0031-9007}, doi = {10.1103/PhysRevResearch.2.013343}, pages = {1 -- 9}, year = {2020}, abstract = {We show that, although the equilibrium band dispersion of the Shockley-type surface state of two-dimensional Au(111) quantum films grown on W(110) does not deviate from the expected free-electron-like behavior, its nonequilibrium energy-momentum dispersion probed by time- and angle-resolved photoemission exhibits a remarkable kink above the Fermi level due to a significant enhancement of the effective mass. The kink is pronounced for certain thicknesses of the Au quantum well and vanishes in the very thin limit. We identify the kink as induced by the coupling between the Au(111) surface state and emergent quantum-well states which probe directly the buried gold-tungsten interface. The signatures of the coupling are further revealed by our time-resolved measurements which show that surface state and quantum-well states thermalize together behaving as dynamically locked electron populations. In particular, relaxation of hot carriers following laser excitation is similar for both surface state and quantum-well states and much slower than expected for a bulk metallic system. The influence of quantum confinement on the interplay between elementary scattering processes of the electrons at the surface and ultrafast carrier transport in the direction perpendicular to the surface is shown to be the reason for the slow electron dynamics.}, language = {en} } @article{MansourLungwitzSchultzetal.2020, author = {Mansour, Ahmed E. and Lungwitz, Dominique and Schultz, Thorsten and Arvind, Malavika and Valencia, Ana M. and Cocchi, Caterina and Opitz, Andreas and Neher, Dieter and Koch, Norbert}, title = {The optical signatures of molecular-doping induced polarons in poly(3-hexylthiophene-2,5-diyl)}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {8}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {8}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/c9tc06509a}, pages = {2870 -- 2879}, year = {2020}, abstract = {Optical absorption spectroscopy is a key method to investigate doped conjugated polymers and to characterize the doping-induced charge carriers, i.e., polarons. For prototypical poly(3-hexylthiophene-2,5-diyl) (P3HT), the absorption intensity of molecular dopant induced polarons is widely used to estimate the carrier density and the doping efficiency, i.e., the number of polarons formed per dopant molecule. However, the dependence of the polaron-related absorption features on the structure of doped P3HT, being either aggregates or separated individual chains, is not comprehensively understood in contrast to the optical absorption features of neutral P3HT. In this work, we unambiguously differentiate the optical signatures of polarons on individual P3HT chains and aggregates in solution, notably the latter exhibiting the same shape as aggregates in solid thin films. This is enabled by employing tris(pentafluorophenyl)borane (BCF) as dopant, as this dopant forms only ion pairs with P3HT and no charge transfer complexes, and BCF and its anion have no absorption in the spectral region of P3HT polarons. Polarons on individual chains exhibit absorption peaks at 1.5 eV and 0.6 eV, whereas in aggregates the high-energy peak is split into a doublet 1.3 eV and 1.65 eV, and the low-energy peak is shifted below 0.5 eV. The dependence of the fraction of solvated individual chains versus aggregates on absolute solution concentration, dopant concentration, and temperature is elucidated, and we find that aggregates predominate in solution under commonly used processing conditions. Aggregates in BCF-doped P3HT solution can be effectively removed upon simple filtering. From varying the filter pore size (down to 200 nm) and thin film morphology characterization with scanning force microscopy we reveal the aggregates' size dependence on solution absolute concentration and dopant concentration. Furthermore, X-ray photoelectron spectroscopy shows that the dopant loading in aggregates is higher than for individual P3HT chains. The results of this study help understanding the impact of solution pre-aggregation on thin film properties of molecularly doped P3HT, and highlight the importance of considering such aggregation for other doped conjugated polymers in general.}, language = {en} } @article{PoudelTichyBruegmannetal.2020, author = {Poudel, Amit and Tichy, Wolfgang and Br{\"u}gmann, Bernd and Dietrich, Tim}, title = {Increasing the accuracy of binary neutron star simulations with an improved vacuum treatment}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {102}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {10}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0010}, doi = {10.1103/PhysRevD.102.104014}, pages = {16}, year = {2020}, abstract = {Numerical-relativity simulations are essential for studying the last stages of the binary neutron star coalescence. Unfortunately, for stable simulations there is the need to add an artificial low-density atmosphere. Here we discuss a new framework in which we can effectively set the density surrounding the neutron stars to zero to ensure a more accurate simulation. We test our method with a number of single star test cases and for an equal-mass binary neutron star simulation. While the bulk motion of the system is not influenced, and hence there is no improvement with respect to the emitted gravitational-wave signal, we find that the new approach is superior with respect to mass conservation and it allows a much better tracking of outward moving material. This will allow a more accurate simulation of the ejected material and supports the interpretation of present and future multimessenger observations with more accurate numerical-relativity simulations.}, language = {en} } @article{SamajdarDietrich2020, author = {Samajdar, Anuradha and Dietrich, Tim}, title = {Constructing Love-Q relations with gravitational wave detections}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {101}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {12}, publisher = {American Physical Society}, address = {College Park}, issn = {1550-7998}, doi = {10.1103/PhysRevD.101.124014}, pages = {6}, year = {2020}, abstract = {Quasiuniversal relations between the tidal deformability and the quadrupole moment of neutron stars are predicted by theoretical computations, but have not been measured experimentally. We simulate 120 binary neutron star sources and find that Advanced LIGO and Advanced Virgo at design sensitivity could find possible deviations from predicted relations if the neutron stars are highly spinning. A network of envisaged third generation detectors will even allow extracting such relations, providing new tests of general relativity and nuclear physics predictions.