@article{LeCorreDiekmannPenaCamargoetal.2022, author = {Le Corre, Vincent M. and Diekmann, Jonas and Pe{\~n}a-Camargo, Francisco and Thiesbrummel, Jarla and Tokmoldin, Nurlan and Gutierrez-Partida, Emilio and Peters, Karol Pawel and Perdig{\´o}n-Toro, Lorena and Futscher, Moritz H. and Lang, Felix and Warby, Jonathan and Snaith, Henry J. and Neher, Dieter and Stolterfoht, Martin}, title = {Quantification of efficiency losses due to mobile ions in Perovskite solar cells via fast hysteresis measurements}, series = {Solar RRL}, volume = {6}, journal = {Solar RRL}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202100772}, pages = {10}, year = {2022}, abstract = {Perovskite semiconductors differ from most inorganic and organic semiconductors due to the presence of mobile ions in the material. Although the phenomenon is intensively investigated, important questions such as the exact impact of the mobile ions on the steady-state power conversion efficiency (PCE) and stability remain. Herein, a simple method is proposed to estimate the efficiency loss due to mobile ions via "fast-hysteresis" measurements by preventing the perturbation of mobile ions out of their equilibrium position at fast scan speeds (approximate to 1000 V s(-1)). The "ion-free" PCE is between 1\% and 3\% higher than the steady-state PCE, demonstrating the importance of ion-induced losses, even in cells with low levels of hysteresis at typical scan speeds (approximate to 100mv s(-1)). The hysteresis over many orders of magnitude in scan speed provides important information on the effective ion diffusion constant from the peak hysteresis position. The fast-hysteresis measurements are corroborated by transient charge extraction and capacitance measurements and numerical simulations, which confirm the experimental findings and provide important insights into the charge carrier dynamics. The proposed method to quantify PCE losses due to field screening induced by mobile ions clarifies several important experimental observations and opens up a large range of future experiments.}, language = {en} } @article{ZeiskeSandbergZarrabietal.2022, author = {Zeiske, Stefan and Sandberg, Oskar J. and Zarrabi, Nasim and Wolff, Christian Michael and Raoufi, Meysam and Pe{\~n}a-Camargo, Francisco and Gutierrez-Partida, Emilio and Meredith, Paul and Stolterfoht, Martin and Armin, Ardalan}, title = {Static disorder in lead halide perovskites}, series = {The journal of physical chemistry letters}, volume = {13}, journal = {The journal of physical chemistry letters}, number = {31}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.2c01652}, pages = {7280 -- 7285}, year = {2022}, abstract = {In crystalline and amorphous semiconductors, the temperature-dependent Urbach energy can be determined from the inverse slope of the logarithm of the absorption spectrum and reflects the static and dynamic energetic disorder. Using recent advances in the sensitivity of photocurrent spectroscopy methods, we elucidate the temperature-dependent Urbach energy in lead halide perovskites containing different numbers of cation components. We find Urbach energies at room temperature to be 13.0 +/- 1.0, 13.2 +/- 1.0, and 13.5 +/- 1.0 meV for single, double, and triple cation perovskite. Static, temperature-independent contributions to the Urbach energy are found to be as low as 5.1 ?+/- 0.5, 4.7 +/- 0.3, and 3.3 +/- 0.9 meV for the same systems. Our results suggest that, at a low temperature, the dominant static disorder in perovskites is derived from zero-point phonon energy rather than structural disorder. This is unusual for solution-processed semiconductors but broadens the potential application of perovskites further to quantum electronics and devices.}, language = {en} } @article{HerzogReppertPudelletal.2022, author = {Herzog, Marc and Reppert, Alexander von and Pudell, Jan-Etienne and Henkel, Carsten and Kronseder, Matthias and Back, Christian H. and Maznev, Alexei A. and Bargheer, Matias}, title = {Phonon-dominated energy transport in purely metallic heterostructures}, series = {Advanced functional materials}, volume = {32}, journal = {Advanced functional materials}, number = {41}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.202206179}, pages = {8}, year = {2022}, abstract = {Ultrafast X-ray diffraction is used to quantify the transport of energy in laser-excited nanoscale gold-nickel (Au-Ni) bilayers. Electron transport and efficient electron-phonon coupling in Ni convert the laser-deposited energy in the conduction electrons within a few picoseconds into a strong non-equilibrium between hot Ni and cold Au phonons at the bilayer interface. Modeling of the subsequent equilibration dynamics within various two-temperature models confirms that for ultrathin Au films, the thermal transport is dominated by phonons instead of conduction electrons because of the weak electron-phonon coupling in Au.