@article{GostkowskaLeknerWallacherGrimmetal.2020, author = {Gostkowska-Lekner, Natalia Katarzyna and Wallacher, Dirk and Grimm, Nico and Habicht, Klaus and Hofmann, Tommy}, title = {A novel electrochemical anodization cell for the synthesis of mesoporous silicon}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {91}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {10}, publisher = {American Institute of Physics}, address = {Melville, NY}, issn = {0034-6748}, doi = {10.1063/5.0008536}, pages = {6}, year = {2020}, abstract = {A novel design of an electrochemical anodization cell dedicated to the synthesis of mesoporous, single-crystalline silicon is presented. First and foremost, the design principle follows user safety since electrochemical etching of silicon requires highly hazardous electrolytes based on hydrofluoric (HF) acid. The novel cell design allows for safe electrolyte handling prior, during, and post-etching. A peristaltic pump with HF-resistant fluoroelastomer tubing transfers electrolytes between dedicated reservoirs and the anodization cell. Due to the flexibility of the cell operation, different processing conditions can be realized providing a large parameter range for the attainable sample thickness, its porosity, and the mean pore size. Rapid etching on the order of several minutes to synthesize micrometer-thick porous silicon epilayers on bulk silicon is possible as well as long-time etching with continuous, controlled electrolyte flow for several days to prepare up to 1000 mu m thick self-supporting porous silicon membranes. A highly adaptable, LabVIEW((TM))-based control software allows for user-defined etching profiles.}, language = {en} } @article{JelkenHenkelSanter2020, author = {Jelken, Joachim and Henkel, Carsten and Santer, Svetlana}, title = {Polarization controlled fine structure of diffraction spots from an optically induced grating}, series = {Applied physics letters}, volume = {116}, journal = {Applied physics letters}, number = {5}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.5140067}, pages = {4}, year = {2020}, abstract = {We report on the remote control of the fine structure of a diffraction spot from optically induced dual gratings within a photosensitive polymer film. The material contains azobenzene in the polymer side chains and develops a surface relief under two-beam holographic irradiation. The diffraction of a polarized probe beam is sensitive to the orientation of the azobenzene groups forming a permanently stored birefringence grating within the film. We demonstrate that the fine structure of the probe diffraction spot switches from a Gaussian to a hollow or a hollow to a "Saturn"-like structure by a change in polarization. This makes it potentially useful in photonic devices because the beam shape can be easily inverted by an external stimulus.}, language = {en} } @article{SpelzhausenIonianGerhardetal.2020, author = {Spelzhausen, Simon and Ionian, Mario-Rafael and Gerhard, Reimund and Plath, Ronald}, title = {Time-resolved measurement of space-charge evolution in dielectric films or slabs by means of repeatable laser-induced pressure pulses}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {91}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {5}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/1.5142443}, pages = {7}, year = {2020}, abstract = {A new variant of the Laser-Induced Pressure-Pulse (LIPP) method for repeatable, time-resolved space-charge profile measurements is proposed and demonstrated. Automated deposition of a fresh laser-target film before each illumination leads to good repeatability of the LIPP and thus allows for the detection of time-resolved changes in the space-charge distribution over many hours. We describe and discuss the experimental setup and its features, compare the repeatability of the LIPP measurements on the same sample without and with re-preparation of the test cell, and present the time-resolved evolution of the space-charge profile in a two-layer arrangement of a silicone-grease and a silicone-elastomer film as an example. Finally, the temperature dependence of the space-charge evolution during polarization under high voltage and during depolarization in short circuit is shown. Possible uses and future developments of the new LIPP approach are also discussed.}, language = {en} } @phdthesis{Graetz2020, author = {Gr{\"a}tz, Fabio M.}, title = {Nonlinear diffusion in granular gases and dense planetary rings}, school = {Universit{\"a}t Potsdam}, pages = {101}, year = {2020}, abstract = {Small moonlets or moons embedded in dense planetary rings create S-shaped density modulations called propellers if their masses are smaller than a certain threshold, alternatively they create a circumferential gap in the disk if the embedded body's mass exceeds this threshold (Spahn and Sremčević, 2000). The gravitational perturber scatters the ring particles, depletes the disk's density, and, thus, clears a gap, whereas counteracting viscous diffusion of the ring material has the tendency to close the created gap, thereby forming a propeller. Propeller objects were predicted by Spahn and Sremčević (2000) and Sremčević et al. (2002) and were later discovered by the Cassini space probe (Tiscareno et al., 2006, Sremčević et al., 2007, Tiscareno et al., 2008, and Tiscareno et al., 2010). The ring moons Pan and Daphnis are massive enough to maintain the circumferential Encke and Keeler gaps in Saturn's A ring and were detected by Showalter (1991) and Porco (2005) in Voyager and Cassini images, respectively. In this thesis, a nonlinear axisymmetric diffusion model is developed to describe radial density profiles of circumferential gaps in planetary rings created by embedded moons (Grätz et al., 2018). The model accounts for the gravitational scattering of the ring particles by the embedded moon and for the counteracting viscous diffusion of the ring matter back into the gap. With test particle simulations it is shown that the scattering of the ring particles passing the moon is larger for small impact parameters than estimated by Goldreich and Tremaine (1980). This is especially significant for the modeling of the Keeler gap. The model is applied to the Encke and Keeler gaps with the aim to estimate the shear viscosity of the ring in their vicinities. In addition, the model is used to analyze whether tiny icy moons whose dimensions lie below Cassini's resolution capabilities would be able to cause the poorly understood gap structure of the C ring and the Cassini Division. One of the most intriguing facets of Saturn's rings are the extremely sharp edges of the Encke and Keeler gaps: UVIS-scans of their gap edges show that the optical depth drops from order unity to zero over a range of far less than 100 m, a spatial scale comparable to the ring's vertical extent. This occurs despite the fact that the range over which a moon transfers angular momentum onto the ring material is much larger. Borderies et al. (1982, 1989) have shown that this striking feature is likely related to the local reversal of the usually outward-directed viscous transport of angular momentum in strongly perturbed regions. We have revised the Borderies et al. (1989) model using a granular flow model to define the shear and bulk viscosities, ν and ζ, in order to incorporate the angular momentum flux reversal effect into the axisymmetric diffusion model for circumferential gaps presented in this thesis (Grätz et al., 2019). The sharp Encke and Keeler gap edges are modeled and conclusions regarding the shear and bulk viscosities of the ring are discussed. Finally, we explore the question of whether the radial density profile of the central and outer A ring, recently measured by Tiscareno and Harris (2018) in the highest resolution to date, and in particular, the sharp outer A ring edge can be modeled consistently from the balance of gravitational scattering by several outer moons and the mass and momentum transport. To this aim, the developed model is extended to account for the inward drifts caused by multiple discrete and overlapping resonances with multiple outer satellites and is then used to hydrodynamically simulate the normalized surface mass density profile of the A ring. This section of the thesis is based on studies by Tajeddine et al. (2017a) who recently discussed the common misconception that the 7:6 resonance with Janus alone maintains the outer A ring edge, showing that the combined effort of several resonances with several outer moons is required to confine the A ring as observed by the Cassini spacecraft.}, language = {en} } @article{QiuBenjaminRamanVenkatesanetal.2020, author = {Qiu, Xunlin and Benjamin, Aravindan Joseph and Raman Venkatesan, Thulasinath and Schmidt, Georg C. and Soler, Ricardo Alonso Quintana and Panicker, Pramul Muraleedhara and Gerhard, Reimund and H{\"u}bler, Arved Carl}, title = {Dielectric and electroacoustic assessment of screen-printed piezoelectric polymer layers as flexible transducers}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {27}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {5}, publisher = {Institute of Electrical and Electronics Engineers}, address = {New York, NY}, issn = {1070-9878}, doi = {10.1109/TDEI.2020.008864}, pages = {1683 -- 1690}, year = {2020}, abstract = {Here, piezoelectric transducers consisting of a P(VDF-TrFE) layer with either silver or PEDOT:PSS screen-printed electrodes are studied. The influence of electrodes on the dielectric and electroacoustic properties are studied in dielectric-spectroscopy and ferroelectric-hysteresis measurements. Only when both the bottom and the top electrodes are made of silver, the typical dielectric relaxation of the P(VDF-TrFE) layer is clearly observed. When one or two of the electrodes are of PEDOT:PSS, a Debye-like relaxation is present. Compared with silver electrodes, PEDOT:PSS electrodes allow for moderate self-healing. Consequently, samples with bottom and top PEDOT:PSS electrodes can be poled to saturation, while samples with silver electrodes can hardly be poled to saturation due to destructive electric breakdown. Acoustic transducer measurements show that silver electrodes facilitate higher and broader frequency operation, while PEDOT:PSS electrodes bring slightly lower total harmonic distortion. Overall, the acoustic performance shows no significant deviations between differently electroded samples so that silver electrodes do not offer any advantages for the transducers studied here due to their much higher tendency for destructive electric breakdown.}, language = {en} } @article{WangRychkovNguyenetal.2020, author = {Wang, Jingwen and Rychkov, Dmitry and Nguyen, Quyet Doan and Gerhard, Reimund}, title = {The influence of orthophosphoric-acid surface modification on charge-storage enhancement in polypropylene electrets}, series = {Journal of applied physics}, volume = {128}, journal = {Journal of applied physics}, number = {3}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/5.0013805}, pages = {6}, year = {2020}, abstract = {Bipolar electrets from polypropylene (PP) are essential, e.g., in electret air filters and in cellular-foam ferroelectrets. Therefore, the mechanism of surface-charge stability enhancement on PP electrets via orthophosphoric-acid surface treatment is investigated in detail. It is shown that the significant charge-stability enhancement can be mainly attributed to deeper surface traps originating from deposited chemicals and topographic features on the modified surfaces. Thermally stimulated discharge of chemically treated and non-treated PP films with different surface-charge densities is used to test the limits of the newly formed deep traps in terms of the capacity for hosting surface charges. When the initial surface-charge density is very high, more charges are forced into shallower original traps on the surface or in the bulk of the treated PP samples, reducing the effect of the deeper surface traps brought by the surface modification. The well-known crossover phenomenon (of the surface-charge decay curves) has been observed between modified PP electrets charged to +/- 2kV and to +/- 3kV. Acoustically probed charge distributions in the thickness direction of PP electrets at different stages of thermal discharging indicate that the deep surface trapping sites may have preference for negative charges, resulting in the observed asymmetric charge stability of the modified PP films.}, language = {en} } @article{WangRychkovNguyenetal.2020, author = {Wang, Jingwen and Rychkov, Dmitry and Nguyen, Quyet Doan and Gerhard, Reimund}, title = {Unexpected bipolar space-charge polarization across transcrystalline interfaces in polypropylene electret films}, series = {Journal of applied physics}, volume = {128}, journal = {Journal of applied physics}, number = {13}, publisher = {American Institute of Physics, AIP}, address = {Melville, NY}, issn = {0021-8979}, doi = {10.1063/5.0022071}, pages = {7}, year = {2020}, abstract = {A double-layer transcrystalline polypropylene (PP) film with a flat central interface layer between its two transcrystalline layers is obtained by recrystallization from the melt between two polytetrafluoroethylene (PTFE) surfaces on both sides of the PP film. Its electret properties are studied and compared with those of a single-layer transcrystalline PP film re-crystallized in contact with only one PTFE surface. Within experimental uncertainty, the two types of transcrystalline films exhibit the same thermal properties and crystallinities. After thermal poling, however, two hetero-charge layers of opposite polarity are found on the internal interfaces of the double-layer transcrystalline films and may together be considered as micrometer-sized dipoles. The unexpected phenomenon does not occur in single-layer transcrystalline samples without a central interface layer, suggesting that the interfaces between the transcrystalline layers and the micrometer-thick central interface layer may be the origin of deeper traps rather than the crystalline structures in the transcrystallites or the spherulites. The origin of the interfacial charges was also studied by means of an injection-blocking charging method, which revealed that intrinsic charge carriers introduced during recrystallization are most likely responsible for the interfacial charges. It is fascinating that a material as familiar as PP can exhibit such intriguing properties with a special bipolar space-charge polarization across the central interface layer after quasi-epitaxial surface moulding into a double-layer transcrystalline form. In addition to applications in electret (micro-)devices for electro-mechanical transduction, the highly ordered structures may also be employed as a new paradigm for studying charge storage and transport in polymer electrets and in dielectrics for DC electrical insulation.