}, language = {en} } @article{MejiaMonasterioMetzlerVollmer2020, author = {Mejia-Monasterio, Carlos and Metzler, Ralf and Vollmer, J{\"u}rgen}, title = {Editorial: anomalous transport}, series = {Frontiers in Physics}, volume = {8}, journal = {Frontiers in Physics}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-424X}, doi = {10.3389/fphy.2020.622417}, pages = {4}, year = {2020}, language = {en} } @misc{GarciaBenitoQuartiQuelozetal.2020, author = {Garc{\´i}a-Benito, In{\´e}s and Quarti, Claudio and Queloz, Valentin I. E. and Hofstetter, Yvonne J. and Becker-Koch, David and Caprioglio, Pietro and Neher, Dieter and Orlandi, Simonetta and Cavazzini, Marco and Pozzi, Gianluca and Even, Jacky and Nazeeruddin, Mohammad Khaja and Vaynzof, Yana and Grancini, Giulia}, title = {Fluorination of organic spacer impacts on the structural and optical response of 2D perovskites}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51242}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512420}, pages = {13}, year = {2020}, abstract = {Low-dimensional hybrid perovskites have triggered significant research interest due to their intrinsically tunable optoelectronic properties and technologically relevant material stability. In particular, the role of the organic spacer on the inherent structural and optical features in two-dimensional (2D) perovskites is paramount for material optimization. To obtain a deeper understanding of the relationship between spacers and the corresponding 2D perovskite film properties, we explore the influence of the partial substitution of hydrogen atoms by fluorine in an alkylammonium organic cation, resulting in (Lc)(2)PbI4 and (Lf)(2)PbI4 2D perovskites, respectively. Consequently, optical analysis reveals a clear 0.2 eV blue-shift in the excitonic position at room temperature. This result can be mainly attributed to a band gap opening, with negligible effects on the exciton binding energy. According to Density Functional Theory (DFT) calculations, the band gap increases due to a larger distortion of the structure that decreases the atomic overlap of the wavefunctions and correspondingly bandwidth of the valence and conduction bands. In addition, fluorination impacts the structural rigidity of the 2D perovskite, resulting in a stable structure at room temperature and the absence of phase transitions at a low temperature, in contrast to the widely reported polymorphism in some non-fluorinated materials that exhibit such a phase transition. This indicates that a small perturbation in the material structure can strongly influence the overall structural stability and related phase transition of 2D perovskites, making them more robust to any phase change. This work provides key information on how the fluorine content in organic spacer influence the structural distortion of 2D perovskites and their optical properties which possess remarkable importance for future optoelectronic applications, for instance in the field of light-emitting devices or sensors.}, language = {en} } @article{SmirnovBerrendorfShpritsetal.2020, author = {Smirnov, Artem and Berrendorf, Max and Shprits, Yuri Y. and Kronberg, Elena A. and Allison, Hayley J. and Aseev, Nikita and Zhelavskaya, Irina and Morley, Steven K. and Reeves, Geoffrey D. and Carver, Matthew R. and Effenberger, Frederic}, title = {Medium energy electron flux in earth's outer radiation belt (MERLIN)}, series = {Space weather : the international journal of research and applications}, volume = {18}, journal = {Space weather : the international journal of research and applications}, number = {11}, publisher = {American geophysical union, AGU}, address = {Washington}, issn = {1542-7390}, doi = {10.1029/2020SW002532}, pages = {20}, year = {2020}, abstract = {The radiation belts of the Earth, filled with energetic electrons, comprise complex and dynamic systems that pose a significant threat to satellite operation. While various models of electron flux both for low and relativistic energies have been developed, the behavior of medium energy (120-600 keV) electrons, especially in the MEO region, remains poorly quantified. At these energies, electrons are driven by both convective and diffusive transport, and their prediction usually requires sophisticated 4D modeling codes. In this paper, we present an alternative approach using the Light Gradient Boosting (LightGBM) machine learning algorithm. The Medium Energy electRon fLux In Earth's outer radiatioN belt (MERLIN) model takes as input the satellite position, a combination of geomagnetic indices and solar wind parameters including the time history of velocity, and does not use persistence. MERLIN is trained on >15 years of the GPS electron flux data and tested on more than 1.5 years of measurements. Tenfold cross validation yields that the model predicts the MEO radiation environment well, both in terms of dynamics and amplitudes o f flux. Evaluation on the test set shows high correlation between the predicted and observed electron flux (0.8) and low values of absolute error. The MERLIN model can have wide space weather applications, providing information for the scientific community in the form of radiation belts reconstructions, as well as industry for satellite mission design, nowcast of the MEO environment, and surface charging analysis.}, language = {en} } @article{ErlerRiebeBeitzetal.2020, author = {Erler, Alexander and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Grothusheitkamp, Daniela and Kunz, Thomas and Methner, Frank-J{\"u}rgen}, title = {Characterization of volatile metabolites formed by molds on barley by mass and ion mobility spectrometry}, series = {Journal of mass spectrometr}, volume = {55}, journal = {Journal of mass spectrometr}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1076-5174}, doi = {10.1002/jms.4501}, pages = {1 -- 10}, year = {2020}, abstract = {The contamination of barley by molds on the field or in storage leads to the spoilage of grain and the production of mycotoxins, which causes major economic losses in malting facilities and breweries. Therefore, on-site detection of hidden fungus contaminations in grain storages based on the detection of volatile marker compounds is of high interest. In this work, the volatile metabolites of 10 different fungus species are identified by gas chromatography (GC) combined with two complementary mass spectrometric methods, namely, electron impact (EI) and chemical ionization at atmospheric pressure (APCI)-mass spectrometry (MS). The APCI source utilizes soft X-radiation, which enables the selective protonation of the volatile metabolites largely without side reactions. Nearly 80 volatile or semivolatile compounds from different substance classes, namely, alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, alkenes, terpenes, oxidized terpenes, sesquiterpenes, and oxidized sesquiterpenes, could be identified. The profiles of volatile and semivolatile metabolites of the different fungus species are characteristic of them and allow their safe differentiation. The application of the same GC parameters and APCI source allows a simple method transfer from MS to ion mobility spectrometry (IMS), which permits on-site analyses of grain stores. Characterization of IMS yields limits of detection very similar to those of APCI-MS. Accordingly, more than 90\% of the volatile metabolites found by APCI-MS were also detected in IMS. In addition to different fungus genera, different species of one fungus genus could also be differentiated by GC-IMS.