}, language = {en} } @article{WarbyZuZeiskeetal.2022, author = {Warby, Jonathan and Zu, Fengshuo and Zeiske, Stefan and Gutierrez-Partida, Emilio and Frohloff, Lennart and Kahmann, Simon and Frohna, Kyle and Mosconi, Edoardo and Radicchi, Eros and Lang, Felix and Shah, Sahil and Pena-Camargo, Francisco and Hempel, Hannes and Unold, Thomas and Koch, Norbert and Armin, Ardalan and De Angelis, Filippo and Stranks, Samuel D. and Neher, Dieter and Stolterfoht, Martin}, title = {Understanding performance limiting interfacial recombination in pin Perovskite solar cells}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202103567}, pages = {10}, year = {2022}, abstract = {Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto-electronic properties and their successful integration into multijunction cells. However, the performance of single- and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C-60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first-principle numerical simulations. It is found that the most significant contribution to the total C-60-induced recombination loss occurs within the first monolayer of C-60, rather than in the bulk of C-60 or at the perovskite surface. The experiments show that the C-60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C-60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells.}, language = {en} } @article{SchwopePiresKurpasetal.2022, author = {Schwope, Axel and Pires, Adriana M. and Kurpas, Jan and Doroshenko, Victor and Suleimanov, Valery F. and Freyberg, Michael and Becker, Werner and Dennerl, Konrad and Haberl, Frank and Lamer, Georg and Maitra, Chandreyee and Potekhin, Alexander Y. and Ramos-Ceja, Miriam E. and Santangelo, Andrea and Traulsen, Iris and Werner, Klaus}, title = {Phase-resolved X-ray spectroscopy of PSR B0656+14 with SRG/eROSITA and XMM-Newton}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {661}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202141105}, pages = {21}, year = {2022}, abstract = {We present a detailed spectroscopic and timing analysis of X-ray observations of the bright pulsar PSR B0656+14. The observations were obtained simultaneously with eROSITA and XMM-Newton during the calibration and performance verification phase of the Spektrum-Roentgen-Gamma mission (SRG). The analysis of the 100 ks deep observation of eROSITA is supported by archival observations of the source, including XMM-Newton, NuSTAR, and NICER. Using XMM-Newton and NICER, we first established an X-ray ephemeris for the time interval 2015 to 2020, which connects all X-ray observations in this period without cycle count alias and phase shifts. The mean eROSITA spectrum clearly reveals an absorption feature originating from the star at 570 eV with a Gaussian sigma of about 70 eV that was tentatively identified in a previous long XMM-Newton observation. A second previously discussed absorption feature occurs at 260-265 eV and is described here as an absorption edge. It could be of atmospheric or of instrumental origin. These absorption features are superposed on various emission components that are phenomenologically described here as the sum of hot (120 eV) and cold (65 eV) blackbody components, both of photospheric origin, and a power law with photon index Gamma = 2 from the magnetosphere. We created energy-dependent light curves and phase-resolved spectra with a high signal-to-noise ratio. The phase-resolved spectroscopy reveals that the Gaussian absorption line at 570 eV is clearly present throughout similar to 60\% of the spin cycle, but it is otherwise undetected. Likewise, its parameters were found to be dependent on phase. The visibility of the line strength coincides in phase with the maximum flux of the hot blackbody. If the line originates from the stellar surface, it nevertheless likely originates from a different location than the hot polar cap. We also present three families of model atmospheres: a magnetized atmosphere, a condensed surface, and a mixed model. They were applied to the mean observed spectrum, whose continuum fit the observed data well. The atmosphere model, however, predicts distances that are too short. For the mixed model, the Gaussian absorption may be interpreted as proton cyclotron absorption in a field as high as 10(14) G, which is significantly higher than the field derived from the moderate observed spin-down.