}, language = {en} } @article{AssagraAltafimdoCarmoetal.2020, author = {Assagra, Yuri A.O. and Altafim, Ruy Alberto Pisani and do Carmo, Joao P. and Altafim, Ruy A.C. and Rychkov, Dmitry and Wirges, Werner and Gerhard, Reimund}, title = {A new route to piezo-polymer transducers: 3D printing of polypropylene ferroelectrets}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {27}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {5}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2020.008461}, pages = {1668 -- 1674}, year = {2020}, abstract = {Here, a promising approach for producing piezo-polymer transducers in a one-step process is presented. Using 3D-printing technology and polypropylene (PP) filaments, we are able to print a two-layered film structure with regular cavities of precisely controlled size and shape. It is found that the 3D-printed samples exhibit piezoelectric coefficients up to 200 pC/N, similar to those of other PP ferroelectrets, and their temporal and thermal behavior is in good agreement with those known of PP ferroelectrets. The piezoelectric response strongly decreases for applied pressures above 20 kPa, as the pressure in the air-filled cavities strongly influences the overall elastic modulus of ferroelectrets.}, language = {en} } @article{JayVazdaCruzEckertetal.2020, author = {Jay, Raphael M. and Vaz da Cruz, Vinicius and Eckert, Sebastian and Fondell, Mattis and Mitzner, Rolf and F{\"o}hlisch, Alexander}, title = {Probing solute-solvent interactions of transition metal complexes using L-edge absorption spectroscopy}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {124}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {27}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.0c00638}, pages = {5636 -- 5645}, year = {2020}, abstract = {In order to tailor solution-phase chemical reactions involving transition metal complexes, it is critical to understand how their valence electronic charge distributions are affected by the solution environment. Here, solute-solvent interactions of a solvatochromic mixed-ligand iron complex were investigated using X-ray absorption spectroscopy at the transition metal L-2,L-3-edge. Due to the selectivity of the corresponding core excitations to the iron 3d orbitals, the method grants direct access to the valence electronic structure around the iron center and its response to interactions with the solvent environment. A linear increase of the total L-2,L-3-edge absorption cross section as a function of the solvent Lewis acidity is revealed. The effect is caused by relative changes in different metal-ligand-bonding channels, which preserve local charge densities while increasing the density of unoccupied states around the iron center. These conclusions are corroborated by a combination of molecular dynamics and spectrum simulations based on time-dependent density functional theory. The simulations reproduce the spectral trends observed in the X-ray but also optical absorption experiments. Our results underscore the importance of solute-solvent interactions when aiming for an accurate description of the valence electronic structure of solvated transition metal complexes and demonstrate how L-2,L-3-edge absorption spectroscopy can aid in understanding the impact of the solution environment on intramolecular covalency and the electronic charge distribution.}, language = {en} } @article{JayEckertMitzneretal.2020, author = {Jay, Raphael M. and Eckert, Sebastian and Mitzner, Rolf and Fondell, Mattis and F{\"o}hlisch, Alexander}, title = {Quantitative evaluation of transient valence orbital occupations in a 3d transition metal complex as seen from the metal and ligand perspective}, series = {Chemical physics letters}, volume = {754}, journal = {Chemical physics letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2614}, doi = {10.1016/j.cplett.2020.137681}, pages = {5}, year = {2020}, abstract = {It is demonstrated for the case of photo-excited ferrocyanide how time-resolved soft X-ray absorption spectroscopy in transmission geometry at the ligand K-edge and metal L-3-edge provides quantitatively equivalent valence electronic structure information, where signatures of photo-oxidation are assessed locally at the metal as well as the ligand. This allows for a direct and independent quantification of the number of photo-oxidized molecules at two soft X-ray absorption edges highlighting the sensitivity of X-ray absorption spectroscopy to the valence orbital occupation of 3d transition metal complexes throughout the soft X-ray range.}, language = {en} } @article{AryaJelkenFeldmannetal.2020, author = {Arya, Pooja and Jelken, Joachim and Feldmann, David and Lomadze, Nino and Santer, Svetlana}, title = {Light driven diffusioosmotic repulsion and attraction of colloidal particles}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {152}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {19}, publisher = {American Institute of Physics}, address = {Melville, NY}, issn = {0021-9606}, doi = {10.1063/5.0007556}, pages = {10}, year = {2020}, abstract = {In this paper, we introduce the phenomenon of light driven diffusioosmotic long-range attraction and repulsion of porous particles under irradiation with UV light. The change in the inter-particle interaction potential is governed by flow patterns generated around single colloids and results in reversible aggregation or separation of the mesoporous silica particles that are trapped at a solid surface. The range of the interaction potential extends to several times the diameter of the particle and can be adjusted by varying the light intensity. The "fuel" of the process is a photosensitive surfactant undergoing photo-isomerization from a more hydrophobic trans-state to a rather hydrophilic cis-state. The surfactant has different adsorption affinities to the particles depending on the isomerization state. The trans-isomer, for example, tends to accumulate in the negatively charged pores of the particles, while the cis-isomer prefers to remain in the solution. This implies that when under UV irradiation cis-isomers are being formed within the pores, they tend to diffuse out readily and generate an excess concentration near the colloid's outer surface, ultimately resulting in the initiation of diffusioosmotic flow. The direction of the flow depends strongly on the dynamic redistribution of the fraction of trans- and cis-isomers near the colloids due to different kinetics of photo-isomerization within the pores as compared to the bulk. The unique feature of the mechanism discussed in the paper is that the long-range mutual repulsion but also the attraction can be tuned by convenient external optical stimuli such as intensity so that a broad variety of experimental situations for manipulation of a particle ensemble can be realized.}, language = {en} } @article{JelkenHenkelSanter2020, author = {Jelken, Joachim and Henkel, Carsten and Santer, Svetlana}, title = {Formation of half-period surface relief gratings in azobenzene containing polymer films}, series = {Applied physics : B, Lasers and optics}, volume = {126}, journal = {Applied physics : B, Lasers and optics}, number = {9}, publisher = {Springer}, address = {Heidelberg}, issn = {0946-2171}, doi = {10.1007/s00340-020-07500-w}, pages = {14}, year = {2020}, abstract = {We study the peculiar response of photo-sensitive polymer films irradiated with a certain type of interference pattern where one interfering beam is S-polarized, while the second one is P-polarized. The polymer film, although in a glassy state, deforms following the local polarization distribution of the incident light, and a surface relief grating (SRG) appears whose period is half the optical one. All other types of interference patterns result in the matching of both periods. The topographical response is triggered by the alignment of photo-responsive azobenzene containing polymer side chains orthogonal to the local electrical field, resulting in a bulk birefringence grating (BBG). We investigate the process of dual grating formation (SRG and BBG) in a polymer film utilizing a dedicated set-up that combines probe beam diffraction and atomic force microscopy (AFM) measurements, and permits acquiring in situ and in real-time information about changes in local topography and birefringence. We find that the SRG maxima appear at the positions of linearly polarized light (tilted by 45 degrees relative to the grating vector), causing the formation of the half-period topography. This permits to inscribe symmetric and asymmetric topography gratings with sub-wavelength period, while changing only slightly the polarization of one of the interfering beams. We demonstrate an easy generation of sawtooth profiles (blazed gratings) with adjustable shape. With these results, we have taken a significant step in understanding the photo-induced deformation of azo-polymer films.}, language = {en} } @article{AryaJelkenLomadzeetal.2020, author = {Arya, Pooja and Jelken, Joachim and Lomadze, Nino and Santer, Svetlana and Bekir, Marek}, title = {Kinetics of photo-isomerization of azobenzene containing surfactants}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry}, volume = {152}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5135913}, pages = {10}, year = {2020}, abstract = {We report on photoisomerization kinetics of azobenzene containing surfactants in aqueous solution. The surfactant molecule consists of a positively charged trimethylammonium bromide head group, a hydrophobic spacer connecting via 6 to 10 CH2 groups to the azobenzene unit, and the hydrophobic tail of 1 and 3CH(2) groups. Under exposure to light, the azobenzene photoisomerizes from more stable trans- to metastable cis-state, which can be switched back either thermally in dark or by illumination with light of a longer wavelength. The surfactant isomerization is described by a kinetic model of a pseudo first order reaction approaching equilibrium, where the intensity controls the rate of isomerization until the equilibrated state. The rate constants of the trans-cis and cis-trans photoisomerization are calculated as a function of several parameters such as wavelength and intensity of light, the surfactant concentration, and the length of the hydrophobic tail. The thermal relaxation rate from cis- to trans-state is studied as well. The surfactant isomerization shows a different kinetic below and above the critical micellar concentration of the trans isomer due to steric hindrance within the densely packed micelle but does not depend on the spacer length.}, language = {en} } @article{SilantevaKomolkinMamontovaetal.2020, author = {Silanteva, Irina A. and Komolkin, Andrei and Mamontova, Veronika V. and Vorontsov-Velyaminov, Pavel N. and Santer, Svetlana and Kasyanenko, Nina A.}, title = {Some features of surfactant organization in DNA solutions at various NaCl concentrations}, series = {ACS omega / American Chemical Society}, volume = {5}, journal = {ACS omega / American Chemical Society}, number = {29}, publisher = {ACS Publications}, address = {Washington}, issn = {2470-1343}, doi = {10.1021/acsomega.0c01850}, pages = {18234 -- 18243}, year = {2020}, abstract = {The photosensitive azobenzene-containing surfactant C-4-Azo-OC(6)TMAB is a promising agent for reversible DNA packaging in a solution. The simulation of the trans-isomer surfactant organization into associates in a solution with and without salt as well as its binding to DNA at different NaCl concentrations was carried out by molecular dynamics. Experimental data obtained by spectral and hydrodynamic methods were used to verify the results of simulation. It was shown that head-to-tail aggregates with close to antiparallel orientation of surfactant molecules were formed at certain NaCl and surfactant concentrations (below critical micelle concentration). Such aggregates have two positively charged ends, and therefore, they can be attracted to negatively charged DNA phosphates far located along the chain, as well as those that belong to different molecules. This contributes to the formation of intermolecular DNA-DNA contacts, and this way, the experimentally observed precipitation of DNA can be explained.}, language = {en} } @article{SimonovaIvanovMeleshkoetal.2020, author = {Simonova, Maria and Ivanov, Ivan and Meleshko, Tamara and Kopyshev, Alexey and Santer, Svetlana and Yakimansky, Alexander and Filippov, Alexander}, title = {Self-assembly of molecular brushes with polyimide backbone and amphiphilic block copolymer side chains in selective solvents}, series = {Polymers}, volume = {12}, journal = {Polymers}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym12122922}, pages = {15}, year = {2020}, abstract = {Three-component molecular brushes with a polyimide backbone and amphiphilic block copolymer side chains with different contents of the "inner" hydrophilic (poly(methacrylic acid)) and "outer" hydrophobic (poly(methyl methacrylate)) blocks were synthesized and characterized by molecular hydrodynamics and optics methods in solutions of chloroform, dimethylformamide, tetrahydrofuran and ethanol. The peculiarity of the studied polymers is the amphiphilic structure of the grafted chains. The molar masses of the molecular brushes were determined by static and dynamic light scattering in chloroform in which polymers form molecularly disperse solutions. Spontaneous self-assembly of macromolecules was detected in dimethylformamide, tetrahydrofuran and ethanol. The aggregates size depended on the thermodynamic quality of the solvent as well as on the macromolecular architectural parameters. In dimethylformamide and tetrahydrofuran, the distribution of hydrodynamic radii of aggregates was bimodal, while in ethanol, it was unimodal. Moreover, in ethanol, an increase in the poly(methyl methacrylate) content caused a decrease in the hydrodynamic radius of aggregates. A significant difference in the nature of the blocks included in the brushes determines the selectivity of the used solvents, since their thermodynamic quality with respect to the blocks is different. The macromolecules of the studied graft copolymers tend to self-organization in selective solvents with formation of a core-shell structure with an insoluble solvophobic core surrounded by the solvophilic shell of side chains.