}, language = {en} } @article{ChenLangeAndjelkovicetal.2020, author = {Chen, Junchao and Lange, Thomas and Andjelkovic, Milos and Simevski, Aleksandar and Krstić, Miloš}, title = {Prediction of solar particle events with SRAM-based soft error rate monitor and supervised machine learning}, series = {Microelectronics reliability}, volume = {114}, journal = {Microelectronics reliability}, publisher = {Elsevier}, address = {Oxford}, issn = {0026-2714}, doi = {10.1016/j.microrel.2020.113799}, pages = {6}, year = {2020}, abstract = {This work introduces an embedded approach for the prediction of Solar Particle Events (SPEs) in space applications by combining the real-time Soft Error Rate (SER) measurement with SRAM-based detector and the offline trained machine learning model. The proposed approach is intended for the self-adaptive fault-tolerant multiprocessing systems employed in space applications. With respect to the state-of-the-art, our solution allows for predicting the SER 1 h in advance and fine-grained hourly tracking of SER variations during SPEs as well as under normal conditions. Therefore, the target system can activate the appropriate mechanisms for radiation hardening before the onset of high radiation levels. Based on the comparison of five different machine learning algorithms trained with the public space flux database, the preliminary results indicate that the best prediction accuracy is achieved with the recurrent neural network (RNN) with long short-term memory (LSTM).}, language = {en} } @phdthesis{Aseev2020, author = {Aseev, Nikita}, title = {Modeling and understanding dynamics of charged particles in the Earth's inner magnetosphere}, doi = {10.25932/publishup-47921}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-479211}, school = {Universit{\"a}t Potsdam}, pages = {xxii, 154}, year = {2020}, abstract = {The Earth's inner magnetosphere is a very dynamic system, mostly driven by the external solar wind forcing exerted upon the magnetic field of our planet. Disturbances in the solar wind, such as coronal mass ejections and co-rotating interaction regions, cause geomagnetic storms, which lead to prominent changes in charged particle populations of the inner magnetosphere - the plasmasphere, ring current, and radiation belts. Satellites operating in the regions of elevated energetic and relativistic electron fluxes can be damaged by deep dielectric or surface charging during severe space weather events. Predicting the dynamics of the charged particles and mitigating their effects on the infrastructure is of particular importance, due to our increasing reliance on space technologies. The dynamics of particles in the plasmasphere, ring current, and radiation belts are strongly coupled by means of collisions and collisionless interactions with electromagnetic fields induced by the motion of charged particles. Multidimensional numerical models simplify the treatment of transport, acceleration, and loss processes of these particles, and allow us to predict how the near-Earth space environment responds to solar storms. The models inevitably rely on a number of simplifications and assumptions that affect model accuracy and complicate the interpretation of the results. In this dissertation, we quantify the processes that control electron dynamics in the inner magnetosphere, paying particular attention to the uncertainties of the employed numerical codes and tools. We use a set of convenient analytical solutions for advection and diffusion equations to test the accuracy and stability of the four-dimensional Versatile Electron Radiation Belt (VERB-4D) code. We show that numerical schemes implemented in the code converge to the analytical solutions and that the VERB-4D code demonstrates stable behavior independent of the assumed time step. The order of the numerical scheme for the convection equation is demonstrated to affect results of ring current and radiation belt simulations, and it is crucially important to use high-order numerical schemes to decrease numerical errors in the model. Using the thoroughly tested VERB-4D code, we model the dynamics of the ring current electrons during the 17 March 2013 storm. The discrepancies between the model and observations above 4.5 Earth's radii can be explained by uncertainties in the outer boundary conditions. Simulation results indicate that the electrons were transported from the geostationary orbit towards the Earth by the global-scale electric and magnetic fields. We investigate how simulation results depend on the input models and parameters. The model is shown to be particularly sensitive to the global electric field and electron lifetimes below 4.5 Earth's radii. The effects of radial diffusion and subauroral polarization streams are also quantified. We developed a data-assimilative code that blends together a convection model of energetic electron transport and loss and Van Allen Probes satellite data by means of the Kalman filter. We show that the Kalman filter can correct model uncertainties in the convection electric field, electron lifetimes, and boundary conditions. It is also demonstrated how the innovation vector - the difference between observations and model prediction - can be used to identify physical processes missing in the model of energetic electron dynamics. We computed radial profiles of phase space density of ultrarelativistic electrons, using Van Allen Probes measurements. We analyze the shape of the profiles during geomagnetically quiet and disturbed times and show that the formation of new local minimums in the radial profiles coincides with the ground observations of electromagnetic ion-cyclotron (EMIC) waves. This correlation indicates that EMIC waves are responsible for the loss of ultrarelativistic electrons from the heart of the outer radiation belt into the Earth's atmosphere.}, language = {en} } @article{PerdigonToroZhangMarkinaetal.2020, author = {Perdig{\´o}n-Toro, Lorena and Zhang, Huotian and Markina, Anastaa si and Yuan, Jun and Hosseini, Seyed Mehrdad and Wolff, Christian Michael and Zuo, Guangzheng and Stolterfoht, Martin and Zou, Yingping and Gao, Feng and Andrienko, Denis and Shoaee, Safa and Neher, Dieter}, title = {Barrierless free charge generation in the high-performance PM6:Y6 bulk heterojunction non-fullerene solar cell}, series = {Advanced materials}, volume = {32}, journal = {Advanced materials}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201906763}, pages = {9}, year = {2020}, abstract = {Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier.}, language = {en} } @article{SandbergKurpiersStolterfohtetal.2020, author = {Sandberg, Oskar J. and Kurpiers, Jona and Stolterfoht, Martin and Neher, Dieter and Meredith, Paul and Shoaee, Safa and Armin, Ardalan}, title = {On the question of the need for a built-in potential in Perovskite solar cells}, series = {Advanced materials interfaces}, volume = {7}, journal = {Advanced materials interfaces}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202000041}, pages = {8}, year = {2020}, abstract = {Perovskite semiconductors as the active materials in efficient solar cells exhibit free carrier diffusion lengths on the order of microns at low illumination fluxes and many hundreds of nanometers under 1 sun conditions. These lengthscales are significantly larger than typical junction thicknesses, and thus the carrier transport and charge collection should be expected to be diffusion controlled. A consensus along these lines is emerging in the field. However, the question as to whether the built-in potential plays any role is still of matter of some conjecture. This important question using phase-sensitive photocurrent measurements and theoretical device simulations based upon the drift-diffusion framework is addressed. In particular, the role of the built-in electric field and charge-selective transport layers in state-of-the-art p-i-n perovskite solar cells comparing experimental findings and simulation predictions is probed. It is found that while charge collection in the junction does not require a drift field per se, a built-in potential is still needed to avoid the formation of reverse electric fields inside the active layer, and to ensure efficient extraction through the charge transport layers.