}, language = {en} } @article{YeZhangWarbyetal.2022, author = {Ye, Fangyuan and Zhang, Shuo and Warby, Jonathan and Wu, Jiawei and Gutierrez-Partida, Emilio and Lang, Felix and Shah, Sahil and Saglamkaya, Elifnaz and Sun, Bowen and Zu, Fengshuo and Shoai, Safa and Wang, Haifeng and Stiller, Burkhard and Neher, Dieter and Zhu, Wei-Hong and Stolterfoht, Martin and Wu, Yongzhen}, title = {Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-34203-x}, pages = {12}, year = {2022}, abstract = {Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23\% with a low non-radiative voltage loss of 110 mV, and retain >97\% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.}, language = {en} } @article{KunertPangTewsetal.2022, author = {Kunert, Nina and Pang, Peter T. H. and Tews, Ingo and Coughlin, Michael W. and Dietrich, Tim}, title = {Quantifying modeling uncertainties when combining multiple gravitational-wave detections from binary neutron star sources}, series = {Physical review D}, volume = {105}, journal = {Physical review D}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0010}, doi = {10.1103/PhysRevD.105.L061301}, pages = {7}, year = {2022}, abstract = {With the increasing sensitivity of gravitational-wave detectors, we expect to observe multiple binary neutron-star systems through gravitational waves in the near future. The combined analysis of these gravitational-wave signals offers the possibility to constrain the neutron-star radius and the equation of state of dense nuclear matter with unprecedented accuracy. However, it is crucial to ensure that uncertainties inherent in the gravitational-wave models will not lead to systematic biases when information from multiple detections is combined. To quantify waveform systematics, we perform an extensive simulation campaign of binary neutron-star sources and analyze them with a set of four different waveform models. For our analysis with 38 simulations, we find that statistical uncertainties in the neutron-star radius decrease to 1250 m (2\% at 90\% credible interval) but that systematic differences between currently employed waveform models can be twice as large. Hence, it will be essential to ensure that systematic biases will not become dominant in inferences of the neutron-star equation of state when capitalizing on future developments.}, language = {en} } @article{SchlemmFeldmannWinkelmannetal.2022, author = {Schlemm, Tanja and Feldmann, Johannes and Winkelmann, Ricarda and Levermann, Anders}, title = {Stabilizing effect of melange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {16}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-16-1979-2022}, pages = {1979 -- 1996}, year = {2022}, abstract = {Owing to global warming and particularly high regional ocean warming, both Thwaites and Pine Island Glaciers in the Amundsen region of the Antarctic Ice Sheet could lose their buttressing ice shelves over time. We analyse the possible consequences using the parallel ice sheet model (PISM), applying a simple cliff-calving parameterization and an ice melange-buttressing model. We find that the instantaneous loss of ice-shelf buttressing, due to enforced ice-shelf melting, initiates grounding-line retreat and triggers marine ice sheet instability (MISI). As a consequence, the grounding line progresses into the interior of the West Antarctic Ice Sheet and leads to a sea level contribution of 0.6 m within 100 a. By subjecting the exposed ice cliffs to cliff calving using our simplified parameterization, we also analyse marine ice cliff instability (MICI). In our simulations it can double or even triple the sea level contribution depending on the only loosely constrained parameter that determines the maximum cliff-calving rate. The speed of MICI depends on this upper bound of the calving rate, which is given by the ice melange buttressing the glacier. However, stabilization of MICI may occur for geometric reasons. Because the embayment geometry changes as MICI advances into the interior of the ice sheet, the upper bound on calving rates is reduced and the progress of MICI is slowed down. Although we cannot claim that our simulations bear relevant quantitative estimates of the effect of ice-melange buttressing on MICI, the mechanism has the potential to stop the instability. Further research is needed to evaluate its role for the past and future evolution of the Antarctic Ice Sheet.