@article{SeroussiNowickiSimonetal.2019, author = {Seroussi, Helene and Nowicki, Sophie and Simon, Erika and Abe-Ouchi, Ayako and Albrecht, Torsten and Brondex, Julien and Cornford, Stephen and Dumas, Christophe and Gillet-Chaulet, Fabien and Goelzer, Heiko and Golledge, Nicholas R. and Gregory, Jonathan M. and Greve, Ralf and Hoffman, Matthew J. and Humbert, Angelika and Huybrechts, Philippe and Kleiner, Thomas and Larourl, Eric and Leguy, Gunter and Lipscomb, William H. and Lowry, Daniel and Mengel, Matthias and Morlighem, Mathieu and Pattyn, Frank and Payne, Anthony J. and Pollard, David and Price, Stephen F. and Quiquet, Aurelien and Reerink, Thomas J. and Reese, Ronja and Rodehacke, Christian B. and Schlegel, Nicole-Jeanne and Shepherd, Andrew and Sun, Sainan and Sutter, Johannes and Van Breedam, Jonas and van de Wal, Roderik S. W. and Winkelmann, Ricarda and Zhang, Tong}, title = {initMIP-Antarctica}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {13}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-13-1441-2019}, pages = {1441 -- 1471}, year = {2019}, abstract = {Ice sheet numerical modeling is an important tool to estimate the dynamic contribution of the Antarctic ice sheet to sea level rise over the coming centuries. The influence of initial conditions on ice sheet model simulations, however, is still unclear. To better understand this influence, an initial state intercomparison exercise (initMIP) has been developed to compare, evaluate, and improve initialization procedures and estimate their impact on century-scale simulations. initMlP is the first set of experiments of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), which is the primary Coupled Model Intercomparison Project Phase 6 (CMIP6) activity focusing on the Greenland and Antarctic ice sheets. Following initMlP-Greenland, initMlP-Antarctica has been designed to explore uncertainties associated with model initialization and spin-up and to evaluate the impact of changes in external forcings. Starting from the state of the Antarctic ice sheet at the end of the initialization procedure, three forward experiments are each run for 100 years: a control run, a run with a surface mass balance anomaly, and a run with a basal melting anomaly beneath floating ice. This study presents the results of initMlP-Antarctica from 25 simulations performed by 16 international modeling groups. The submitted results use different initial conditions and initialization methods, as well as ice flow model parameters and reference external forcings. We find a good agreement among model responses to the surface mass balance anomaly but large variations in responses to the basal melting anomaly. These variations can be attributed to differences in the extent of ice shelves and their upstream tributaries, the numerical treatment of grounding line, and the initial ocean conditions applied, suggesting that ongoing efforts to better represent ice shelves in continental-scale models should continue.}, language = {en} } @article{ReeseAlbrechtMengeletal.2018, author = {Reese, Ronja and Albrecht, Torsten and Mengel, Matthias and Asay-Davis, Xylar and Winkelmann, Ricarda}, title = {Antarctic sub-shelf melt rates via PICO}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {12}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {6}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-12-1969-2018}, pages = {1969 -- 1985}, year = {2018}, abstract = {Ocean-induced melting below ice shelves is one of the dominant drivers for mass loss from the Antarctic Ice Sheet at present. An appropriate representation of sub-shelf melt rates is therefore essential for model simulations of marine-based ice sheet evolution. Continental-scale ice sheet models often rely on simple melt-parameterizations, in particular for long-term simulations, when fully coupled ice-ocean interaction becomes computationally too expensive. Such parameterizations can account for the influence of the local depth of the ice-shelf draft or its slope on melting. However, they do not capture the effect of ocean circulation underneath the ice shelf. Here we present the Potsdam Ice-shelf Cavity mOdel (PICO), which simulates the vertical overturning circulation in ice-shelf cavities and thus enables the computation of sub-shelf melt rates consistent with this circulation. PICO is based on an ocean box model that coarsely resolves ice shelf cavities and uses a boundary layer melt formulation. We implement it as a module of the Parallel Ice Sheet Model (PISM) and evaluate its performance under present-day conditions of the Southern Ocean. We identify a set of parameters that yield two-dimensional melt rate fields that qualitatively reproduce the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. PICO captures the wide range of melt rates observed for Antarctic ice shelves, with an average of about 0.1 ma(-1) for cold sub-shelf cavities, for example, underneath Ross or Ronne ice shelves, to 16 ma(-1) for warm cavities such as in the Amundsen Sea region. This makes PICO a computationally feasible and more physical alternative to melt parameterizations purely based on ice draft geometry.