}, language = {en} } @article{UmlandtFeldmannSchnecketal.2020, author = {Umlandt, Maren and Feldmann, David and Schneck, Emanuel and Santer, Svetlana and Bekir, Marek}, title = {Adsorption of photoresponsive surfactants at solid-liquid interfaces}, series = {Langmuir}, volume = {36}, journal = {Langmuir}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.0c02545}, pages = {14009 -- 14018}, year = {2020}, abstract = {We report on the adsorption kinetics of azoben-zene-containing surfactants on solid surfaces of different hydrophobicity. The understanding of this processes is of great importance for many interfacial phenomena that can be actuated and triggered by light, since the surfactant molecules contain a photoresponsive azobenzene group in their hydrophobic tail. Three surfactant types are studied, differing in the spacer connecting the headgroup and the azobenzene unit by between 6 and 10 CH2 groups. Under irradiation with light of a suitable wavelength, the azobenzene undergoes reversible photoisomerization between two states, a nonpolar trans-state and a highly polar cis-state. Consequently, the surfactant molecule changes its hydrophobicity and thus affinity to a surface depending on the photoisomerization state of the azobenzene. The adsorption behavior on hydrophilic (glass) and hydrophobic (TeflonAF) surfaces is analyzed using quartz crystal microbalance with dissipation (QCM-D) and zeta-potential measurements. At equilibrium, the adsorbed surfactant amount is almost twice as large on glass compared to TeflonAF for both isomers. The adsorption rate for the trans-isomers on both surfaces is similar, but the desorption rate of the trans-isomers is faster at the glass-water interface than at the Teflon-water interface. This result demonstrates that the trans-isomers have higher affinity for the glass surface, so the trans-to-cis ratios on glass and TeflonAF are 80/1 and 2/1, respectively, with similar trends for all three surfactant types.}, language = {en} } @article{KosztolowiczMetzler2020, author = {Kosztolowicz, Tadeusz and Metzler, Ralf}, title = {Diffusion of antibiotics through a biofilm in the presence of diffusion and absorption barriers}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {102}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {3}, publisher = {American Physical Society}, address = {Melville, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.102.032408}, pages = {11}, year = {2020}, abstract = {We propose a model of antibiotic diffusion through a bacterial biofilm when diffusion and/or absorption barriers develop in the biofilm. The idea of this model is: We deduce details of the diffusion process in a medium in which direct experimental study is difficult, based on probing diffusion in external regions. Since a biofilm has a gel-like consistency, we suppose that subdiffusion of particles in the biofilm may occur. To describe this process we use a fractional subdiffusion-absorption equation with an adjustable anomalous diffusion exponent. The boundary conditions at the boundaries of the biofilm are derived by means of a particle random walk model on a discrete lattice leading to an expression involving a fractional time derivative. We show that the temporal evolution of the total amount of substance that has diffused through the biofilm explicitly depends on whether there is antibiotic absorption in the biofilm. This fact is used to experimentally check for antibiotic absorption in the biofilm and if subdiffusion and absorption parameters of the biofilm change over time. We propose a four-stage model of antibiotic diffusion in biofilm based on the following physical characteristics: whether there is absorption of the antibiotic in the biofilm and whether all biofilm parameters remain unchanged over time. The biological interpretation of the stages, in particular their relation with the bacterial defense mechanisms, is discussed. Theoretical results are compared with empirical results of ciprofloxacin diffusion through Pseudomonas aeruginosa biofilm, and ciprofloxacin and gentamicin diffusion through Proteus mirabilis biofilm.}, language = {en} } @misc{WenzLevermannWillneretal.2020, author = {Wenz, Leonie and Levermann, Anders and Willner, Sven N. and Otto, Christian and Kuhla, Kilian}, title = {Post-Brexit no-trade-deal scenario: short-term consumer benefit at the expense of long-term economic development}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-52581}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525819}, pages = {16}, year = {2020}, abstract = {After the United Kingdom has left the European Union it remains unclear whether the two parties can successfully negotiate and sign a trade agreement within the transition period. Ongoing negotiations, practical obstacles and resulting uncertainties make it highly unlikely that economic actors would be fully prepared to a "no-trade-deal" situation. Here we provide an economic shock simulation of the immediate aftermath of such a post-Brexit no-trade-deal scenario by computing the time evolution of more than 1.8 million interactions between more than 6,600 economic actors in the global trade network. We find an abrupt decline in the number of goods produced in the UK and the EU. This sudden output reduction is caused by drops in demand as customers on the respective other side of the Channel incorporate the new trade restriction into their decision-making. As a response, producers reduce prices in order to stimulate demand elsewhere. In the short term consumers benefit from lower prices but production value decreases with potentially severe socio-economic consequences in the longer term.}, language = {en} } @article{WenzLevermannWillneretal.2020, author = {Wenz, Leonie and Levermann, Anders and Willner, Sven N. and Otto, Christian and Kuhla, Kilian}, title = {Post-Brexit no-trade-deal scenario: short-term consumer benefit at the expense of long-term economic development}, series = {PLoS ONE}, volume = {15}, journal = {PLoS ONE}, number = {9}, publisher = {PLOS}, address = {San Francisco}, pages = {14}, year = {2020}, abstract = {After the United Kingdom has left the European Union it remains unclear whether the two parties can successfully negotiate and sign a trade agreement within the transition period. Ongoing negotiations, practical obstacles and resulting uncertainties make it highly unlikely that economic actors would be fully prepared to a "no-trade-deal" situation. Here we provide an economic shock simulation of the immediate aftermath of such a post-Brexit no-trade-deal scenario by computing the time evolution of more than 1.8 million interactions between more than 6,600 economic actors in the global trade network. We find an abrupt decline in the number of goods produced in the UK and the EU. This sudden output reduction is caused by drops in demand as customers on the respective other side of the Channel incorporate the new trade restriction into their decision-making. As a response, producers reduce prices in order to stimulate demand elsewhere. In the short term consumers benefit from lower prices but production value decreases with potentially severe socio-economic consequences in the longer term.}, language = {en} } @misc{SchueKopyshevLutzetal.2020, author = {Schu{\´e}, Emmanuelle and Kopyshev, Alexey and Lutz, Jean-Fran{\c{c}}ois and B{\"o}rner, Hans G.}, title = {Molecular bottle brushes with positioned selenols}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51618}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516184}, pages = {154 -- 162}, year = {2020}, abstract = {A synthesis route to controlled and dynamic single polymer chain folding is reported. Sequence-controlled macromolecules containing precisely located selenol moieties within a polymer chain are synthesized. Oxidation of selenol functionalities lead to diselenide bridges and induces controlled intramolecular crosslinking to generate single chain collapse. The cyclization process is successfully characterized by SEC as well as by H-1 NMR and 2D HSQC NMR spectroscopies. In order to gain insight on the molecular level to reveal the degree of structural control, the folded polymers are transformed into folded molecular brushes that are known to be visualizable as single molecule structures by AFM. The "grafting onto" approach is performed by using triazolinedione-diene reaction to graft the side chain polymers. A series of folded molecular brushes as well as the corresponding linear controls are synthesized. AFM visualization is proving the cyclization of the folded backbone by showing globular objects, where non-folded brushes show typical worm-like structures. (C) 2019 The Authors. Journal of Polymer Science published by Wiley Periodicals, Inc.}, language = {en} } @misc{MassoltBorowski2020, author = {Massolt, Joost Willem and Borowski, Andreas}, title = {Perceived relevance of university physics problems by pre-service physics teachers}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {42}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-51583}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515838}, pages = {167 -- 189}, year = {2020}, abstract = {Pre-service physics teachers often do not recognise the relevance for their future career in their university content knowledge courses. A lower perceived relevance can, however, have a negative effect on their motivation and on their academic success. Several intervention studies have been undertaken with the goal to increase this perceived relevance. A previous study shows that conceptual physics problems used in university physics courses are perceived by pre-service physics teachers as more relevant for their future career than regular, quantitative problems. It is however not clear, what the students' meaning of the construct 'relevance' is: what makes a problem more relevant to them than another problem? To answer this question, N = 7 pre-service teachers were interviewed using the repertory grid technique, based on the personal construct theory. Nine physics problems were discussed with regards to their perceived relevance and with regards to problem properties that distinguish these problems from each other. We are able to identify six problem properties that have a positive influence on the perceived relevance. Physics problems that are based on these properties should therefore potentially have a higher perceived relevance, which can have a positive effect on the motivation of the pre-service teachers who solve these problems.}, language = {en} } @article{SchueKopyshevLutzetal.2020, author = {Schu{\´e}, Emmanuelle and Kopyshev, Alexey and Lutz, Jean-Fran{\c{c}}ois and B{\"o}rner, Hans G.}, title = {Molecular bottle brushes with positioned selenols}, series = {Journal of Polymer Science}, volume = {58}, journal = {Journal of Polymer Science}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {2642-4169}, doi = {10.1002/pola.29496}, pages = {154 -- 162}, year = {2020}, abstract = {A synthesis route to controlled and dynamic single polymer chain folding is reported. Sequence-controlled macromolecules containing precisely located selenol moieties within a polymer chain are synthesized. Oxidation of selenol functionalities lead to diselenide bridges and induces controlled intramolecular crosslinking to generate single chain collapse. The cyclization process is successfully characterized by SEC as well as by H-1 NMR and 2D HSQC NMR spectroscopies. In order to gain insight on the molecular level to reveal the degree of structural control, the folded polymers are transformed into folded molecular brushes that are known to be visualizable as single molecule structures by AFM. The "grafting onto" approach is performed by using triazolinedione-diene reaction to graft the side chain polymers. A series of folded molecular brushes as well as the corresponding linear controls are synthesized. AFM visualization is proving the cyclization of the folded backbone by showing globular objects, where non-folded brushes show typical worm-like structures. (C) 2019 The Authors. Journal of Polymer Science published by Wiley Periodicals, Inc.}, language = {en} } @article{ZhongCausaMooreetal.2020, author = {Zhong, Yufei and Causa, Martina and Moore, Gareth John and Krauspe, Philipp and Xiao, Bo and G{\"u}nther, Florian and Kublitski, Jonas and BarOr, Eyal and Zhou, Erjun and Banerji, Natalie}, title = {Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-020-14549-w}, pages = {1 -- 10}, year = {2020}, abstract = {Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17\% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.}, language = {en} } @misc{AlirezaeizanjaniGrossmannPfeiferetal.2020, author = {Alirezaeizanjani, Zahra and Großmann, Robert and Pfeifer, Veronika and Hintsche, Marius and Beta, Carsten}, title = {Chemotaxis strategies of bacteria with multiple run modes}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {22}, issn = {1866-8372}, doi = {10.25932/publishup-51909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519098}, pages = {10}, year = {2020}, abstract = {Bacterial chemotaxis-a fundamental example of directional navigation in the living world-is key to many biological processes, including the spreading of bacterial infections. Many bacterial species were recently reported to exhibit several distinct swimming modes-the flagella may, for example, push the cell body or wrap around it. How do the different run modes shape the chemotaxis strategy of a multimode swimmer? Here, we investigate chemotactic motion of the soil bacterium Pseudomonas putida as a model organism. By simultaneously tracking the position of the cell body and the configuration of its flagella, we demonstrate that individual run modes show different chemotactic responses in nutrition gradients and, thus, constitute distinct behavioral states. On the basis of an active particle model, we demonstrate that switching between multiple run states that differ in their speed and responsiveness provides the basis for robust and efficient chemotaxis in complex natural habitats.