}, language = {en} } @article{FeldmannReeseWinkelmannetal.2022, author = {Feldmann, Johannes and Reese, Ronja and Winkelmann, Ricarda and Levermann, Anders}, title = {Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {16}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-16-1927-2022}, pages = {1927 -- 1940}, year = {2022}, abstract = {Basal ice-shelf melting is the key driver of Antarctica's increasing sea-level contribution. In diminishing the buttressing force of the ice shelves that fringe the ice sheet, the melting increases the ice discharge into the ocean. Here we contrast the influence of basal melting in two different ice-shelf regions on the time-dependent response of an isothermal, inherently buttressed ice-sheet-shelf system. In the idealized numerical simulations, the basal-melt perturbations are applied close to the grounding line in the ice-shelf's (1) ice-stream region, where the ice shelf is fed by the fastest ice masses that stream through the upstream bed trough and (2) shear margins, where the ice flow is slower. The results show that melting below one or both of the shear margins can cause a decadal to centennial increase in ice discharge that is more than twice as large compared to a similar perturbation in the ice-stream region. We attribute this to the fact that melt-induced ice-shelf thinning in the central grounding-line region is attenuated very effectively by the fast flow of the central ice stream. In contrast, the much slower ice dynamics in the lateral shear margins of the ice shelf facilitate sustained ice-shelf thinning and thereby foster buttressing reduction. Regardless of the melt location, a higher melt concentration toward the grounding line generally goes along with a stronger response. Our results highlight the vulnerability of outlet glaciers to basal melting in stagnant, buttressing-relevant ice-shelf regions, a mechanism that may gain importance under future global warming.}, language = {en} } @article{Nowak2023, author = {Nowak, Anna}, title = {Untersuchung der Qualit{\"a}t von Selbstreflexionstexten zum Physikunterricht}, series = {Studien zum Physik- und Chemielernen}, volume = {371}, journal = {Studien zum Physik- und Chemielernen}, publisher = {Logos}, address = {Berlin}, isbn = {978-3-8325-5739-3}, issn = {1614-8967}, doi = {10.30819/5739}, pages = {419}, year = {2023}, abstract = {Reflexion wird als notwendig f{\"u}r die professionelle Entwicklung von Lehrer:innen und die Verbesserung von Unterricht angesehen, wenngleich aus theoretischer Sicht große Uneinigkeit {\"u}ber den Begriff selbst, den Reflexionsprozess und die damit verbundenen Kompetenzen herrscht. Ziel dieser Arbeit war die Entwicklung, Untersuchung und Weiterentwicklung eines Reflexionsmodells mit einem theoriebasierten, klaren Konzept des Reflexionsprozesses und einem passenden Anspruch an die Reflexionsleistung der Reflektierenden. Grundlage f{\"u}r die empirische Untersuchung waren N = 132 Selbstreflexionstexte von N = 22 Studierenden aus dem Praxissemester Physik. Zur Codierung der Texte wurden vier mittels qualitativer Inhaltsanalyse entwickelte Manuale angewandt. Mit quantitativen Methoden wurden Zusammenh{\"a}nge zwischen strukturellen Elementen, Begr{\"u}ndungen, Inhalten und dem Qualit{\"a}tsmerkmal Reflexionstiefe {\"u}berpr{\"u}ft. Es zeigte sich ein "{\"U}berhang an Negativit{\"a}t": negative Bewertungen, negative Reflexionsausl{\"o}ser und negative Inhalte h{\"a}ngen signifikant positiv mit gr{\"o}ßerer Reflexionstiefe zusammen. Auf Grundlage der empirischen Ergebnisse wurde das Reflexionsmodell mit externaler und internaler Zielorientierung (REIZ) entwickelt. Zudem wurde darauf aufbauend eine Definition f{\"u}r Reflexionstiefe in vier Argumentationsclustern formuliert. F{\"u}r die Lehrkr{\"a}ftebildung wird der in REIZ dargestellte differenzierte Ansatz der Zielorientierung von Reflexion empfohlen.