}, language = {en} } @article{SteffenRoeckstromRichardsonetal.2018, author = {Steffen, Will and R{\"o}ckstrom, Johan and Richardson, Katherine and Lenton, Timothy M. and Folke, Carl and Liverman, Diana and Summerhayes, Colin P. and Barnosky, Anthony D. and Cornell, Sarah E. and Crucifix, Michel and Donges, Jonathan and Fetzer, Ingo and Lade, Steven J. and Scheffer, Marten and Winkelmann, Ricarda and Schellnhuber, Hans Joachim}, title = {Trajectories of the Earth System in the Anthropocene}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {33}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1810141115}, pages = {8252 -- 8259}, year = {2018}, abstract = {We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a "Hothouse Earth" pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Collective human action is required to steer the Earth System away from a potential threshold and stabilize it in a habitable interglacial-like state. Such action entails stewardship of the entire Earth System-biosphere, climate, and societies-and could include decarbonization of the global economy, enhancement of biosphere carbon sinks, behavioral changes, technological innovations, new governance arrangements, and transformed social values.}, language = {en} } @article{ReeseWinkelmannGudmundsson2018, author = {Reese, Ronja and Winkelmann, Ricarda and Gudmundsson, Gudmundur Hilmar}, title = {Grounding-line flux formula applied as a flux condition in numerical simulations fails for buttressed Antarctic ice streams}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {12}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {10}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-12-3229-2018}, pages = {3229 -- 3242}, year = {2018}, abstract = {Currently, several large-scale ice-flow models impose a condition on ice flux across grounding lines using an analytically motivated parameterisation of grounding-line flux. It has been suggested that employing this analytical expression alleviates the need for highly resolved computational domains around grounding lines of marine ice sheets. While the analytical flux formula is expected to be accurate in an unbuttressed flow-line setting, its validity has hitherto not been assessed for complex and realistic geometries such as those of the Antarctic Ice Sheet. Here the accuracy of this analytical flux formula is tested against an optimised ice flow model that uses a highly resolved computational mesh around the Antarctic grounding lines. We find that when applied to the Antarctic Ice Sheet the analytical expression provides inaccurate estimates of ice fluxes for almost all grounding lines. Furthermore, in many instances direct application of the analytical formula gives rise to unphysical complex-valued ice fluxes. We conclude that grounding lines of the Antarctic Ice Sheet are, in general, too highly buttressed for the analytical parameterisation to be of practical value for the calculation of grounding-line fluxes.}, language = {en} } @article{CiemerRehmKurthsetal.2020, author = {Ciemer, Catrin and Rehm, Lars and Kurths, J{\"u}rgen and Donner, Reik Volker and Winkelmann, Ricarda and Boers, Niklas}, title = {An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures}, series = {Environmental Research Letters}, volume = {15}, journal = {Environmental Research Letters}, number = {9}, publisher = {IOP - Institute of Physics Publishing}, address = {Bristol}, pages = {10}, year = {2020}, abstract = {Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months.}, language = {en} } @article{SeroussiNowickiPayneetal.2020, author = {Seroussi, Helene and Nowicki, Sophie and Payne, Antony J. and Goelzer, Heiko and Lipscomb, William H. and Abe-Ouchi, Ayako and Agosta, Cecile and Albrecht, Torsten and Asay-Davis, Xylar and Barthel, Alice and Calov, Reinhard and Cullather, Richard and Dumas, Christophe and Galton-Fenzi, Benjamin K. and Gladstone, Rupert and Golledge, Nicholas R. and Gregory, Jonathan M. and Greve, Ralf and Hattermann, Tore and Hoffman, Matthew J. and Humbert, Angelika and Huybrechts, Philippe and Jourdain, Nicolas C. and Kleiner, Thomas and Larour, Eric and Leguy, Gunter R. and Lowry, Daniel P. and Little, Chistopher M. and Morlighem, Mathieu and Pattyn, Frank and Pelle, Tyler and Price, Stephen F. and Quiquet, Aurelien and Reese, Ronja and Schlegel, Nicole-Jeanne and Shepherd, Andrew and Simon, Erika and Smith, Robin S. and Straneo, Fiammetta and Sun, Sainan and Trusel, Luke D. and Van Breedam, Jonas and van de Wal, Roderik S. W. and Winkelmann, Ricarda and Zhao, Chen and Zhang, Tong and Zwinger, Thomas}, title = {ISMIP6 Antarctica}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-14-3033-2020}, pages = {3033 -- 3070}, year = {2020}, abstract = {Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6 :1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.