}, language = {en} } @article{AlirezaeizanjaniGrossmannPfeiferetal.2020, author = {Alirezaeizanjani, Zahra and Großmann, Robert and Pfeifer, Veronika and Hintsche, Marius and Beta, Carsten}, title = {Chemotaxis strategies of bacteria with multiple run modes}, series = {Science advances}, volume = {6}, journal = {Science advances}, number = {22}, publisher = {American Association for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aaz6153}, pages = {8}, year = {2020}, abstract = {Bacterial chemotaxis-a fundamental example of directional navigation in the living world-is key to many biological processes, including the spreading of bacterial infections. Many bacterial species were recently reported to exhibit several distinct swimming modes-the flagella may, for example, push the cell body or wrap around it. How do the different run modes shape the chemotaxis strategy of a multimode swimmer? Here, we investigate chemotactic motion of the soil bacterium Pseudomonas putida as a model organism. By simultaneously tracking the position of the cell body and the configuration of its flagella, we demonstrate that individual run modes show different chemotactic responses in nutrition gradients and, thus, constitute distinct behavioral states. On the basis of an active particle model, we demonstrate that switching between multiple run states that differ in their speed and responsiveness provides the basis for robust and efficient chemotaxis in complex natural habitats.}, language = {en} } @article{GlanemannWillnerLevermann2020, author = {Glanemann, Nicole and Willner, Sven N. and Levermann, Anders}, title = {Paris Climate Agreement passes the cost-benefit test}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-13961-1}, pages = {11}, year = {2020}, abstract = {The Paris Climate Agreement aims to keep temperature rise well below 2 degrees C. This implies mitigation costs as well as avoided climate damages. Here we show that independent of the normative assumptions of inequality aversion and time preferences, the agreement constitutes the economically optimal policy pathway for the century. To this end we consistently incorporate a damage-cost curve reproducing the observed relation between temperature and economic growth into the integrated assessment model DICE. We thus provide an intertemporally optimizing cost-benefit analysis of this century's climate problem. We account for uncertainties regarding the damage curve, climate sensitivity, socioeconomic future, and mitigation costs. The resulting optimal temperature is robust as can be understood from the generic temperature-dependence of the mitigation costs and the level of damages inferred from the observed temperature-growth relationship. Our results show that the politically motivated Paris Climate Agreement also represents the economically favourable pathway, if carried out properly.}, language = {en} } @misc{ZhongCausaMooreetal.2020, author = {Zhong, Yufei and Causa, Martina and Moore, Gareth John and Krauspe, Philipp and Xiao, Bo and G{\"u}nther, Florian and Kublitski, Jonas and BarOr, Eyal and Zhou, Erjun and Banerji, Natalie}, title = {Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51193}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-511936}, pages = {12}, year = {2020}, abstract = {Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17\% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.}, language = {en} } @article{MunyaevSmirnovKostinetal.2020, author = {Munyaev, Vyacheslav O. and Smirnov, Lev A. and Kostin, Vasily A. and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Analytical approach to synchronous states of globally coupled noisy rotators}, series = {New journal of physics : the open-access journal for physics}, volume = {22}, journal = {New journal of physics : the open-access journal for physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab6f93}, pages = {14}, year = {2020}, abstract = {We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed.}, language = {en} } @article{MunyaevSmirnovKostinetal.2020, author = {Munyaev, Vyacheslav and Smirnov, Lev A. and Kostin, Vasily and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Analytical approach to synchronous states of globally coupled noisy rotators}, series = {New Journal of Physics}, volume = {22}, journal = {New Journal of Physics}, number = {2}, publisher = {Springer Science}, address = {New York}, pages = {15}, year = {2020}, abstract = {We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed.}, language = {en} } @misc{CaesarRahmstorfFeulner2020, author = {Caesar, Levke and Rahmstorf, Stefan and Feulner, Georg}, title = {On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-51238}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512382}, pages = {9}, year = {2020}, abstract = {According to established understanding, deep-water formation in the North Atlantic and Southern Ocean keeps the deep ocean cold, counter-acting the downward mixing of heat from the warmer surface waters in the bulk of the world ocean. Therefore, periods of strong Atlantic meridional overturning circulation (AMOC) are expected to coincide with cooling of the deep ocean and warming of the surface waters. It has recently been proposed that this relation may have reversed due to global warming, and that during the past decades a strong AMOC coincides with warming of the deep ocean and relative cooling of the surface, by transporting increasingly warmer waters downward. Here we present multiple lines of evidence, including a statistical evaluation of the observed global mean temperature, ocean heat content, and different AMOC proxies, that lead to the opposite conclusion: even during the current ongoing global temperature rise a strong AMOC warms the surface. The observed weakening of the AMOC has therefore delayed global surface warming rather than enhancing it. Social Media Abstract: The overturning circulation in the Atlantic Ocean has weakened in response to global warming, as predicted by climate models. Since it plays an important role in transporting heat, nutrients and carbon, a slowdown will affect global climate processes and the global mean temperature. Scientists have questioned whether this slowdown has worked to cool or warm global surface temperatures. This study analyses the overturning strength and global mean temperature evolution of the past decades and shows that a slowdown acts to reduce the global mean temperature. This is because a slower overturning means less water sinks into the deep ocean in the subpolar North Atlantic. As the surface waters are cold there, the sinking normally cools the deep ocean and thereby indirectly warms the surface, thus less sinking implies less surface warming and has a cooling effect. For the foreseeable future, this means that the slowing of the overturning will likely continue to slightly reduce the effect of the general warming due to increasing greenhouse gas concentrations.}, language = {en} } @article{CaesarRahmstorfFeulner2020, author = {Caesar, Levke and Rahmstorf, Stefan and Feulner, Georg}, title = {On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming}, series = {Environmental research letters}, volume = {15}, journal = {Environmental research letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ab63e3}, pages = {7}, year = {2020}, abstract = {According to established understanding, deep-water formation in the North Atlantic and Southern Ocean keeps the deep ocean cold, counter-acting the downward mixing of heat from the warmer surface waters in the bulk of the world ocean. Therefore, periods of strong Atlantic meridional overturning circulation (AMOC) are expected to coincide with cooling of the deep ocean and warming of the surface waters. It has recently been proposed that this relation may have reversed due to global warming, and that during the past decades a strong AMOC coincides with warming of the deep ocean and relative cooling of the surface, by transporting increasingly warmer waters downward. Here we present multiple lines of evidence, including a statistical evaluation of the observed global mean temperature, ocean heat content, and different AMOC proxies, that lead to the opposite conclusion: even during the current ongoing global temperature rise a strong AMOC warms the surface. The observed weakening of the AMOC has therefore delayed global surface warming rather than enhancing it. Social Media Abstract: The overturning circulation in the Atlantic Ocean has weakened in response to global warming, as predicted by climate models. Since it plays an important role in transporting heat, nutrients and carbon, a slowdown will affect global climate processes and the global mean temperature. Scientists have questioned whether this slowdown has worked to cool or warm global surface temperatures. This study analyses the overturning strength and global mean temperature evolution of the past decades and shows that a slowdown acts to reduce the global mean temperature. This is because a slower overturning means less water sinks into the deep ocean in the subpolar North Atlantic. As the surface waters are cold there, the sinking normally cools the deep ocean and thereby indirectly warms the surface, thus less sinking implies less surface warming and has a cooling effect. For the foreseeable future, this means that the slowing of the overturning will likely continue to slightly reduce the effect of the general warming due to increasing greenhouse gas concentrations.}, language = {en} } @misc{ChengZhangKliemetal.2020, author = {Cheng, Xin and Zhang, Jie and Kliem, Bernhard and T{\"o}r{\"o}k, Tibor and Xing, Chen and Zhou, Zhenjun and Inhester, Bernd and Ding, Mingde}, title = {Initiation and early kinematic evolution of solar eruptions}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-51972}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519720}, pages = {22}, year = {2020}, abstract = {We investigate the initiation and early evolution of 12 solar eruptions, including six active-region hot channel and six quiescent filament eruptions, which were well observed by the Solar Dynamics Observatory, as well as by the Solar Terrestrial Relations Observatory for the latter. The sample includes one failed eruption and 11 coronal mass ejections, with velocities ranging from 493 to 2140 km s(-1). A detailed analysis of the eruption kinematics yields the following main results. (1) The early evolution of all events consists of a slow-rise phase followed by a main-acceleration phase, the height-time profiles of which differ markedly and can be best fit, respectively, by a linear and an exponential function. This indicates that different physical processes dominate in these phases, which is at variance with models that involve a single process. (2) The kinematic evolution of the eruptions tends to be synchronized with the flare light curve in both phases. The synchronization is often but not always close. A delayed onset of the impulsive flare phase is found in the majority of the filament eruptions (five out of six). This delay and its trend to be larger for slower eruptions favor ideal MHD instability models. (3) The average decay index at the onset heights of the main acceleration is close to the threshold of the torus instability for both groups of events (although, it is based on a tentative coronal field model for the hot channels), suggesting that this instability initiates and possibly drives the main acceleration.}, language = {en} } @article{HortonKhanCahilletal.2020, author = {Horton, Benjamin P. and Khan, Nicole S. and Cahill, Niamh and Lee, Janice S. H. and Shaw, Timothy A. and Garner, Andra J. and Kemp, Andrew C. and Engelhart, Simon E. and Rahmstorf, Stefan}, title = {Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey}, series = {npj Climate and Atmospheric Science}, volume = {3}, journal = {npj Climate and Atmospheric Science}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2397-3722}, doi = {10.1038/s41612-020-0121-5}, pages = {1 -- 8}, year = {2020}, abstract = {Sea-level rise projections and knowledge of their uncertainties are vital to make informed mitigation and adaptation decisions. To elicit projections from members of the scientific community regarding future global mean sea-level (GMSL) rise, we repeated a survey originally conducted five years ago. Under Representative Concentration Pathway (RCP) 2.6, 106 experts projected a likely (central 66\% probability) GMSL rise of 0.30-0.65 m by 2100, and 0.54-2.15 m by 2300, relative to 1986-2005. Under RCP 8.5, the same experts projected a likely GMSL rise of 0.63-1.32 m by 2100, and 1.67-5.61 m by 2300. Expert projections for 2100 are similar to those from the original survey, although the projection for 2300 has extended tails and is higher than the original survey. Experts give a likelihood of 42\% (original survey) and 45\% (current survey) that under the high-emissions scenario GMSL rise will exceed the upper bound (0.98 m) of the likely range estimated by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, which is considered to have an exceedance likelihood of 17\%. Responses to open-ended questions suggest that the increases in upper-end estimates and uncertainties arose from recent influential studies about the impact of marine ice cliff instability on the meltwater contribution to GMSL rise from the Antarctic Ice Sheet.}, language = {en} } @article{MohammadyAuffevesAnders2020, author = {Mohammady, M. Hamed and Auff{\`e}ves, Alexia and Anders, Janet}, title = {Energetic footprints of irreversibility in the quantum regime}, series = {Communications Physics}, volume = {3}, journal = {Communications Physics}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2399-3650}, doi = {10.1038/s42005-020-0356-9}, pages = {1 -- 14}, year = {2020}, abstract = {In classical thermodynamic processes the unavoidable presence of irreversibility, quantified by the entropy production, carries two energetic footprints: the reduction of extractable work from the optimal, reversible case, and the generation of a surplus of heat that is irreversibly dissipated to the environment. Recently it has been shown that in the quantum regime an additional quantum irreversibility occurs that is linked to decoherence into the energy basis. Here we employ quantum trajectories to construct distributions for classical heat and quantum heat exchanges, and show that the heat footprint of quantum irreversibility differs markedly from the classical case. We also quantify how quantum irreversibility reduces the amount of work that can be extracted from a state with coherences. Our results show that decoherence leads to both entropic and energetic footprints which both play an important role in the optimization of controlled quantum operations at low temperature. In classical thermodynamics irreversibility occurs whenever a non-thermal system is brought into contact with a thermal environment. Using quantum trajectories the authors here establish two energetic footprints of quantum irreversible processes, and find that while quantum irreversibility leads to the occurrence of a quantum heat and a reduction of work production, the two are not linked in the same manner as the classical laws of thermodynamics would dictate.