}, language = {en} } @article{JiangTaoStolterfohtetal.2020, author = {Jiang, Wei and Tao, Chen and Stolterfoht, Martin and Jin, Hui and Stephen, Meera and Lin, Qianqian and Nagiri, Ravi C. R. and Burn, Paul L. and Gentle, Ian R.}, title = {Hole-transporting materials for low donor content organic solar cells}, series = {Organic electronics : physics, materials and applications}, volume = {76}, journal = {Organic electronics : physics, materials and applications}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1566-1199}, doi = {10.1016/j.orgel.2019.105480}, pages = {7}, year = {2020}, abstract = {Low donor content solar cells are an intriguing class of photovoltaic device about which there is still considerable discussion with respect to their mode of operation. We have synthesized a series of triphenylamine-based materials for use in low donor content devices with the electron accepting [6,6]-phenyl-C71-butyric acid methyl ester (PC(7)0BM). The triphenylamine-based materials absorb light in the near UV enabling the PC(7)0BM to be be the main light absorbing organic semiconducting material in the solar cell. It was found that the devices did not operate as classical Schottky junctions but rather photocurrent was generated by hole transfer from the photo-excited PC(7)0BM to the triphenylamine-based donors. We found that replacing the methoxy surface groups with methyl groups on the donor material led to a decrease in hole mobility for the neat films, which was due to the methyl substituted materials having the propensity to aggregate. The thermodynamic drive to aggregate was advantageous for the performance of the low donor content (6 wt\%) films. It was found that the 6 wt\% donor devices generally gave higher performance than devices containing 50 wt\% of the donor.}, language = {en} } @misc{WolffCanilRehermannetal.2020, author = {Wolff, Christian Michael and Canil, Laura and Rehermann, Carolin and Nguyen, Ngoc Linh and Zu, Fengshuo and Ralaiarisoa, Maryline and Caprioglio, Pietro and Fiedler, Lukas and Stolterfoht, Martin and Kogikoski, Junior, Sergio and Bald, Ilko and Koch, Norbert and Unger, Eva L. and Dittrich, Thomas and Abate, Antonio and Neher, Dieter}, title = {Correction to 'Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells' (2020, 14 (2), 1445-1456)}, series = {ACS nano}, volume = {14}, journal = {ACS nano}, number = {11}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1936-0851}, doi = {10.1021/acsnano.0c08081}, pages = {16156 -- 16156}, year = {2020}, language = {en} } @article{KirchartzMarquezStolterfohtetal.2020, author = {Kirchartz, Thomas and M{\´a}rquez, Jos{\´e} A. and Stolterfoht, Martin and Unold, Thomas}, title = {Photoluminescence-based characterization of halide perovskites for photovoltaics}, series = {Advanced Energy Materials}, volume = {10}, journal = {Advanced Energy Materials}, number = {26}, publisher = {Wiley}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201904134}, pages = {1 -- 21}, year = {2020}, abstract = {Photoluminescence spectroscopy is a widely applied characterization technique for semiconductor materials in general and halide perovskite solar cell materials in particular. It can give direct information on the recombination kinetics and processes as well as the internal electrochemical potential of free charge carriers in single semiconductor layers, layer stacks with transport layers, and complete solar cells. The correct evaluation and interpretation of photoluminescence requires the consideration of proper excitation conditions, calibration and application of the appropriate approximations to the rather complex theory, which includes radiative recombination, non-radiative recombination, interface recombination, charge transfer, and photon recycling. In this article, an overview is given of the theory and application to specific halide perovskite compositions, illustrating the variables that should be considered when applying photoluminescence analysis in these materials.}, language = {en} } @misc{KirchartzMarquezStolterfohtetal.2020, author = {Kirchartz, Thomas and M{\´a}rquez, Jos{\´e} A. and Stolterfoht, Martin and Unold, Thomas}, title = {Photoluminescence-based characterization of halide perovskites for photovoltaics}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {26}, issn = {1866-8372}, doi = {10.25932/publishup-51970}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519702}, pages = {23}, year = {2020}, abstract = {Photoluminescence spectroscopy is a widely applied characterization technique for semiconductor materials in general and halide perovskite solar cell materials in particular. It can give direct information on the recombination kinetics and processes as well as the internal electrochemical potential of free charge carriers in single semiconductor layers, layer stacks with transport layers, and complete solar cells. The correct evaluation and interpretation of photoluminescence requires the consideration of proper excitation conditions, calibration and application of the appropriate approximations to the rather complex theory, which includes radiative recombination, non-radiative recombination, interface recombination, charge transfer, and photon recycling. In this article, an overview is given of the theory and application to specific halide perovskite compositions, illustrating the variables that should be considered when applying photoluminescence analysis in these materials.}, language = {en} } @article{WangSmithSkroblinetal.2020, author = {Wang, Qiong and Smith, Joel A. and Skroblin, Dieter and Steele, Julian A. and Wolff, Christian Michael and Caprioglio, Pietro and Stolterfoht, Martin and K{\"o}bler, Hans and Turren-Cruz, Silver-Hamill and Li, Meng and Gollwitzer, Christian and Neher, Dieter and Abate, Antonio}, title = {Managing phase purities and crystal orientation for high-performance and photostable cesium lead halide perovskite solar cells}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {9}, publisher = {WILEY-VCH}, address = {Weinheim}, pages = {9}, year = {2020}, abstract = {Inorganic perovskites with cesium (Cs+) as the cation have great potential as photovoltaic materials if their phase purity and stability can be addressed. Herein, a series of inorganic perovskites is studied, and it is found that the power conversion efficiency of solar cells with compositions CsPbI1.8Br1.2, CsPbI2.0Br1.0, and CsPbI2.2Br0.8 exhibits a high dependence on the initial annealing step that is found to significantly affect the crystallization and texture behavior of the final perovskite film. At its optimized annealing temperature, CsPbI1.8Br1.2 exhibits a pure orthorhombic phase and only one crystal orientation of the (110) plane. Consequently, this allows for the best efficiency of up to 14.6\% and the longest operational lifetime, T-S80, of approximate to 300 h, averaged of over six solar cells, during the maximum power point tracking measurement under continuous light illumination and nitrogen atmosphere. This work provides essential progress on the enhancement of photovoltaic performance and stability of CsPbI3 - xBrx perovskite solar cells.