}, language = {de} } @article{ThonigLilliestam2023, author = {Thonig, Richard and Lilliestam, Johan}, title = {Concentrating solar technology policy should encourage high temperatures and modularity to enable spillovers}, series = {AIP conference proceedings}, journal = {AIP conference proceedings}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1551-7616}, doi = {10.1063/5.0149423}, pages = {1 -- 11}, year = {2023}, abstract = {Thermal energy from concentrating solar thermal technologies (CST) may contribute to decarbonizing applications from heating and cooling, desalination, and power generation to commodities such as aluminium, hydrogen, ammonia or sustainable aviation fuels (SAF). So far, successful commercial-scale CST projects are restricted to solar industrial process heat (SIPH) and concentrating solar power (CSP) generation and, at least for the latter, depend on support from public policies that have been stagnating for years. As they are technologically similar, spillovers between SIPH or CSP and other emerging CST could accelerate commercialization across use cases while maximizing the impact of scarce support. Here, we review the technical potential for cross-fertilization between different CST applications and the ability of the current policy regime to enable this potential. Using working temperature as the key variable, we identify different clusters of current and emerging CST technologies. Low-temperature CST (<400℃) applications for heating, cooling and desalination already profit from the significant progress made in line-focussing CSP over the last 15 years. A newly emerging cluster of high temperature CST (>600℃) for solar chemistry and high-grade process heat has significant leverage for spillovers with point-focussing solar tower third-generation CSP currently under development. For these spillovers to happen, however, CSP policy designs would need to prioritize innovation for high working temperature and encourage modular plant design, by adequately remunerating hybridized plants with heat and power in and outputs that include energy sources beyond CST solar fields. This would enable synergies across applications and scales by incentivizing compatibility of modular CST components in multiple sectors and use cases.}, language = {en} } @article{PranavHultzschMusiienkoetal.2023, author = {Pranav, Manasi and Hultzsch, Thomas and Musiienko, Artem and Sun, Bowen and Shukla, Atul and Jaiser, Frank and Shoaee, Safa and Neher, Dieter}, title = {Anticorrelated photoluminescence and free charge generation proves field-assisted exciton dissociation in low-offset PM6:Y5 organic solar cells}, series = {APL materials : high impact open access journal in functional materials science}, volume = {11}, journal = {APL materials : high impact open access journal in functional materials science}, number = {6}, publisher = {AIP Publishing}, address = {Melville}, issn = {2166-532X}, doi = {10.1063/5.0151580}, pages = {8}, year = {2023}, abstract = {Understanding the origin of inefficient photocurrent generation in organic solar cells with low energy offset remains key to realizing high-performance donor-acceptor systems. Here, we probe the origin of field-dependent free-charge generation and photoluminescence in wnon-fullereneacceptor (NFA)-based organic solar cells using the polymer PM6 and the NFA Y5-a non-halogenated sibling to Y6, with a smaller energetic offset to PM6. By performing time-delayed collection field (TDCF) measurements on a variety of samples with different electron transport layers and active layer thickness, we show that the fill factor and photocurrent are limited by field-dependent free charge generation in the bulk of the blend. We also introduce a new method of TDCF called m-TDCF to prove the absence of artifacts from non-geminate recombination of photogenerated and dark charge carriers near the electrodes. We then correlate free charge generation with steady-state photoluminescence intensity and find perfect anticorrelation between these two properties. Through this, we conclude that photocurrent generation in this low-offset system is entirely controlled by the field-dependent dissociation of local excitons into charge-transfer states. (c) 2023 Author(s).