}, language = {en} } @misc{SchulzLieutenantXiaoetal.2020, author = {Schulz, Christian and Lieutenant, Klaus and Xiao, Jie and Hofmann, Tommy and Wong, Deniz and Habicht, Klaus}, title = {Characterization of the soft X-ray spectrometer PEAXIS at BESSY II}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-54992}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549928}, pages = {14}, year = {2020}, abstract = {The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200-1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 10(12) photons s(-1) within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of similar to 400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106 degrees within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to similar to 100 meV at 1000 eV incident photon energy are discussed.}, language = {en} } @misc{HortonKhanCahilletal.2020, author = {Horton, Benjamin P. and Khan, Nicole S. and Cahill, Niamh and Lee, Janice S. H. and Shaw, Timothy A. and Garner, Andra J. and Kemp, Andrew C. and Engelhart, Simon E. and Rahmstorf, Stefan}, title = {Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51678}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516788}, pages = {10}, year = {2020}, abstract = {Sea-level rise projections and knowledge of their uncertainties are vital to make informed mitigation and adaptation decisions. To elicit projections from members of the scientific community regarding future global mean sea-level (GMSL) rise, we repeated a survey originally conducted five years ago. Under Representative Concentration Pathway (RCP) 2.6, 106 experts projected a likely (central 66\% probability) GMSL rise of 0.30-0.65 m by 2100, and 0.54-2.15 m by 2300, relative to 1986-2005. Under RCP 8.5, the same experts projected a likely GMSL rise of 0.63-1.32 m by 2100, and 1.67-5.61 m by 2300. Expert projections for 2100 are similar to those from the original survey, although the projection for 2300 has extended tails and is higher than the original survey. Experts give a likelihood of 42\% (original survey) and 45\% (current survey) that under the high-emissions scenario GMSL rise will exceed the upper bound (0.98 m) of the likely range estimated by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, which is considered to have an exceedance likelihood of 17\%. Responses to open-ended questions suggest that the increases in upper-end estimates and uncertainties arose from recent influential studies about the impact of marine ice cliff instability on the meltwater contribution to GMSL rise from the Antarctic Ice Sheet.}, language = {en} } @misc{MohammadyAuffevesAnders2020, author = {Mohammady, M. Hamed and Auff{\`e}ves, Alexia and Anders, Janet}, title = {Energetic footprints of irreversibility in the quantum regime}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51676}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516766}, pages = {16}, year = {2020}, abstract = {In classical thermodynamic processes the unavoidable presence of irreversibility, quantified by the entropy production, carries two energetic footprints: the reduction of extractable work from the optimal, reversible case, and the generation of a surplus of heat that is irreversibly dissipated to the environment. Recently it has been shown that in the quantum regime an additional quantum irreversibility occurs that is linked to decoherence into the energy basis. Here we employ quantum trajectories to construct distributions for classical heat and quantum heat exchanges, and show that the heat footprint of quantum irreversibility differs markedly from the classical case. We also quantify how quantum irreversibility reduces the amount of work that can be extracted from a state with coherences. Our results show that decoherence leads to both entropic and energetic footprints which both play an important role in the optimization of controlled quantum operations at low temperature. In classical thermodynamics irreversibility occurs whenever a non-thermal system is brought into contact with a thermal environment. Using quantum trajectories the authors here establish two energetic footprints of quantum irreversible processes, and find that while quantum irreversibility leads to the occurrence of a quantum heat and a reduction of work production, the two are not linked in the same manner as the classical laws of thermodynamics would dictate.}, language = {en} } @article{MeyerPetrovPohl2020, author = {Meyer, Dominique M.-A. and Petrov, Mykola and Pohl, Martin}, title = {Wind nebulae and supernova remnants of very massive stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {493}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa554}, pages = {3548 -- 3564}, year = {2020}, abstract = {A very small fraction of (runaway) massive stars have masses exceeding 60-70 M-circle dot and are predicted to evolve as luminous blue variable and Wolf-Rayet stars before ending their lives as core-collapse supernovae. Our 2D axisymmetric hydrodynamical simulations explore how a fast wind (2000 km s(-1)) and high mass-loss rate (10(-5)M(circle dot) yr(-1)) can impact the morphology of the circumstellar medium. It is shaped as 100 pc-scale wind nebula that can be pierced by the driving star when it supersonically moves with velocity 20-40 km s(-1) through the interstellar medium (ISM) in the Galactic plane. The motion of such runaway stars displaces the position of the supernova explosion out of their bow shock nebula, imposing asymmetries to the eventual shock wave expansion and engendering Cygnus-loop-like supernova remnants. We conclude that the size (up to more than 200 pc) of the filamentary wind cavity in which the chemically enriched supernova ejecta expand, mixing efficiently the wind and ISM materials by at least 10 per cent in number density, can be used as a tracer of the runaway nature of the very massive progenitors of such 0.1Myr old remnants. Our results motivate further observational campaigns devoted to the bow shock of the very massive stars BD+43 degrees 3654 and to the close surroundings of the synchrotron-emitting Wolf-Rayet shell G2.4+1.4.}, language = {en} } @misc{VarykhalovFreyseAguileraetal.2020, author = {Varykhalov, Andrei and Freyse, Friedrich and Aguilera, Irene and Battiato, Marco and Krivenkov, Maxim and Marchenko, Dmitry and Bihlmayer, Gustav and Blugel, Stefan and Rader, Oliver and Sanchez-Barriga, Jaime}, title = {Effective mass enhancement and ultrafast electron dynamics of Au(111) surface state coupled to a quantum well}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-54989}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549892}, pages = {11}, year = {2020}, abstract = {We show that, although the equilibrium band dispersion of the Shockley-type surface state of two-dimensional Au(111) quantum films grown on W(110) does not deviate from the expected free-electron-like behavior, its nonequilibrium energy-momentum dispersion probed by time- and angle-resolved photoemission exhibits a remarkable kink above the Fermi level due to a significant enhancement of the effective mass. The kink is pronounced for certain thicknesses of the Au quantum well and vanishes in the very thin limit. We identify the kink as induced by the coupling between the Au(111) surface state and emergent quantum-well states which probe directly the buried gold-tungsten interface. The signatures of the coupling are further revealed by our time-resolved measurements which show that surface state and quantum-well states thermalize together behaving as dynamically locked electron populations. In particular, relaxation of hot carriers following laser excitation is similar for both surface state and quantum-well states and much slower than expected for a bulk metallic system. The influence of quantum confinement on the interplay between elementary scattering processes of the electrons at the surface and ultrafast carrier transport in the direction perpendicular to the surface is shown to be the reason for the slow electron dynamics.}, language = {en} } @phdthesis{Mueller2020, author = {M{\"u}ller, Jirka}, title = {Untersuchungen zum flow-Erleben bei Experimenten als physikalische Lerngelegenheit}, doi = {10.25932/publishup-48287}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-482879}, school = {Universit{\"a}t Potsdam}, pages = {150}, year = {2020}, abstract = {In der vorliegenden Arbeit wird untersucht, in wie weit physikalische Experimente ein flow-Erleben bei Lernenden hervorrufen. Flow-Erleben wird als Motivationsursache gesehen und soll den Weg zu Freude und Gl{\"u}ck darstellen. Insbesondere wegen dem oft zitierten Fachkr{\"a}ftemangel in naturwissenschaftlichen und technischen Berufen ist eine Motivationssteigerung in naturwissenschaftlichen Unterrichtsf{\"a}chern wichtig. Denn trotz Leistungssteigerungen in internationalen Vergleichstests m{\"o}chten in Deutschland deutlich weniger Sch{\"u}ler*innen einen solchen Beruf ergreifen als in anderen Industriestaaten. Daher gilt es, m{\"o}glichst fr{\"u}h Sch{\"u}ler*innen f{\"u}r naturwissenschaftlich-technische F{\"a}cher zu begeistern und insbesondere im regelrecht verhassten Physikunterricht flow-Erleben zu erzeugen. Im Rahmen dieser Arbeit wird das flow-Erleben von Studierenden in klassischen Laborexperimenten und FELS (Forschend-Entdeckendes Lernen mit dem Smartphone) als Lernumgebung untersucht. FELS ist eine an die Lebenswelt der Sch{\"u}ler*innen angepasste Lernumgebung, in der sie mit Smartphones ihre eigene Lebenswelt experimentell untersuchen. Es zeigt sich, dass sowohl klassische Laborexperimente als auch in der Lebenswelt durchgef{\"u}hrte, smartphonebasierte Experimente flow-Erleben erzeugen. Allerdings verursachen die smartphonebasierten Experimente kaum Stressgef{\"u}hle. Die in dieser Arbeit herausgefundenen Ergebnisse liefern einen ersten Ansatz, der durch Folgestudien erweitert werden sollte.}, language = {de} } @phdthesis{Brose2020, author = {Brose, Robert}, title = {From dawn till dusk}, doi = {10.25932/publishup-47086}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470865}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 146}, year = {2020}, abstract = {Supernova remnants are believed to be the source of cosmic rays with energies up to 10^15 eV that are produced within our Galaxy. The acceleration mechanism associated with the collision-less shocks in supernova remnants - diffusive shock acceleration - predicts a spectral index of the accelerated non-thermal particles of s = 2. However, measurements of non-thermal emission in radio, X-rays and gamma-rays reveal significant deviations of the particles spectral index from the canonical value of s = 2. The youngest Galactic supernova remnant G1.9+0.3 is an interesting target for next-generation gamma-ray observatories. So far, the remnant is only detected in the radio and the X-ray bands, but its young age of ≈100 yrs and inferred shock speed of ≈ 14, 000 km/s could make it an efficient particle accelerator. I performed spherical symmetric 1D simulations with the RATPaC code, in which I simultaneously solved the transport equation for cosmic rays, the transport equation for magnetic turbulence, and the hydro-dynamical equations for the gas flow. Separately computed distributions of the particles accelerated at the forward and the reverse shock were then used to calculate the spectra of synchrotron, inverse Compton, and Pion-decay radiation from the source. The emission from G1.9+0.3 can be self-consistently explained within the test-particle limit. I find that the X-ray flux is dominated by emission from the forward shock while most of the radio emission originates near the reverse shock, which makes G1.9+0.3 the first remnant with non-thermal radiation detected from the reverse shock. The flux of very-high-energy gamma-ray emission from G1.9+0.3 is expected to be close to the sensitivity threshold of the Cherenkov Telescope Array. The limited time available to grow large-scale turbulence limits the maximum energy of particles to values below 100 TeV, hence G1.9+0.3 is not a PeVatron. Although there are many models for the acceleration of cosmic rays in Supernova remnants, the escape of cosmic rays from these sources is yet understudied. I use our time-dependent acceleration code RATPaC to study the acceleration of cosmic rays and their escape in post-adiabatic Supernova remnants and calculate the subsequent gamma-ray emission from inverse-Compton scattering and Pion decay. My simulations span 100,000 years, thus covering the free-expansion, the Sedov-Taylor, and the beginning of the post-adiabatic phase of the remnant's evolution. At later stages of the evolution cosmic rays over a wide range of energy can reside outside of the remnant, creating spectra that are softer than predicted by standard diffusive shock acceleration and feature breaks in the 10 - 100 GeV-range. The total spectrum of cosmic rays released into the interstellar medium has a spectral index of s ≈ 2.4 above roughly 10 GeV which is close to that required by Galactic propagation models. I further find the gamma-ray luminosity to peak around an age of 4,000 years for inverse-Compton-dominated high-energy emission. Remnants expanding in low-density media emit generally more inverse-Compton radiation matching the fact that the brightest known supernova remnants - RCW86, Vela Jr, HESSJ1721-347 and RXJ1713.7-3946 - are all expanding in low density environments. The importance of feedback from the cosmic-rays on the hydrodynamical evolution of the remnants is debated as a possibility to obtain soft cosmic-ray spectra at low energies. I performed spherically symmetric 1-D simulations with a modified version of the RATPaC code, in which I simultaneously solve the transport equation for cosmic rays and the hydrodynamical equations, including the back-reaction of the cosmic-ray pressure on the flow profiles. Besides the known modification of the flow profiles and the consequently curved cosmic-ray spectra, steady-state models for non-linear diffusive shock acceleration overpredict the total compression ratio that can be reached with cosmic-ray feedback, as there is limited time for building these modifications. Further, I find modifications to the downstream flow structure that change the evolutionary behavior of the remnant and trigger a cosmic-ray-induced instability close to the contact discontinuity, if and when the cosmic-ray pressure becomes dominant there.