}, language = {en} } @article{SamsonRechPerdigonToroetal.2020, author = {Samson, Stephanie and Rech, Jeromy and Perdig{\´o}n-Toro, Lorena and Peng, Zhengxing and Shoaee, Safa and Ade, Harald and Neher, Dieter and Stolterfoht, Martin and You, Wei}, title = {Organic solar cells with large insensitivity to donor polymer molar mass across all acceptor classes}, series = {ACS applied polymer materials}, volume = {2}, journal = {ACS applied polymer materials}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2637-6105}, doi = {10.1021/acsapm.0c01041}, pages = {5300 -- 5308}, year = {2020}, abstract = {Donor polymer number-average molar mass (M-n) has long been known to influence organic photovoltaic (OPV) performance via changes in both the polymer properties and the resulting bulk heterojunction morphology. The exact nature of these M-n effects varies from system to system, although there is generally some intermediate M-n that results in optimal performance. Interestingly, our earlier work with the difluorobenzotriazole (FTAZ)-based donor polymer, paired with either N2200 (polymer acceptor) or PC61BM (fullerene acceptor), PcBm demonstrated <10\% variation in power conversion efficiency and a consistent morphology over a large span of M-n (30 kg/mol to over 100 kg/mol). Would such insensitivity to polymer M-n still hold true when prevailing small molecular acceptors were used with FTAZ? To answer this question, we explored the impact of FTAZ on OPVs with ITIC, a high-performance small-molecule fused-ring electron acceptor (FREA). By probing the photovoltaic characteristics of the resulting OPVs, we show that a similar FTAZ mn insensitivity is also found in the FTAZ:ITIC system. This study highlights a single-donor polymer which, when paired with an archetypal fullerene, polymer, and FREA, results in systems that are largely insensitive to donor M. Our results may have implications in polymer batch-to-batch reproducibility, in particular, relaxing the need for tight M-n control during synthesis.}, language = {en} } @misc{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {7}, issn = {1866-8372}, doi = {10.25932/publishup-52566}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525668}, pages = {12}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} } @article{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {7}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {10}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} } @article{RaoufiHoermannLigorioetal.2020, author = {Raoufi, Meysam and H{\"o}rmann, Ulrich and Ligorio, Giovanni and Hildebrandt, Jana and P{\"a}tzel, Michael and Schultz, Thorsten and Perdig{\´o}n-Toro, Lorena and Koch, Norbert and List-Kratochvil, Emil and Hecht, Stefan and Neher, Dieter}, title = {Simultaneous effect of ultraviolet radiation and surface modification on the work function and hole injection properties of ZnO thin films}, series = {Physica Status Solidi. A , Applications and materials science}, volume = {217}, journal = {Physica Status Solidi. A , Applications and materials science}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201900876}, pages = {1 -- 6}, year = {2020}, abstract = {The combined effect of ultraviolet (UV) light soaking and self-assembled monolayer deposition on the work function (WF) of thin ZnO layers and on the efficiency of hole injection into the prototypical conjugated polymer poly(3-hexylthiophen-2,5-diyl) (P3HT) is systematically investigated. It is shown that the WF and injection efficiency depend strongly on the history of UV light exposure. Proper treatment of the ZnO layer enables ohmic hole injection into P3HT, demonstrating ZnO as a potential anode material for organic optoelectronic devices. The results also suggest that valid conclusions on the energy-level alignment at the ZnO/organic interfaces may only be drawn if the illumination history is precisely known and controlled. This is inherently problematic when comparing electronic data from ultraviolet photoelectron spectroscopy (UPS) measurements carried out under different or ill-defined illumination conditions.}, language = {en} } @phdthesis{Jay2020, author = {Jay, Raphael Martin}, title = {Principles of charge distribution and separation}, school = {Universit{\"a}t Potsdam}, pages = {xi, 162}, year = {2020}, abstract = {The electronic charge distributions of transition metal complexes fundamentally determine their chemical reactivity. Experimental access to the local valence electronic structure is therefore crucial in order to determine how frontier orbitals are delocalized between different atomic sites and electronic charge is spread throughout the transition metal complex. To that end, X-ray spectroscopies are employed in this thesis to study a series of solution-phase iron complexes with respect to the response of their local electronic charge distributions to different external influences. Using resonant inelastic X-ray scattering (RIXS) and X-ray absorption spectroscopy (XAS) at the iron L-edge, changes in local charge densities are investigated at the iron center depending on different ligand cages as well as solvent environments. A varying degree of charge delocalization from the metal center onto the ligands is observed, which is governed by the capabilities of the ligands to accept charge density into their unoccupied orbitals. Specific solvents are furthermore shown to amplify this process. Solvent molecules of strong Lewis-acids withdraw charge from the ligand allowing in turn for more metal charge to be delocalized onto the ligand. The resulting local charge deficiencies at the metal center are, however, counteracted by competing electron-donation channels from the ligand towards the iron, which are additionally revealed. This is interpreted as a compensating effect which strives to maintain local charge densities at the iron center. This mechanism of charge density preservation is found to be of general nature. Using time-resolved RIXS and XAS at the iron L-edge, an analogous interplay of electron donation and back-donation channels is also revealed for the case of charge-transfer excited states. In such transient configurations, the electronic occupation of iron-centered frontier orbitals has been altered by an optical excitation. Changes in local charge densities that are expected to follow an increased or decreased population of iron-centered orbitals are, however, again counteracted. By scaling the degree of electron donation from the ligand onto the metal, local charge densities at the iron center can be efficiently maintained. Since charge-transfer excitations, however, often constitute the initial step in many electron transfer processes, these findings challenge common notions of charge-separation in transition metal dyes.