}, language = {en} } @article{ReeseLevermannAlbrechtetal.2020, author = {Reese, Ronja and Levermann, Anders and Albrecht, Torsten and Seroussi, Helene and Winkelmann, Ricarda}, title = {The role of history and strength of the oceanic forcing in sea level projections from Antarctica with the Parallel Ice Sheet Model}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-14-3097-2020}, pages = {3097 -- 3110}, year = {2020}, abstract = {Mass loss from the Antarctic Ice Sheet constitutes the largest uncertainty in projections of future sea level rise. Ocean-driven melting underneath the floating ice shelves and subsequent acceleration of the inland ice streams are the major reasons for currently observed mass loss from Antarctica and are expected to become more important in the future. Here we show that for projections of future mass loss from the Antarctic Ice Sheet, it is essential (1) to better constrain the sensitivity of sub-shelf melt rates to ocean warming and (2) to include the historic trajectory of the ice sheet. In particular, we find that while the ice sheet response in simulations using the Parallel Ice Sheet Model is comparable to the median response of models in three Antarctic Ice Sheet Intercomparison projects - initMIP, LARMIP-2 and ISMIP6 - conducted with a range of ice sheet models, the projected 21st century sea level contribution differs significantly depending on these two factors. For the highest emission scenario RCP8.5, this leads to projected ice loss ranging from 1:4 to 4:0 cm of sea level equivalent in simulations in which ISMIP6 ocean forcing drives the PICO ocean box model where parameter tuning leads to a comparably low sub-shelf melt sensitivity and in which no surface forcing is applied. This is opposed to a likely range of 9:1 to 35:8 cm using the exact same initial setup, but emulated from the LARMIP-2 experiments with a higher melt sensitivity, even though both projects use forcing from climate models and melt rates are calibrated with previous oceanographic studies. Furthermore, using two initial states, one with a previous historic simulation from 1850 to 2014 and one starting from a steady state, we show that while differences between the ice sheet configurations in 2015 seem marginal at first sight, the historic simulation increases the susceptibility of the ice sheet to ocean warming, thereby increasing mass loss from 2015 to 2100 by 5\% to 50 \%. Hindcasting past ice sheet changes with numerical models would thus provide valuable tools to better constrain projections. Our results emphasize that the uncertainty that arises from the forcing is of the same order of magnitude as the ice dynamic response for future sea level projections.}, language = {en} } @article{ZeitzLevermannWinkelmann2020, author = {Zeitz, Maria and Levermann, Anders and Winkelmann, Ricarda}, title = {Sensitivity of ice loss to uncertainty in flow law parameters in an idealized one-dimensional geometry}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {10}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-14-3537-2020}, pages = {3537 -- 3550}, year = {2020}, abstract = {Acceleration of the flow of ice drives mass losses in both the Antarctic and the Greenland Ice Sheet. The projections of possible future sea-level rise rely on numerical ice-sheet models, which solve the physics of ice flow, melt, and calving. While major advancements have been made by the ice-sheet modeling community in addressing several of the related uncertainties, the flow law, which is at the center of most process-based ice-sheet models, is not in the focus of the current scientific debate. However, recent studies show that the flow law parameters are highly uncertain and might be different from the widely accepted standard values. Here, we use an idealized flow-line setup to investigate how these uncertainties in the flow law translate into uncertainties in flow-driven mass loss. In order to disentangle the effect of future warming on the ice flow from other effects, we perform a suite of experiments with the Parallel Ice Sheet Model (PISM), deliberately excluding changes in the surface mass balance. We find that changes in the flow parameters within the observed range can lead up to a doubling of the flow-driven mass loss within the first centuries of warming, compared to standard parameters. The spread of ice loss due to the uncertainty in flow parameters is on the same order of magnitude as the increase in mass loss due to surface warming. While this study focuses on an idealized flow-line geometry, it is likely that this uncertainty carries over to realistic three-dimensional simulations of Greenland and Antarctica.