}, language = {en} } @phdthesis{Wang2020, author = {Wang, Jingwen}, title = {Electret properties of polypropylene with surface chemical modification and crystalline reconstruction}, doi = {10.25932/publishup-47027}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470271}, school = {Universit{\"a}t Potsdam}, pages = {vi, 121}, year = {2020}, abstract = {As one of the most-produced commodity polymers, polypropylene draws considerable scientific and commercial interest as an electret material. In the present thesis, the influence of the surface chemical modification and crystalline reconstruction on the electret properties of the polypropylene thin films will be discussed. The chemical treatment with orthophosphoric acid can significantly improve the surface charge stability of the polypropylene electrets by introducing phosphorus- and oxygen-containing structures onto the modified surface. The thermally stimulated discharge measurement and charge profiling by means of piezoelectrically generated pressure steps are used to investigate the electret behaviour. It is concluded that deep traps of limited number density are created during the treatment with inorganic chemicals. Hence, the improvement dramatically decreases when the surface-charge density is substantially higher than ±1.2×10^(-3) C·m^(-2). The newly formed traps also show a higher trapping energy for negative charges. The energetic distributions of the traps in the non-treated and chemically treated samples offer an insight regarding the surface and foreign-chemical dominance on the charge storage and transport in the polypropylene electrets. Additionally, different electret properties are observed on the polypropylene films with the spherulitic and transcrystalline structures. It indicates the dependence of the charge storage and transport on the crystallite and molecular orientations in the crystalline phase. In general, a more diverse crystalline growth in the spherulitic samples can result in a more complex energetic trap distribution, in comparison to that in a transcrystalline polypropylene. The double-layer transcrystalline polypropylene film with a crystalline interface in the middle can be obtained by crystallising the film in contact with rough moulding surfaces on both sides. A layer of heterocharges appears on each side of the interface in the double-layer transcrystalline polypropylene electrets after the thermal poling. However, there is no charge captured within the transcrystalline layers. The phenomenon reveals the importance of the crystalline interface in terms of creating traps with the higher activation energy in polypropylene. The present studies highlight the fact that even slight variations in the polypropylene film may lead to dramatic differences in its electret properties.}, language = {en} } @article{PhuongHosseiniSandbergetal.2020, author = {Phuong, Le Quang and Hosseini, Seyed Mehrdad and Sandberg, Oskar J. and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells}, series = {Solar RRL}, volume = {5}, journal = {Solar RRL}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202000649}, pages = {6}, year = {2020}, abstract = {The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.}, language = {en} } @article{TokmoldinHosseiniRaoufietal.2020, author = {Tokmoldin, Nurlan and Hosseini, Seyed Mehrdad and Raoufi, Meysam and Phuong, Le Quang and Sandberg, Oskar J. and Guan, Huilan and Zou, Yingping and Neher, Dieter and Shoaee, Safa}, title = {Extraordinarily long diffusion length in PM6:Y6 organic solar cells}, series = {Journal of materials chemistry : A, materials for energy and sustainability}, volume = {8}, journal = {Journal of materials chemistry : A, materials for energy and sustainability}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7488}, doi = {10.1039/d0ta03016c}, pages = {7854 -- 7860}, year = {2020}, abstract = {The PM6:Y6 bulk-heterojunction (BHJ) blend system achieves high short-circuit current (J(SC)) values in thick photovoltaic junctions. Here we analyse these solar cells to understand the observed independence of the short-circuit current upon photoactive layer thickness. We employ a range of optoelectronic measurements and analyses, including Mott-Schottky analysis, CELIV, photoinduced absorption spectroscopy, mobility measurements and simulations, to conclude that, the invariant photocurrent for the devices with different active layer thicknesses is associated with the Y6's diffusion length exceeding 300 nm in case of a 300 nm thick cell. This is despite unintentional doping that occurs in PM6 and the associated space-charge effect, which is expected to be even more profound upon photogeneration. This extraordinarily long diffusion length - which is an order of magnitude larger than typical values for organics - dominates transport in the flat-band region of thick junctions. Our work suggests that the performance of the doped PM6:Y6 organic solar cells resembles that of inorganic devices with diffusion transport playing a pivotal role. Ultimately, this is expected to be a key requirement for the fabrication of efficient, high-photocurrent, thick organic solar cells.}, language = {en} } @article{ZuSchultzWolffetal.2020, author = {Zu, Fengshuo and Schultz, Thorsten and Wolff, Christian Michael and Shin, Dongguen and Frohloff, Lennart and Neher, Dieter and Amsalem, Patrick and Koch, Norbert}, title = {Position-locking of volatile reaction products by atmosphere and capping layers slows down photodecomposition of methylammonium lead triiodide perovskite}, series = {RSC Advances}, volume = {10}, journal = {RSC Advances}, number = {30}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/d0ra03572f}, pages = {17534 -- 17542}, year = {2020}, abstract = {The remarkable progress of metal halide perovskites in photovoltaics has led to the power conversion efficiency approaching 26\%. However, practical applications of perovskite-based solar cells are challenged by the stability issues, of which the most critical one is photo-induced degradation. Bare CH3NH3PbI3 perovskite films are known to decompose rapidly, with methylammonium and iodine as volatile species and residual solid PbI2 and metallic Pb, under vacuum under white light illumination, on the timescale of minutes. We find, in agreement with previous work, that the degradation is non-uniform and proceeds predominantly from the surface, and that illumination under N-2 and ambient air (relative humidity 20\%) does not induce substantial degradation even after several hours. Yet, in all cases the release of iodine from the perovskite surface is directly identified by X-ray photoelectron spectroscopy. This goes in hand with a loss of organic cations and the formation of metallic Pb. When CH3NH3PbI3 films are covered with a few nm thick organic capping layer, either charge selective or non-selective, the rapid photodecomposition process under ultrahigh vacuum is reduced by more than one order of magnitude, and becomes similar in timescale to that under N-2 or air. We conclude that the light-induced decomposition reaction of CH3NH3PbI3, leading to volatile methylammonium and iodine, is largely reversible as long as these products are restrained from leaving the surface. This is readily achieved by ambient atmospheric pressure, as well as a thin organic capping layer even under ultrahigh vacuum. In addition to explaining the impact of gas pressure on the stability of this perovskite, our results indicate that covalently "locking" the position of perovskite components at the surface or an interface should enhance the overall photostability.}, language = {en} } @article{SinghMetzlerSandev2020, author = {Singh, Rishu Kumar and Metzler, Ralf and Sandev, Trifce}, title = {Resetting dynamics in a confining potential}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {53}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {50}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/abc83a}, pages = {28}, year = {2020}, abstract = {We study Brownian motion in a confining potential under a constant-rate resetting to a reset position x(0). The relaxation of this system to the steady-state exhibits a dynamic phase transition, and is achieved in a light cone region which grows linearly with time. When an absorbing boundary is introduced, effecting a symmetry breaking of the system, we find that resetting aids the barrier escape only when the particle starts on the same side as the barrier with respect to the origin. We find that the optimal resetting rate exhibits a continuous phase transition with critical exponent of unity. Exact expressions are derived for the mean escape time, the second moment, and the coefficient of variation (CV).}, language = {en} } @phdthesis{Wolff2020, author = {Wolff, Christian Michael}, title = {Identification and reduction of losses in perovskite solar cells}, doi = {10.25932/publishup-47930}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-479301}, school = {Universit{\"a}t Potsdam}, pages = {x, 158}, year = {2020}, abstract = {Perovskite solar cells have become one of the most studied systems in the quest for new, cheap and efficient solar cell materials. Within a decade device efficiencies have risen to >25\% in single-junction and >29\% in tandem devices on top of silicon. This rapid improvement was in many ways fortunate, as e. g. the energy levels of commonly used halide perovskites are compatible with already existing materials from other photovoltaic technologies such as dye-sensitized or organic solar cells. Despite this rapid success, fundamental working principles must be understood to allow concerted further improvements. This thesis focuses on a comprehensive understanding of recombination processes in functioning devices. First the impact the energy level alignment between the perovskite and the electron transport layer based on fullerenes is investigated. This controversial topic is comprehensively addressed and recombination is mitigated through reducing the energy difference between the perovskite conduction band minimum and the LUMO of the fullerene. Additionally, an insulating blocking layer is introduced, which is even more effective in reducing this recombination, without compromising carrier collection and thus efficiency. With the rapid efficiency development (certified efficiencies have broken through the 20\% ceiling) and thousands of researchers working on perovskite-based optoelectronic devices, reliable protocols on how to reach these efficiencies are lacking. Having established robust methods for >20\% devices, while keeping track of possible pitfalls, a detailed description of the fabrication of perovskite solar cells at the highest efficiency level (>20\%) is provided. The fabrication of low-temperature p-i-n structured devices is described, commenting on important factors such as practical experience, processing atmosphere \& temperature, material purity and solution age. Analogous to reliable fabrication methods, a method to identify recombination losses is needed to further improve efficiencies. Thus, absolute photoluminescence is identified as a direct way to quantify the Quasi-Fermi level splitting of the perovskite absorber (1.21eV) and interfacial recombination losses the transport layers impose, reducing the latter to ~1.1eV. Implementing very thin interlayers at both the p- and n-interface (PFN-P2 and LiF, respectively), these losses are suppressed, enabling a VOC of up to 1.17eV. Optimizing the device dimensions and the bandgap, 20\% devices with 1cm2 active area are demonstrated. Another important consideration is the solar cells' stability if subjected to field-relevant stressors during operation. In particular these are heat, light, bias or a combination thereof. Perovskite layers - especially those incorporating organic cations - have been shown to degrade if subjected to these stressors. Keeping in mind that several interlayers have been successfully used to mitigate recombination losses, a family of perfluorinated self-assembled monolayers (X-PFCn, where X denotes I/Br and n = 7-12) are introduced as interlayers at the n-interface. Indeed, they reduce interfacial recombination losses enabling device efficiencies up to 21.3\%. Even more importantly they improve the stability of the devices. The solar cells with IPFC10 are stable over 3000h stored in the ambient and withstand a harsh 250h of MPP at 85◦C without appreciable efficiency losses. To advance further and improve device efficiencies, a sound understanding of the photophysics of a device is imperative. Many experimental observations in recent years have however drawn an inconclusive picture, often suffering from technical of physical impediments, disguising e. g. capacitive discharge as recombination dynamics. To circumvent these obstacles, fully operational, highly efficient perovskites solar cells are investigated by a combination of multiple optical and optoelectronic probes, allowing to draw a conclusive picture of the recombination dynamics in operation. Supported by drift-diffusion simulations, the device recombination dynamics can be fully described by a combination of first-, second- and third-order recombination and JV curves as well as luminescence efficiencies over multiple illumination intensities are well described within the model. On this basis steady state carrier densities, effective recombination constants, densities-of-states and effective masses are calculated, putting the devices at the brink of the radiative regime. Moreover, a comprehensive review of recombination in state-of-the-art devices is given, highlighting the importance of interfaces in nonradiative recombination. Different strategies to assess these are discussed, before emphasizing successful strategies to reduce interfacial recombination and pointing towards the necessary steps to further improve device efficiency and stability. Overall, the main findings represent an advancement in understanding loss mechanisms in highly efficient solar cells. Different reliable optoelectronic techniques are used and interfacial losses are found to be of grave importance for both efficiency and stability. Addressing the interfaces, several interlayers are introduced, which mitigate recombination losses and degradation.}, language = {en} } @article{SajediKrivenkovMarchenkoetal.2020, author = {Sajedi, Maryam and Krivenkov, Maxim and Marchenko, Dmitry and Varykhalov, Andrei and Sanchez-Barriga, Jaime and Rienks, Emile D. L. and Rader, Oliver}, title = {Absence of a giant Rashba effect in the valence band of lead halide perovskites}, series = {Physical review : B, Condensed matter and materials physics}, volume = {102}, journal = {Physical review : B, Condensed matter and materials physics}, number = {8}, publisher = {American Institute of Physics; American Physical Society (APS)}, address = {Woodbury, NY}, issn = {2469-9950}, doi = {10.1103/PhysRevB.102.081116}, pages = {6}, year = {2020}, abstract = {For hybrid organic-inorganic as well as all-inorganic lead halide perovskites a Rashba effect has been invoked to explain the high efficiency in energy conversion by prohibiting direct recombination. Both a bulk and surface Rashba effect have been predicted. In the valence band of methylammonium (MA) lead bromide a Rashba effect has been reported by angle-resolved photoemission and circular dichroism with giant values of 7-11 eV angstrom. We present band dispersion measurements of MAPbBr(3) and spin-resolved photoemission of CsPbBr3 to show that a large Rashba effect detectable by photoemission or circular dichroism does not exist and cannot be the origin of the high effciency.