}, language = {en} } @article{HovhannisyanNematiHenkeletal.2023, author = {Hovhannisyan, Karen V. and Nemati, Somayyeh and Henkel, Carsten and Anders, Janet}, title = {Long-time equilibration can determine transient thermality}, series = {PRX Quantum}, volume = {4}, journal = {PRX Quantum}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {2691-3399}, doi = {10.1103/PRXQuantum.4.030321}, pages = {23}, year = {2023}, abstract = {When two initially thermal many-body systems start to interact strongly, their transient states quickly become non-Gibbsian, even if the systems eventually equilibrate. To see beyond this apparent lack of structure during the transient regime, we use a refined notion of thermality, which we call g-local. A system is g-locally thermal if the states of all its small subsystems are marginals of global thermal states. We numerically demonstrate for two harmonic lattices that whenever the total system equilibrates in the long run, each lattice remains g-locally thermal at all times, including the transient regime. This is true even when the lattices have long-range interactions within them. In all cases, we find that the equilibrium is described by the generalized Gibbs ensemble, with three-dimensional lattices requiring special treatment due to their extended set of conserved charges. We compare our findings with the well-known two-temperature model. While its standard form is not valid beyond weak coupling, we show that at strong coupling it can be partially salvaged by adopting the concept of a g-local temperature.}, language = {en} } @article{JaiserAkperovTimazhevetal.2023, author = {Jaiser, Ralf and Akperov, Mirseid and Timazhev, A. and Romanowsky, Erik and Handorf, D{\"o}rthe and Mokhov, I. I.}, title = {Linkages between arctic and mid-latitude weather and climate}, series = {Meteorologische Zeitschrift}, volume = {32}, journal = {Meteorologische Zeitschrift}, number = {3}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0941-2948}, doi = {10.1127/metz/2023/1154}, pages = {173 -- 194}, year = {2023}, abstract = {The study addresses the question, if observed changes in terms of Arctic-midlatitude linkages during winter are driven by Arctic Sea ice decline alone or if the increase of global sea surface temperatures plays an additional role. We compare atmosphere-only model experiments with ECHAM6 to ERA-Interim Reanalysis data. The model sensitivity experiment is implemented as a set of four combinations of sea ice and sea surface temperature boundary conditions. Atmospheric circulation regimes are determined and evaluated in terms of their cyclone and blocking characteristics and changes in frequency during winter. As a prerequisite, ECHAM6 reproduces general features of circulation regimes very well. Tropospheric changes induced by the change of boundary conditions are revealed and further impacts on the large-scale circulation up into the stratosphere are investigated. In early winter, the observed increase of atmospheric blocking in the region between Scandinavia and the Urals are primarily related to the changes in sea surface temperatures. During late winter, we f nd a weakened polar stratospheric vortex in the reanalysis that further impacts the troposphere. In the model sensitivity study a climatologically weakened polar vortex occurs only if sea ice is reduced and sea surface temperatures are increased together. This response is delayed compared to the reanalysis. The tropospheric response during late winter is inconclusive in the model, which is potentially related to the weak and delayed response in the stratosphere. The model experiments do not reproduce the connection between early and late winter as interpreted from the reanalysis. Potentially explaining this mismatch, we identify a discrepancy of ECHAM6 to reproduce the weakening of the stratospheric polar vortex through blocking induced upward propagation of planetary waves.}, language = {en} } @article{MatternPudellDumesniletal.2023, author = {Mattern, Maximilian and Pudell, Jan-Etienne and Dumesnil, Karine and Reppert, Alexander von and Bargheer, Matias}, title = {Towards shaping picosecond strain pulses via magnetostrictive transducers}, series = {Photoacoustics}, volume = {30}, journal = {Photoacoustics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-5979}, doi = {10.1016/j.pacs.2023.100463}, pages = {7}, year = {2023}, abstract = {Using time-resolved x-ray diffraction, we demonstrate the manipulation of the picosecond strain response of a metallic heterostructure consisting of a dysprosium (Dy) transducer and a niobium (Nb) detection layer by an external magnetic field. We utilize the first-order ferromagnetic-antiferromagnetic phase transition of the Dy layer, which provides an additional large contractive stress upon laser excitation compared to its zerofield response. This enhances the laser-induced contraction of the transducer and changes the shape of the picosecond strain pulses driven in Dy and detected within the buried Nb layer. Based on our experiment with rare-earth metals we discuss required properties for functional transducers, which may allow for novel field-control of the emitted picosecond strain pulses.