}, language = {en} } @article{ReeseGudmundssonLevermannetal.2017, author = {Reese, Ronja and Gudmundsson, Gudmundur Hilmar and Levermann, Anders and Winkelmann, Ricarda}, title = {The far reach of ice-shelf thinning in Antarctica}, series = {Nature climate change}, volume = {8}, journal = {Nature climate change}, number = {1}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-017-0020-x}, pages = {53 -- 57}, year = {2017}, abstract = {Floating ice shelves, which fringe most of Antarctica's coastline, regulate ice flow into the Southern Ocean1,2,3. Their thinning4,5,6,7 or disintegration8,9 can cause upstream acceleration of grounded ice and raise global sea levels. So far the effect has not been quantified in a comprehensive and spatially explicit manner. Here, using a finite-element model, we diagnose the immediate, continent-wide flux response to different spatial patterns of ice-shelf mass loss. We show that highly localized ice-shelf thinning can reach across the entire shelf and accelerate ice flow in regions far from the initial perturbation. As an example, this 'tele-buttressing' enhances outflow from Bindschadler Ice Stream in response to thinning near Ross Island more than 900 km away. We further find that the integrated flux response across all grounding lines is highly dependent on the location of imposed changes: the strongest response is caused not only near ice streams and ice rises, but also by thinning, for instance, well-within the Filchner-Ronne and Ross Ice Shelves. The most critical regions in all major ice shelves are often located in regions easily accessible to the intrusion of warm ocean waters10,11,12, stressing Antarctica's vulnerability to changes in its surrounding ocean.}, language = {en} } @article{AlbrechtWinkelmannLevermann2020, author = {Albrecht, Torsten and Winkelmann, Ricarda and Levermann, Anders}, title = {Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM)}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-14-633-2020}, pages = {633 -- 656}, year = {2020}, abstract = {The Parallel Ice Sheet Model (PISM) is applied to the Antarctic Ice Sheet over the last two glacial cycles (approximate to 210 000 years) with a resolution of 16 km. An ensemble of 256 model runs is analyzed in which four relevant model parameters have been systematically varied using full-factorial parameter sampling. Parameters and plausible parameter ranges have been identified in a companion paper (Albrecht et al., 2020) and are associated with ice dynamics, climatic forcing, basal sliding and bed deformation and represent distinct classes of model uncertainties. The model is scored against both modern and geologic data, including reconstructed grounding-line locations, elevation-age data, ice thickness, surface velocities and uplift rates. An aggregated score is computed for each ensemble member that measures the overall model-data misfit, including measurement uncertainty in terms of a Gaussian error model (Briggs and Tarasov, 2013). The statistical method used to analyze the ensemble simulation results follows closely the simple averaging method described in Pollard et al. (2016). This analysis reveals clusters of best-fit parameter combinations, and hence a likely range of relevant model and boundary parameters, rather than individual best-fit parameters. The ensemble of reconstructed histories of Antarctic Ice Sheet volumes provides a score-weighted likely range of sea-level contributions since the Last Glacial Maximum (LGM) of 9.4 +/- 4.1m (or 6.5 +/- 2.0 x 10(6) km(3)), which is at the upper range of most previous studies. The last deglaciation occurs in all ensemble simulations after around 12 000 years before present and hence after the meltwater pulse 1A (MWP1a). Our ensemble analysis also provides an estimate of parametric uncertainty bounds for the present-day state that can be used for PISM projections of future sea-level contributions from the Antarctic Ice Sheet.