}, language = {en} } @misc{PhuongHosseiniSandbergetal.2020, author = {Phuong, Le Quang and Hosseini, Seyed Mehrdad and Sandberg, Oskar J. and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-57001}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570018}, pages = {8}, year = {2020}, abstract = {The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.}, language = {en} } @article{HosseiniTokmoldinLeeetal.2020, author = {Hosseini, Seyed Mehrdad and Tokmoldin, Nurlan and Lee, Young Woong and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Putting order into PM6:Y6 solar cells to reduce the langevin recombination in 400 nm thick junction}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202000498}, pages = {7}, year = {2020}, abstract = {Increasing the active layer thickness without sacrificing the power conversion efficiency (PCE) is one of the great challenges faced by organic solar cells (OSCs) for commercialization. Recently, PM6:Y6 as an OSC based on a non-fullerene acceptor (NFA) has excited the community because of its PCE reaching as high as 15.9\%; however, by increasing the thickness, the PCE drops due to the reduction of the fill factor (FF). This drop is attributed to change in mobility ratio with increasing thickness. Furthermore, this work demonstrates that by regulating the packing and the crystallinity of the donor and the acceptor, through volumetric content of chloronaphthalene (CN) as a solvent additive, one can improve the FF of a thick PM6:Y6 device (approximate to 400 nm) from 58\% to 68\% (PCE enhances from 12.2\% to 14.4\%). The data indicate that the origin of this enhancement is the reduction of the structural and energetic disorders in the thick device with 1.5\% CN compared with 0.5\% CN. This correlates with improved electron and hole mobilities and a 50\% suppressed bimolecular recombination, such that the non-Langevin reduction factor is 180 times. This work reveals the role of disorder on the charge extraction and bimolecular recombination of NFA-based OSCs.}, language = {en} } @article{GarciaBenitoQuartiQuelozetal.2020, author = {Garc{\´i}a-Benito, In{\´e}s and Quarti, Claudio and Queloz, Valentin I. E. and Hofstetter, Yvonne J. and Becker-Koch, David and Caprioglio, Pietro and Neher, Dieter and Orlandi, Simonetta and Cavazzini, Marco and Pozzi, Gianluca and Even, Jacky and Nazeeruddin, Mohammad Khaja and Vaynzof, Yana and Grancini, Giulia}, title = {Fluorination of organic spacer impacts on the structural and optical response of 2D perovskites}, series = {Frontiers in Chemistry}, volume = {7}, journal = {Frontiers in Chemistry}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-2646}, doi = {10.3389/fchem.2019.00946}, pages = {1 -- 11}, year = {2020}, abstract = {Low-dimensional hybrid perovskites have triggered significant research interest due to their intrinsically tunable optoelectronic properties and technologically relevant material stability. In particular, the role of the organic spacer on the inherent structural and optical features in two-dimensional (2D) perovskites is paramount for material optimization. To obtain a deeper understanding of the relationship between spacers and the corresponding 2D perovskite film properties, we explore the influence of the partial substitution of hydrogen atoms by fluorine in an alkylammonium organic cation, resulting in (Lc)(2)PbI4 and (Lf)(2)PbI4 2D perovskites, respectively. Consequently, optical analysis reveals a clear 0.2 eV blue-shift in the excitonic position at room temperature. This result can be mainly attributed to a band gap opening, with negligible effects on the exciton binding energy. According to Density Functional Theory (DFT) calculations, the band gap increases due to a larger distortion of the structure that decreases the atomic overlap of the wavefunctions and correspondingly bandwidth of the valence and conduction bands. In addition, fluorination impacts the structural rigidity of the 2D perovskite, resulting in a stable structure at room temperature and the absence of phase transitions at a low temperature, in contrast to the widely reported polymorphism in some non-fluorinated materials that exhibit such a phase transition. This indicates that a small perturbation in the material structure can strongly influence the overall structural stability and related phase transition of 2D perovskites, making them more robust to any phase change. This work provides key information on how the fluorine content in organic spacer influence the structural distortion of 2D perovskites and their optical properties which possess remarkable importance for future optoelectronic applications, for instance in the field of light-emitting devices or sensors.}, language = {en} } @article{VarykhalovFreyseAguileraetal.2020, author = {Varykhalov, Andrei and Freyse, Friedrich and Aguilera, Irene and Battiato, Marco and Krivenkov, Maxim and Marchenko, Dmitry and Bihlmayer, Gustav and Blugel, Stefan and Rader, Oliver and Sanchez-Barriga, Jaime}, title = {Effective mass enhancement and ultrafast electron dynamics of Au(111) surface state coupled to a quantum well}, series = {Physical Review Research}, volume = {2}, journal = {Physical Review Research}, number = {1}, publisher = {American Physical Society}, address = {Ridge, NY}, issn = {0031-9007}, doi = {10.1103/PhysRevResearch.2.013343}, pages = {1 -- 9}, year = {2020}, abstract = {We show that, although the equilibrium band dispersion of the Shockley-type surface state of two-dimensional Au(111) quantum films grown on W(110) does not deviate from the expected free-electron-like behavior, its nonequilibrium energy-momentum dispersion probed by time- and angle-resolved photoemission exhibits a remarkable kink above the Fermi level due to a significant enhancement of the effective mass. The kink is pronounced for certain thicknesses of the Au quantum well and vanishes in the very thin limit. We identify the kink as induced by the coupling between the Au(111) surface state and emergent quantum-well states which probe directly the buried gold-tungsten interface. The signatures of the coupling are further revealed by our time-resolved measurements which show that surface state and quantum-well states thermalize together behaving as dynamically locked electron populations. In particular, relaxation of hot carriers following laser excitation is similar for both surface state and quantum-well states and much slower than expected for a bulk metallic system. The influence of quantum confinement on the interplay between elementary scattering processes of the electrons at the surface and ultrafast carrier transport in the direction perpendicular to the surface is shown to be the reason for the slow electron dynamics.}, language = {en} } @article{MansourLungwitzSchultzetal.2020, author = {Mansour, Ahmed E. and Lungwitz, Dominique and Schultz, Thorsten and Arvind, Malavika and Valencia, Ana M. and Cocchi, Caterina and Opitz, Andreas and Neher, Dieter and Koch, Norbert}, title = {The optical signatures of molecular-doping induced polarons in poly(3-hexylthiophene-2,5-diyl)}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {8}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {8}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/c9tc06509a}, pages = {2870 -- 2879}, year = {2020}, abstract = {Optical absorption spectroscopy is a key method to investigate doped conjugated polymers and to characterize the doping-induced charge carriers, i.e., polarons. For prototypical poly(3-hexylthiophene-2,5-diyl) (P3HT), the absorption intensity of molecular dopant induced polarons is widely used to estimate the carrier density and the doping efficiency, i.e., the number of polarons formed per dopant molecule. However, the dependence of the polaron-related absorption features on the structure of doped P3HT, being either aggregates or separated individual chains, is not comprehensively understood in contrast to the optical absorption features of neutral P3HT. In this work, we unambiguously differentiate the optical signatures of polarons on individual P3HT chains and aggregates in solution, notably the latter exhibiting the same shape as aggregates in solid thin films. This is enabled by employing tris(pentafluorophenyl)borane (BCF) as dopant, as this dopant forms only ion pairs with P3HT and no charge transfer complexes, and BCF and its anion have no absorption in the spectral region of P3HT polarons. Polarons on individual chains exhibit absorption peaks at 1.5 eV and 0.6 eV, whereas in aggregates the high-energy peak is split into a doublet 1.3 eV and 1.65 eV, and the low-energy peak is shifted below 0.5 eV. The dependence of the fraction of solvated individual chains versus aggregates on absolute solution concentration, dopant concentration, and temperature is elucidated, and we find that aggregates predominate in solution under commonly used processing conditions. Aggregates in BCF-doped P3HT solution can be effectively removed upon simple filtering. From varying the filter pore size (down to 200 nm) and thin film morphology characterization with scanning force microscopy we reveal the aggregates' size dependence on solution absolute concentration and dopant concentration. Furthermore, X-ray photoelectron spectroscopy shows that the dopant loading in aggregates is higher than for individual P3HT chains. The results of this study help understanding the impact of solution pre-aggregation on thin film properties of molecularly doped P3HT, and highlight the importance of considering such aggregation for other doped conjugated polymers in general.}, language = {en} } @article{PoudelTichyBruegmannetal.2020, author = {Poudel, Amit and Tichy, Wolfgang and Br{\"u}gmann, Bernd and Dietrich, Tim}, title = {Increasing the accuracy of binary neutron star simulations with an improved vacuum treatment}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {102}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {10}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0010}, doi = {10.1103/PhysRevD.102.104014}, pages = {16}, year = {2020}, abstract = {Numerical-relativity simulations are essential for studying the last stages of the binary neutron star coalescence. Unfortunately, for stable simulations there is the need to add an artificial low-density atmosphere. Here we discuss a new framework in which we can effectively set the density surrounding the neutron stars to zero to ensure a more accurate simulation. We test our method with a number of single star test cases and for an equal-mass binary neutron star simulation. While the bulk motion of the system is not influenced, and hence there is no improvement with respect to the emitted gravitational-wave signal, we find that the new approach is superior with respect to mass conservation and it allows a much better tracking of outward moving material. This will allow a more accurate simulation of the ejected material and supports the interpretation of present and future multimessenger observations with more accurate numerical-relativity simulations.}, language = {en} } @article{SamajdarDietrich2020, author = {Samajdar, Anuradha and Dietrich, Tim}, title = {Constructing Love-Q relations with gravitational wave detections}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {101}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {12}, publisher = {American Physical Society}, address = {College Park}, issn = {1550-7998}, doi = {10.1103/PhysRevD.101.124014}, pages = {6}, year = {2020}, abstract = {Quasiuniversal relations between the tidal deformability and the quadrupole moment of neutron stars are predicted by theoretical computations, but have not been measured experimentally. We simulate 120 binary neutron star sources and find that Advanced LIGO and Advanced Virgo at design sensitivity could find possible deviations from predicted relations if the neutron stars are highly spinning. A network of envisaged third generation detectors will even allow extracting such relations, providing new tests of general relativity and nuclear physics predictions.}, language = {en} } @article{MejiaMonasterioMetzlerVollmer2020, author = {Mejia-Monasterio, Carlos and Metzler, Ralf and Vollmer, J{\"u}rgen}, title = {Editorial: anomalous transport}, series = {Frontiers in Physics}, volume = {8}, journal = {Frontiers in Physics}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-424X}, doi = {10.3389/fphy.2020.622417}, pages = {4}, year = {2020}, language = {en} } @article{CervantesVillaShpritsAseevetal.2020, author = {Cervantes Villa, Juan Sebastian and Shprits, Yuri and Aseev, Nikita and Allison, Hayley J.}, title = {Quantifying the effects of EMIC wave scattering and magnetopause shadowing in the outer electron radiation belt by means of data assimilation}, series = {Journal of geophysical research : Space physics}, volume = {125}, journal = {Journal of geophysical research : Space physics}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2020JA028208}, pages = {23}, year = {2020}, abstract = {In this study we investigate two distinct loss mechanisms responsible for the rapid dropouts of radiation belt electrons by assimilating data from Van Allen Probes A and B and Geostationary Operational Environmental Satellites (GOES) 13 and 15 into a 3-D diffusion model. In particular, we examine the respective contribution of electromagnetic ion cyclotron (EMIC) wave scattering and magnetopause shadowing for values of the first adiabatic invariant mu ranging from 300 to 3,000 MeV G(-1). We inspect the innovation vector and perform a statistical analysis to quantitatively assess the effect of both processes as a function of various geomagnetic indices, solar wind parameters, and radial distance from the Earth. Our results are in agreement with previous studies that demonstrated the energy dependence of these two mechanisms. We show that EMIC wave scattering tends to dominate loss at lower L shells, and it may amount to between 10\%/hr and 30\%/hr of the maximum value of phase space density (PSD) over all L shells for fixed first and second adiabatic invariants. On the other hand, magnetopause shadowing is found to deplete electrons across all energies, mostly at higher L shells, resulting in loss from 50\%/hr to 70\%/hr of the maximum PSD. Nevertheless, during times of enhanced geomagnetic activity, both processes can operate beyond such location and encompass the entire outer radiation belt.