}, language = {en} } @article{CabalarFandinoLierler2020, author = {Cabalar, Pedro and Fandi{\~n}o, Jorge and Lierler, Yuliya}, title = {Modular Answer Set Programming as a formal specification language}, series = {Theory and practice of logic programming}, volume = {20}, journal = {Theory and practice of logic programming}, number = {5}, publisher = {Cambridge University Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068420000265}, pages = {767 -- 782}, year = {2020}, abstract = {In this paper, we study the problem of formal verification for Answer Set Programming (ASP), namely, obtaining aformal proofshowing that the answer sets of a given (non-ground) logic programPcorrectly correspond to the solutions to the problem encoded byP, regardless of the problem instance. To this aim, we use a formal specification language based on ASP modules, so that each module can be proved to capture some informal aspect of the problem in an isolated way. This specification language relies on a novel definition of (possibly nested, first order)program modulesthat may incorporate local hidden atoms at different levels. Then,verifyingthe logic programPamounts to prove some kind of equivalence betweenPand its modular specification.}, language = {en} } @phdthesis{Koehler2020, author = {K{\"o}hler, Raphael}, title = {Towards seasonal prediction: stratosphere-troposphere coupling in the atmospheric model ICON-NWP}, doi = {10.25932/publishup-48723}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-487231}, school = {Universit{\"a}t Potsdam}, pages = {viii, 119}, year = {2020}, abstract = {Stratospheric variability is one of the main potential sources for sub-seasonal to seasonal predictability in mid-latitudes in winter. Stratospheric pathways play an important role for long-range teleconnections between tropical phenomena, such as the quasi-biennial oscillation (QBO) and El Ni{\~n}o-Southern Oscillation (ENSO), and the mid-latitudes on the one hand, and linkages between Arctic climate change and the mid-latitudes on the other hand. In order to move forward in the field of extratropical seasonal predictions, it is essential that an atmospheric model is able to realistically simulate the stratospheric circulation and variability. The numerical weather prediction (NWP) configuration of the ICOsahedral Non-hydrostatic atmosphere model ICON is currently being used by the German Meteorological Service for the regular weather forecast, and is intended to produce seasonal predictions in future. This thesis represents the first extensive evaluation of Northern Hemisphere stratospheric winter circulation in ICON-NWP by analysing a large set of seasonal ensemble experiments. An ICON control climatology simulated with a default setup is able to reproduce the basic behaviour of the stratospheric polar vortex. However, stratospheric westerlies are significantly too weak and major stratospheric warmings too frequent, especially in January. The weak stratospheric polar vortex in ICON is furthermore connected to a mean sea level pressure (MSLP) bias pattern resembling the negative phase of the Arctic Oscillation (AO). Since a good representation of the drag exerted by gravity waves is crucial for a realistic simulation of the stratosphere, three sensitivity experiments with reduced gravity wave drag are performed. Both a reduction of the non-orographic and orographic gravity wave drag respectively, lead to a strengthening of the stratospheric vortex and thus a bias reduction in winter, in particular in January. However, the effect of the non-orographic gravity wave drag on the stratosphere is stronger. A third experiment, combining a reduced orographic and non-orographic drag, exhibits the largest stratospheric bias reductions. The analysis of stratosphere-troposphere coupling based on an index of the Northern Annular Mode demonstrates that ICON realistically represents downward coupling. This coupling is intensified and more realistic in experiments with a reduced gravity wave drag, in particular with reduced non-orographic drag. Tropospheric circulation is also affected by the reduced gravity wave drag, especially in January, when the strongly improved stratospheric circulation reduces biases in the MSLP patterns. Moreover, a retuning of the subgrid-scale orography parameterisations leads to a significant error reduction in the MSLP in all months. In conclusion, the combination of these adjusted parameterisations is recommended as a current optimal setup for seasonal simulations with ICON. Additionally, this thesis discusses further possible influences on the stratospheric polar vortex, including the influence of tropical phenomena, such as QBO and ENSO, as well as the influence of a rapidly warming Arctic. ICON does not simulate the quasi-oscillatory behaviour of the QBO and favours weak easterlies in the tropical stratosphere. A comparison with a reanalysis composite of the easterly QBO phase reveals, that the shift towards the easterly QBO in ICON further weakens the stratospheric polar vortex. On the other hand, the stratospheric reaction to ENSO events in ICON is realistic. ICON and the reanalysis exhibit a weakened stratospheric vortex in warm ENSO years. Furthermore, in particular in winter, warm ENSO events favour the negative phase of the Arctic Oscillation, whereas cold events favour the positive phase. The ICON simulations also suggest a significant effect of ENSO on the Atlantic-European sector in late winter. To investigate the influence of Arctic climate change on mid-latitude circulation changes, two differing approaches with transient and fixed sea ice conditions are chosen. Neither ICON approach exhibits the mid-latitude tropospheric negative Arctic Oscillation circulation response to amplified Arctic warming, as it is discussed on the basis of observational evidence. Nevertheless, adding a new model to the current and active discussion on Arctic-midlatitude linkages, further contributes to the understanding of divergent conclusions between model and observational studies.}, language = {en} } @misc{WangSmithSkroblinetal.2020, author = {Wang, Qiong and Smith, Joel A. and Skroblin, Dieter and Steele, Julian A. and Wolff, Christian Michael and Caprioglio, Pietro and Stolterfoht, Martin and K{\"o}bler, Hans and Turren-Cruz, Silver-Hamill and Li, Meng and Gollwitzer, Christian and Neher, Dieter and Abate, Antonio}, title = {Managing phase purities and crystal orientation for high-performance and photostable cesium lead halide perovskite solar cells}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-52537}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525374}, pages = {11}, year = {2020}, abstract = {Inorganic perovskites with cesium (Cs+) as the cation have great potential as photovoltaic materials if their phase purity and stability can be addressed. Herein, a series of inorganic perovskites is studied, and it is found that the power conversion efficiency of solar cells with compositions CsPbI1.8Br1.2, CsPbI2.0Br1.0, and CsPbI2.2Br0.8 exhibits a high dependence on the initial annealing step that is found to significantly affect the crystallization and texture behavior of the final perovskite film. At its optimized annealing temperature, CsPbI1.8Br1.2 exhibits a pure orthorhombic phase and only one crystal orientation of the (110) plane. Consequently, this allows for the best efficiency of up to 14.6\% and the longest operational lifetime, T-S80, of approximate to 300 h, averaged of over six solar cells, during the maximum power point tracking measurement under continuous light illumination and nitrogen atmosphere. This work provides essential progress on the enhancement of photovoltaic performance and stability of CsPbI3 - xBrx perovskite solar cells.