}, language = {en} } @article{DiBelloHartmannMajumdaretal.2023, author = {Di Bello, Costantino and Hartmann, Alexander K. and Majumdar, Satya N. and Mori, Francesco and Rosso, Alberto and Schehr, Gregory}, title = {Current fluctuations in stochastically resetting particle systems}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {108}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.108.014112}, pages = {18}, year = {2023}, abstract = {We consider a system of noninteracting particles on a line with initial positions distributed uniformly with density ? on the negative half-line. We consider two different models: (i) Each particle performs independent Brownian motion with stochastic resetting to its initial position with rate r and (ii) each particle performs run -and-tumble motion, and with rate r its position gets reset to its initial value and simultaneously its velocity gets randomized. We study the effects of resetting on the distribution P(Q, t) of the integrated particle current Q up to time t through the origin (from left to right). We study both the annealed and the quenched current distributions and in both cases, we find that resetting induces a stationary limiting distribution of the current at long times. However, we show that the approach to the stationary state of the current distribution in the annealed and the quenched cases are drastically different for both models. In the annealed case, the whole distribution P-an(Q, t) approaches its stationary limit uniformly for all Q. In contrast, the quenched distribution P-qu(Q, t) attains its stationary form for Q < Q(crit)(t), while it remains time dependent for Q > Q(crit)(t). We show that Q(crit)(t) increases linearly with t for large t. On the scale where Q <; Q(crit)(t), we show that P-qu(Q, t) has an unusual large deviation form with a rate function that has a third-order phase transition at the critical point. We have computed the associated rate functions analytically for both models. Using an importance sampling method that allows to probe probabilities as tiny as 10-14000, we were able to compute numerically this nonanalytic rate function for the resetting Brownian dynamics and found excellent agreement with our analytical prediction.}, language = {en} } @article{MeyerPohlPetrovetal.2023, author = {Meyer, Dominique M.-A. and Pohl, Martin and Petrov, Miroslav and Egberts, Kathrin}, title = {Mixing of materials in magnetized core-collapse supernova remnants}, series = {Monthly notices of the Royal Astronomical Society}, volume = {521}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stad906}, pages = {5354 -- 5371}, year = {2023}, abstract = {Core-collapse supernova remnants are structures of the interstellar medium (ISM) left behind the explosive death of most massive stars ( ?40 M-?). Since they result in the expansion of the supernova shock wave into the gaseous environment shaped by the star's wind history, their morphology constitutes an insight into the past evolution of their progenitor star. Particularly, fast-mo ving massiv e stars can produce asymmetric core-collapse superno va remnants. We inv estigate the mixing of materials in core-collapse supernova remnants generated by a moving massive 35 M-? star, in a magnetized ISM. Stellar rotation and the wind magnetic field are time-dependently included into the models which follow the entire evolution of the stellar surroundings from the zero-age main-sequence to 80 kyr after the supernova explosion. It is found that very little main-sequence material is present in remnants from moving stars, that the Wolf-Rayet wind mixes very efficiently within the 10 kyr after the explosion, while the red supergiant material is still unmixed by 30 per cent within 50 kyr after the supernova. Our results indicate that the faster the stellar motion, the more complex the internal organization of the supernova remnant and the more ef fecti ve the mixing of ejecta therein. In contrast, the mixing of stellar wind material is only weakly affected by progenitor motion, if at all.}, language = {en} }