}, language = {en} } @article{GarbeAlbrechtLevermannetal.2020, author = {Garbe, Julius and Albrecht, Torsten and Levermann, Anders and Donges, Jonathan and Winkelmann, Ricarda}, title = {The hysteresis of the Antarctic Ice Sheet}, series = {Nature : the international weekly journal of science}, volume = {585}, journal = {Nature : the international weekly journal of science}, number = {7826}, publisher = {Macmillan Publishers Limited}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/s41586-020-2727-5}, pages = {538 -- 544}, year = {2020}, abstract = {More than half of Earth's freshwater resources are held by the Antarctic Ice Sheet, which thus represents by far the largest potential source for global sea-level rise under future warming conditions(1). Its long-term stability determines the fate of our coastal cities and cultural heritage. Feedbacks between ice, atmosphere, ocean, and the solid Earth give rise to potential nonlinearities in its response to temperature changes. So far, we are lacking a comprehensive stability analysis of the Antarctic Ice Sheet for different amounts of global warming. Here we show that the Antarctic Ice Sheet exhibits a multitude of temperature thresholds beyond which ice loss is irreversible. Consistent with palaeodata(2)we find, using the Parallel Ice Sheet Model(3-5), that at global warming levels around 2 degrees Celsius above pre-industrial levels, West Antarctica is committed to long-term partial collapse owing to the marine ice-sheet instability. Between 6 and 9 degrees of warming above pre-industrial levels, the loss of more than 70 per cent of the present-day ice volume is triggered, mainly caused by the surface elevation feedback. At more than 10 degrees of warming above pre-industrial levels, Antarctica is committed to become virtually ice-free. The ice sheet's temperature sensitivity is 1.3 metres of sea-level equivalent per degree of warming up to 2 degrees above pre-industrial levels, almost doubling to 2.4 metres per degree of warming between 2 and 6 degrees and increasing to about 10 metres per degree of warming between 6 and 9 degrees. Each of these thresholds gives rise to hysteresis behaviour: that is, the currently observed ice-sheet configuration is not regained even if temperatures are reversed to present-day levels. In particular, the West Antarctic Ice Sheet does not regrow to its modern extent until temperatures are at least one degree Celsius lower than pre-industrial levels. Our results show that if the Paris Agreement is not met, Antarctica's long-term sea-level contribution will dramatically increase and exceed that of all other sources.
Modelling shows that the Antarctic Ice Sheet exhibits multiple temperature thresholds beyond which ice loss would become irreversible, and once melted, the ice sheet can regain its previous mass only if the climate cools well below pre-industrial temperatures.}, language = {en} } @article{SchlemmFeldmannWinkelmannetal.2022, author = {Schlemm, Tanja and Feldmann, Johannes and Winkelmann, Ricarda and Levermann, Anders}, title = {Stabilizing effect of melange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {16}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-16-1979-2022}, pages = {1979 -- 1996}, year = {2022}, abstract = {Owing to global warming and particularly high regional ocean warming, both Thwaites and Pine Island Glaciers in the Amundsen region of the Antarctic Ice Sheet could lose their buttressing ice shelves over time. We analyse the possible consequences using the parallel ice sheet model (PISM), applying a simple cliff-calving parameterization and an ice melange-buttressing model. We find that the instantaneous loss of ice-shelf buttressing, due to enforced ice-shelf melting, initiates grounding-line retreat and triggers marine ice sheet instability (MISI). As a consequence, the grounding line progresses into the interior of the West Antarctic Ice Sheet and leads to a sea level contribution of 0.6 m within 100 a. By subjecting the exposed ice cliffs to cliff calving using our simplified parameterization, we also analyse marine ice cliff instability (MICI). In our simulations it can double or even triple the sea level contribution depending on the only loosely constrained parameter that determines the maximum cliff-calving rate. The speed of MICI depends on this upper bound of the calving rate, which is given by the ice melange buttressing the glacier. However, stabilization of MICI may occur for geometric reasons. Because the embayment geometry changes as MICI advances into the interior of the ice sheet, the upper bound on calving rates is reduced and the progress of MICI is slowed down. Although we cannot claim that our simulations bear relevant quantitative estimates of the effect of ice-melange buttressing on MICI, the mechanism has the potential to stop the instability. Further research is needed to evaluate its role for the past and future evolution of the Antarctic Ice Sheet.