}, language = {en} } @article{AbdallaAdamAharonianetal.2020, author = {Abdalla, H. and Adam, R. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arcaro, C. and Armand, C. and Armstrong, T. and Ashkar, H. and Backes, M. and Baghmanyan, V. and Martins, V. Barbosa and Barnacka, A. and Barnard, M. and Becherini, Y. and Berge, D. and Bernlohr, K. and Bi, B. and Bottcher, M. and Boisson, C. and Bolmont, J. and de Lavergne, M. de Bony and Bordas, Pol and Breuhaus, M. and Brun, F. and Brun, P. and Bryan, M. and Buchele, M. and Bulik, T. and Bylund, T. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Chand, T. and Chandra, S. and Chen, A. and Cotter, G. and Curylo, M. and Mbarubucyeye, J. Damascene and Davids, I. D. and Davies, J. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V. and Duffy, C. and Dyks, J. and Egberts, Kathrin and Eichhorn, F. and Einecke, S. and Emery, G. and Ernenwein, J. -P. and Feijen, K. and Fegan, S. and Fiasson, A. and de Clairfontaine, G. Fichet and Fontaine, G. and Funk, S. and Fussling, Matthias and Gabici, S. and Gallant, Y. A. and Giavitto, G. and Giunti, L. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Hermann, G. and Hinton, J. A. and Hofmann, W. and Hoischen, Clemens and Holch, T. L. and Holler, M. and Horbe, M. and Horns, D. and Huber, D. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jardin-Blicq, A. and Joshi, V. and Jung-Richardt, I. and Kasai, E. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Khangulyan, D. and Khelifi, B. and Klepser, S. and Kluzniak, W. and Komin, Nu. and Konno, R. and Kosack, K. and Kostunin, D. and Kreter, M. and Lamanna, G. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Levy, C. and Lohse, T. and Lypova, I. and Mackey, J. and Majumdar, J. and Malyshev, D. and Malyshev, D. and Marandon, V. and Marchegiani, P. and Marcowith, Alexandre and Mares, A. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Meintjes, P. J. and Meyer, M. and Mitchell, A. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Montanari, A. and Moore, C. and Morris, P. and Moulin, Emmanuel and Muller, J. and Murach, T. and Nakashima, K. and Nayerhoda, A. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and O'Brien, Patrick and Odaka, H. and Ohm, S. and Olivera-Nieto, L. and Wilhelmi, E. de Ona and Ostrowski, M. and Oya, I. and Panter, M. and Panny, S. and Parsons, R. D. and Peron, G. and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V. and Noel, A. Priyana and Prokhorov, D. A. and Prokoph, H. and Puhlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reichherzer, P. and Reimer, A. and Reimer, O. and Remy, Q. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V. and Sailer, S. and Sanchez, D. A. and Santangelo, Andrea and Sasaki, M. and Scalici, M. and Schussler, F. and Schutte, H. M. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Specovius, A. and Spencer, S. and Spir-Jacob, M. and Stawarz, L. and Sun, L. and Steenkamp, R. and Stegmann, C. and Steinmassl, S. and Steppa, C. and Takahashi, T. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tiziani, D. and Tluczykont, M. and Tomankova, L. and Trichard, C. and Tsirou, M. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Volk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Watson, J. and Werner, F. and White, R. and Wierzcholska, A. and Wong, Yu Wun and Yusafzai, A. and Zacharias, M. and Zanin, R. and Zargaryan, D. and Zdziarski, A. A. and Zech, Alraune and Zhu, S. J. and Ziegler, A. and Zorn, J. and Zouari, S. and Zywucka, N.}, title = {An extreme particle accelerator in the Galactic plane}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {644}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/202038851}, pages = {8}, year = {2020}, abstract = {The unidentified very-high-energy (VHE; E > 0.1 TeV) gamma -ray source, HESS J1826-130, was discovered with the High Energy Stereoscopic System (HESS) in the Galactic plane. The analysis of 215 h of HESS data has revealed a steady gamma -ray flux from HESS J1826-130, which appears extended with a half-width of 0.21 degrees +/- 0.02
(stat)degrees
stat degrees +/- 0.05
(sys)degrees sys degrees . The source spectrum is best fit with either a power-law function with a spectral index Gamma = 1.78 +/- 0.10(stat) +/- 0.20(sys) and an exponential cut-off at 15.2
(+5.5)(-3.2) -3.2+5.5 TeV, or a broken power-law with Gamma (1) = 1.96 +/- 0.06(stat) +/- 0.20(sys), Gamma (2) = 3.59 +/- 0.69(stat) +/- 0.20(sys) for energies below and above E-br = 11.2 +/- 2.7 TeV, respectively. The VHE flux from HESS J1826-130 is contaminated by the extended emission of the bright, nearby pulsar wind nebula, HESS J1825-137, particularly at the low end of the energy spectrum. Leptonic scenarios for the origin of HESS J1826-130 VHE emission related to PSR J1826-1256 are confronted by our spectral and morphological analysis. In a hadronic framework, taking into account the properties of dense gas regions surrounding HESS J1826-130, the source spectrum would imply an astrophysical object capable of accelerating the parent particle population up to greater than or similar to 200 TeV. Our results are also discussed in a multiwavelength context, accounting for both the presence of nearby supernova remnants, molecular clouds, and counterparts detected in radio, X-rays, and TeV energies.}, language = {en} } @article{ChengZhangKliemetal.2020, author = {Cheng, Xin and Zhang, Jie and Kliem, Bernhard and T{\"o}r{\"o}k, Tibor and Xing, Chen and Zhou, Zhenjun and Inhester, Bernd and Ding, Mingde}, title = {Initiation and early kinematic evolution of solar eruptions}, series = {The Astrophysical Journal}, volume = {894}, journal = {The Astrophysical Journal}, number = {2}, publisher = {Cambridge Scientific Publishers}, address = {Cambridge}, issn = {1055-6796}, doi = {10.3847/1538-4357/ab886a}, pages = {1 -- 20}, year = {2020}, abstract = {We investigate the initiation and early evolution of 12 solar eruptions, including six active-region hot channel and six quiescent filament eruptions, which were well observed by the Solar Dynamics Observatory, as well as by the Solar Terrestrial Relations Observatory for the latter. The sample includes one failed eruption and 11 coronal mass ejections, with velocities ranging from 493 to 2140 km s(-1). A detailed analysis of the eruption kinematics yields the following main results. (1) The early evolution of all events consists of a slow-rise phase followed by a main-acceleration phase, the height-time profiles of which differ markedly and can be best fit, respectively, by a linear and an exponential function. This indicates that different physical processes dominate in these phases, which is at variance with models that involve a single process. (2) The kinematic evolution of the eruptions tends to be synchronized with the flare light curve in both phases. The synchronization is often but not always close. A delayed onset of the impulsive flare phase is found in the majority of the filament eruptions (five out of six). This delay and its trend to be larger for slower eruptions favor ideal MHD instability models. (3) The average decay index at the onset heights of the main acceleration is close to the threshold of the torus instability for both groups of events (although, it is based on a tentative coronal field model for the hot channels), suggesting that this instability initiates and possibly drives the main acceleration.