}, language = {en} } @article{FeldmannReeseWinkelmannetal.2022, author = {Feldmann, Johannes and Reese, Ronja and Winkelmann, Ricarda and Levermann, Anders}, title = {Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {16}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-16-1927-2022}, pages = {1927 -- 1940}, year = {2022}, abstract = {Basal ice-shelf melting is the key driver of Antarctica's increasing sea-level contribution. In diminishing the buttressing force of the ice shelves that fringe the ice sheet, the melting increases the ice discharge into the ocean. Here we contrast the influence of basal melting in two different ice-shelf regions on the time-dependent response of an isothermal, inherently buttressed ice-sheet-shelf system. In the idealized numerical simulations, the basal-melt perturbations are applied close to the grounding line in the ice-shelf's (1) ice-stream region, where the ice shelf is fed by the fastest ice masses that stream through the upstream bed trough and (2) shear margins, where the ice flow is slower. The results show that melting below one or both of the shear margins can cause a decadal to centennial increase in ice discharge that is more than twice as large compared to a similar perturbation in the ice-stream region. We attribute this to the fact that melt-induced ice-shelf thinning in the central grounding-line region is attenuated very effectively by the fast flow of the central ice stream. In contrast, the much slower ice dynamics in the lateral shear margins of the ice shelf facilitate sustained ice-shelf thinning and thereby foster buttressing reduction. Regardless of the melt location, a higher melt concentration toward the grounding line generally goes along with a stronger response. Our results highlight the vulnerability of outlet glaciers to basal melting in stagnant, buttressing-relevant ice-shelf regions, a mechanism that may gain importance under future global warming.}, language = {en} } @article{WunderlingWilleitDongesetal.2020, author = {Wunderling, Nico and Willeit, Matteo and Donges, Jonathan and Winkelmann, Ricarda}, title = {Global warming due to loss of large ice masses and Arctic summer sea ice}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-020-18934-3}, pages = {14}, year = {2020}, abstract = {Several large-scale cryosphere elements such as the Arctic summer sea ice, the mountain glaciers, the Greenland and West Antarctic Ice Sheet have changed substantially during the last century due to anthropogenic global warming. However, the impacts of their possible future disintegration on global mean temperature (GMT) and climate feedbacks have not yet been comprehensively evaluated. Here, we quantify this response using an Earth system model of intermediate complexity. Overall, we find a median additional global warming of 0.43 degrees C (interquartile range: 0.39-0.46 degrees C) at a CO2 concentration of 400 ppm. Most of this response (55\%) is caused by albedo changes, but lapse rate together with water vapour (30\%) and cloud feedbacks (15\%) also contribute significantly. While a decay of the ice sheets would occur on centennial to millennial time scales, the Arctic might become ice-free during summer within the 21st century. Our findings imply an additional increase of the GMT on intermediate to long time scales. The disintegration of cryosphere elements such as the Arctic summer sea ice, mountain glaciers, Greenland and West Antarctica is associated with temperature and radiative feedbacks. In this work, the authors quantify these feedbacks and find an additional global warming of 0.43 degrees C.}, language = {en} } @article{KloseWunderlingWinkelmannetal.2021, author = {Klose, Ann Kristin and Wunderling, Nico and Winkelmann, Ricarda and Donges, Jonathan}, title = {What do we mean, 'tipping cascade'?}, series = {Environmental research letters : ERL}, volume = {16}, journal = {Environmental research letters : ERL}, number = {12}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac3955}, pages = {11}, year = {2021}, abstract = {Based on suggested interactions of potential tipping elements in the Earth's climate and in ecological systems, tipping cascades as possible dynamics are increasingly discussed and studied. The activation of such tipping cascades would impose a considerable risk for human societies and biosphere integrity. However, there are ambiguities in the description of tipping cascades within the literature so far. Here we illustrate how different patterns of multiple tipping dynamics emerge from a very simple coupling of two previously studied idealized tipping elements. In particular, we distinguish between a two phase cascade, a domino cascade and a joint cascade. A mitigation of an unfolding two phase cascade may be possible and common early warning indicators are sensitive to upcoming critical transitions to a certain degree. In contrast, a domino cascade may hardly be stopped once initiated and critical slowing down-based indicators fail to indicate tipping of the following element. These different potentials for intervention and anticipation across the distinct patterns of multiple tipping dynamics should be seen as a call to be more precise in future analyses of cascading dynamics arising from tipping element interactions in the Earth system.}, language = {en} }