}, language = {en} } @article{CervantesVillaShpritsAseevetal.2020, author = {Cervantes Villa, Juan Sebastian and Shprits, Yuri Y. and Aseev, Nikita and Allison, Hayley J.}, title = {Quantifying the effects of EMIC wave scattering and magnetopause shadowing in the outer electron radiation belt by means of data assimilation}, series = {Journal of geophysical research : Space physics}, volume = {125}, journal = {Journal of geophysical research : Space physics}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2020JA028208}, pages = {23}, year = {2020}, abstract = {In this study we investigate two distinct loss mechanisms responsible for the rapid dropouts of radiation belt electrons by assimilating data from Van Allen Probes A and B and Geostationary Operational Environmental Satellites (GOES) 13 and 15 into a 3-D diffusion model. In particular, we examine the respective contribution of electromagnetic ion cyclotron (EMIC) wave scattering and magnetopause shadowing for values of the first adiabatic invariant mu ranging from 300 to 3,000 MeV G(-1). We inspect the innovation vector and perform a statistical analysis to quantitatively assess the effect of both processes as a function of various geomagnetic indices, solar wind parameters, and radial distance from the Earth. Our results are in agreement with previous studies that demonstrated the energy dependence of these two mechanisms. We show that EMIC wave scattering tends to dominate loss at lower L shells, and it may amount to between 10\%/hr and 30\%/hr of the maximum value of phase space density (PSD) over all L shells for fixed first and second adiabatic invariants. On the other hand, magnetopause shadowing is found to deplete electrons across all energies, mostly at higher L shells, resulting in loss from 50\%/hr to 70\%/hr of the maximum PSD. Nevertheless, during times of enhanced geomagnetic activity, both processes can operate beyond such location and encompass the entire outer radiation belt.}, language = {en} } @article{SchaffenrothCasewellSchneideretal.2020, author = {Schaffenroth, Veronika and Casewell, Sarah L. and Schneider, D. and Kilkenny, David and Geier, Stephan and Heber, Ulrich and Irrgang, Andreas and Przybilla, Norbert and Marsh, Thomas R. and Littlefair, Stuart P. and Dhillon, Vik S.}, title = {A quantitative in-depth analysis of the prototype sdB plus BD system SDSS J08205+0008 revisited in the Gaia era}, series = {Monthly notices of the Royal Astronomical Society}, volume = {501}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa3661}, pages = {3847 -- 3870}, year = {2020}, abstract = {Subdwarf B stars are core-helium-burning stars located on the extreme horizontal branch (EHB). Extensive mass loss on the red giant branch is necessary to form them. It has been proposed that substellar companions could lead to the required mass loss when they are engulfed in the envelope of the red giant star. J08205+0008 was the first example of a hot subdwarf star with a close, substellar companion candidate to be found. Here, we perform an in-depth re-analysis of this important system with much higher quality data allowing additional analysis methods. From the higher resolution spectra obtained with ESO-VLT/XSHOOTER, we derive the chemical abundances of the hot subdwarf as well as its rotational velocity. Using the Gaia parallax and a fit to the spectral energy distribution in the secondary eclipse, tight constraints to the radius of the hot subdwarf are derived. From a long-term photometric campaign, we detected a significant period decrease of -3.2(8) x 10(-12) dd(-1). This can be explained by the non-synchronized hot subdwarf star being spun up by tidal interactions forcing it to become synchronized. From the rate of period decrease we could derive the synchronization time-scale to be 4 Myr, much smaller than the lifetime on EHB. By combining all different methods, we could constrain the hot subdwarf to a mass of 0.39-0.50 M-circle dot and a radius of R-sdB = 0.194 +/- 0.008 R-circle dot, and the companion to 0.061-0.071 M-circle dot with a radius of R-comp = 0.092 +/- 0.005 R-circle dot, below the hydrogen-burning limit. We therefore confirm that the companion is most likely a massive brown dwarf.}, language = {en} } @article{PelisoliVosGeieretal.2020, author = {Pelisoli, Ingrid and Vos, Joris and Geier, Stephan and Schaffenroth, Veronika and Baran, Andrzej S.}, title = {Alone but not lonely}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {642}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202038473}, pages = {14}, year = {2020}, abstract = {Context. Hot subdwarfs are core-helium burning stars that show lower masses and higher temperatures than canonical horizontal branch stars. They are believed to be formed when a red giant suffers an extreme mass-loss episode. Binary interaction is suggested to be the main formation channel, but the high fraction of apparently single hot subdwarfs (up to 30\%) has prompted single star formation scenarios to be proposed.Aims. We investigate the possibility that hot subdwarfs could form without interaction by studying wide binary systems. If single formation scenarios were possible, there should be hot subdwarfs in wide binaries that have undergone no interaction.Methods. Angular momentum accretion during interaction is predicted to cause the hot subdwarf companion to spin up to the critical velocity. The effect of this should still be observable given the timescales of the hot subdwarf phase. To study the rotation rates of companions, we have analysed light curves from the Transiting Exoplanet Survey Satellite for all known hot subdwarfs showing composite spectral energy distributions indicating the presence of a main sequence wide binary companion. If formation without interaction were possible, that would also imply the existence of hot subdwarfs in very wide binaries that are not predicted to interact. To identify such systems, we have searched for common proper motion companions with projected orbital distances of up to 0.1 pc to all known spectroscopically confirmed hot subdwarfs using Gaia DR2 astrometry.Results. We find that the companions in composite hot subdwarfs show short rotation periods when compared to field main sequence stars. They display a triangular-shaped distribution with a peak around 2.5 days, similar to what is observed for young open clusters. We also report a shortage of hot subdwarfs with candidate common proper motion companions. We identify only 16 candidates after probing 2938 hot subdwarfs with good astrometry. Out of those, at least six seem to be hierarchical triple systems, in which the hot subdwarf is part of an inner binary.Conclusions. The observed distribution of rotation rates for the companions in known wide hot subdwarf binaries provides evidence of previous interaction causing spin-up. Additionally, there is a shortage of hot subdwarfs in common proper motion pairs, considering the frequency of such systems among progenitors. These results suggest that binary interaction is always required for the formation of hot subdwarfs.}, language = {en} }