}, language = {en} } @article{SmirnovBerrendorfShpritsetal.2020, author = {Smirnov, Artem and Berrendorf, Max and Shprits, Yuri and Kronberg, Elena A. and Allison, Hayley J. and Aseev, Nikita and Zhelavskaya, Irina and Morley, Steven K. and Reeves, Geoffrey D. and Carver, Matthew R. and Effenberger, Frederic}, title = {Medium energy electron flux in earth's outer radiation belt (MERLIN)}, series = {Space weather : the international journal of research and applications}, volume = {18}, journal = {Space weather : the international journal of research and applications}, number = {11}, publisher = {American geophysical union, AGU}, address = {Washington}, issn = {1542-7390}, doi = {10.1029/2020SW002532}, pages = {20}, year = {2020}, abstract = {The radiation belts of the Earth, filled with energetic electrons, comprise complex and dynamic systems that pose a significant threat to satellite operation. While various models of electron flux both for low and relativistic energies have been developed, the behavior of medium energy (120-600 keV) electrons, especially in the MEO region, remains poorly quantified. At these energies, electrons are driven by both convective and diffusive transport, and their prediction usually requires sophisticated 4D modeling codes. In this paper, we present an alternative approach using the Light Gradient Boosting (LightGBM) machine learning algorithm. The Medium Energy electRon fLux In Earth's outer radiatioN belt (MERLIN) model takes as input the satellite position, a combination of geomagnetic indices and solar wind parameters including the time history of velocity, and does not use persistence. MERLIN is trained on >15 years of the GPS electron flux data and tested on more than 1.5 years of measurements. Tenfold cross validation yields that the model predicts the MEO radiation environment well, both in terms of dynamics and amplitudes o f flux. Evaluation on the test set shows high correlation between the predicted and observed electron flux (0.8) and low values of absolute error. The MERLIN model can have wide space weather applications, providing information for the scientific community in the form of radiation belts reconstructions, as well as industry for satellite mission design, nowcast of the MEO environment, and surface charging analysis.}, language = {en} } @phdthesis{Aseev2020, author = {Aseev, Nikita}, title = {Modeling and understanding dynamics of charged particles in the Earth's inner magnetosphere}, doi = {10.25932/publishup-47921}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-479211}, school = {Universit{\"a}t Potsdam}, pages = {xxii, 154}, year = {2020}, abstract = {The Earth's inner magnetosphere is a very dynamic system, mostly driven by the external solar wind forcing exerted upon the magnetic field of our planet. Disturbances in the solar wind, such as coronal mass ejections and co-rotating interaction regions, cause geomagnetic storms, which lead to prominent changes in charged particle populations of the inner magnetosphere - the plasmasphere, ring current, and radiation belts. Satellites operating in the regions of elevated energetic and relativistic electron fluxes can be damaged by deep dielectric or surface charging during severe space weather events. Predicting the dynamics of the charged particles and mitigating their effects on the infrastructure is of particular importance, due to our increasing reliance on space technologies. The dynamics of particles in the plasmasphere, ring current, and radiation belts are strongly coupled by means of collisions and collisionless interactions with electromagnetic fields induced by the motion of charged particles. Multidimensional numerical models simplify the treatment of transport, acceleration, and loss processes of these particles, and allow us to predict how the near-Earth space environment responds to solar storms. The models inevitably rely on a number of simplifications and assumptions that affect model accuracy and complicate the interpretation of the results. In this dissertation, we quantify the processes that control electron dynamics in the inner magnetosphere, paying particular attention to the uncertainties of the employed numerical codes and tools. We use a set of convenient analytical solutions for advection and diffusion equations to test the accuracy and stability of the four-dimensional Versatile Electron Radiation Belt (VERB-4D) code. We show that numerical schemes implemented in the code converge to the analytical solutions and that the VERB-4D code demonstrates stable behavior independent of the assumed time step. The order of the numerical scheme for the convection equation is demonstrated to affect results of ring current and radiation belt simulations, and it is crucially important to use high-order numerical schemes to decrease numerical errors in the model. Using the thoroughly tested VERB-4D code, we model the dynamics of the ring current electrons during the 17 March 2013 storm. The discrepancies between the model and observations above 4.5 Earth's radii can be explained by uncertainties in the outer boundary conditions. Simulation results indicate that the electrons were transported from the geostationary orbit towards the Earth by the global-scale electric and magnetic fields. We investigate how simulation results depend on the input models and parameters. The model is shown to be particularly sensitive to the global electric field and electron lifetimes below 4.5 Earth's radii. The effects of radial diffusion and subauroral polarization streams are also quantified. We developed a data-assimilative code that blends together a convection model of energetic electron transport and loss and Van Allen Probes satellite data by means of the Kalman filter. We show that the Kalman filter can correct model uncertainties in the convection electric field, electron lifetimes, and boundary conditions. It is also demonstrated how the innovation vector - the difference between observations and model prediction - can be used to identify physical processes missing in the model of energetic electron dynamics. We computed radial profiles of phase space density of ultrarelativistic electrons, using Van Allen Probes measurements. We analyze the shape of the profiles during geomagnetically quiet and disturbed times and show that the formation of new local minimums in the radial profiles coincides with the ground observations of electromagnetic ion-cyclotron (EMIC) waves. This correlation indicates that EMIC waves are responsible for the loss of ultrarelativistic electrons from the heart of the outer radiation belt into the Earth's atmosphere.}, language = {en} } @article{PerdigonToroZhangMarkinaetal.2020, author = {Perdig{\´o}n-Toro, Lorena and Zhang, Huotian and Markina, Anastaa si and Yuan, Jun and Hosseini, Seyed Mehrdad and Wolff, Christian Michael and Zuo, Guangzheng and Stolterfoht, Martin and Zou, Yingping and Gao, Feng and Andrienko, Denis and Shoaee, Safa and Neher, Dieter}, title = {Barrierless free charge generation in the high-performance PM6:Y6 bulk heterojunction non-fullerene solar cell}, series = {Advanced materials}, volume = {32}, journal = {Advanced materials}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201906763}, pages = {9}, year = {2020}, abstract = {Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier.}, language = {en} } @article{SandbergKurpiersStolterfohtetal.2020, author = {Sandberg, Oskar J. and Kurpiers, Jona and Stolterfoht, Martin and Neher, Dieter and Meredith, Paul and Shoaee, Safa and Armin, Ardalan}, title = {On the question of the need for a built-in potential in Perovskite solar cells}, series = {Advanced materials interfaces}, volume = {7}, journal = {Advanced materials interfaces}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202000041}, pages = {8}, year = {2020}, abstract = {Perovskite semiconductors as the active materials in efficient solar cells exhibit free carrier diffusion lengths on the order of microns at low illumination fluxes and many hundreds of nanometers under 1 sun conditions. These lengthscales are significantly larger than typical junction thicknesses, and thus the carrier transport and charge collection should be expected to be diffusion controlled. A consensus along these lines is emerging in the field. However, the question as to whether the built-in potential plays any role is still of matter of some conjecture. This important question using phase-sensitive photocurrent measurements and theoretical device simulations based upon the drift-diffusion framework is addressed. In particular, the role of the built-in electric field and charge-selective transport layers in state-of-the-art p-i-n perovskite solar cells comparing experimental findings and simulation predictions is probed. It is found that while charge collection in the junction does not require a drift field per se, a built-in potential is still needed to avoid the formation of reverse electric fields inside the active layer, and to ensure efficient extraction through the charge transport layers.}, language = {en} } @article{JiangTaoStolterfohtetal.2020, author = {Jiang, Wei and Tao, Chen and Stolterfoht, Martin and Jin, Hui and Stephen, Meera and Lin, Qianqian and Nagiri, Ravi C. R. and Burn, Paul L. and Gentle, Ian R.}, title = {Hole-transporting materials for low donor content organic solar cells}, series = {Organic electronics : physics, materials and applications}, volume = {76}, journal = {Organic electronics : physics, materials and applications}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1566-1199}, doi = {10.1016/j.orgel.2019.105480}, pages = {7}, year = {2020}, abstract = {Low donor content solar cells are an intriguing class of photovoltaic device about which there is still considerable discussion with respect to their mode of operation. We have synthesized a series of triphenylamine-based materials for use in low donor content devices with the electron accepting [6,6]-phenyl-C71-butyric acid methyl ester (PC(7)0BM). The triphenylamine-based materials absorb light in the near UV enabling the PC(7)0BM to be be the main light absorbing organic semiconducting material in the solar cell. It was found that the devices did not operate as classical Schottky junctions but rather photocurrent was generated by hole transfer from the photo-excited PC(7)0BM to the triphenylamine-based donors. We found that replacing the methoxy surface groups with methyl groups on the donor material led to a decrease in hole mobility for the neat films, which was due to the methyl substituted materials having the propensity to aggregate. The thermodynamic drive to aggregate was advantageous for the performance of the low donor content (6 wt\%) films. It was found that the 6 wt\% donor devices generally gave higher performance than devices containing 50 wt\% of the donor.}, language = {en} } @misc{WolffCanilRehermannetal.2020, author = {Wolff, Christian Michael and Canil, Laura and Rehermann, Carolin and Nguyen, Ngoc Linh and Zu, Fengshuo and Ralaiarisoa, Maryline and Caprioglio, Pietro and Fiedler, Lukas and Stolterfoht, Martin and Kogikoski, Junior, Sergio and Bald, Ilko and Koch, Norbert and Unger, Eva L. and Dittrich, Thomas and Abate, Antonio and Neher, Dieter}, title = {Correction to 'Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells' (2020, 14 (2), 1445-1456)}, series = {ACS nano}, volume = {14}, journal = {ACS nano}, number = {11}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1936-0851}, doi = {10.1021/acsnano.0c08081}, pages = {16156 -- 16156}, year = {2020}, language = {en} } @article{KirchartzMarquezStolterfohtetal.2020, author = {Kirchartz, Thomas and M{\´a}rquez, Jos{\´e} A. and Stolterfoht, Martin and Unold, Thomas}, title = {Photoluminescence-based characterization of halide perovskites for photovoltaics}, series = {Advanced Energy Materials}, volume = {10}, journal = {Advanced Energy Materials}, number = {26}, publisher = {Wiley}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201904134}, pages = {1 -- 21}, year = {2020}, abstract = {Photoluminescence spectroscopy is a widely applied characterization technique for semiconductor materials in general and halide perovskite solar cell materials in particular. It can give direct information on the recombination kinetics and processes as well as the internal electrochemical potential of free charge carriers in single semiconductor layers, layer stacks with transport layers, and complete solar cells. The correct evaluation and interpretation of photoluminescence requires the consideration of proper excitation conditions, calibration and application of the appropriate approximations to the rather complex theory, which includes radiative recombination, non-radiative recombination, interface recombination, charge transfer, and photon recycling. In this article, an overview is given of the theory and application to specific halide perovskite compositions, illustrating the variables that should be considered when applying photoluminescence analysis in these materials.}, language = {en} } @misc{KirchartzMarquezStolterfohtetal.2020, author = {Kirchartz, Thomas and M{\´a}rquez, Jos{\´e} A. and Stolterfoht, Martin and Unold, Thomas}, title = {Photoluminescence-based characterization of halide perovskites for photovoltaics}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {26}, issn = {1866-8372}, doi = {10.25932/publishup-51970}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519702}, pages = {23}, year = {2020}, abstract = {Photoluminescence spectroscopy is a widely applied characterization technique for semiconductor materials in general and halide perovskite solar cell materials in particular. It can give direct information on the recombination kinetics and processes as well as the internal electrochemical potential of free charge carriers in single semiconductor layers, layer stacks with transport layers, and complete solar cells. The correct evaluation and interpretation of photoluminescence requires the consideration of proper excitation conditions, calibration and application of the appropriate approximations to the rather complex theory, which includes radiative recombination, non-radiative recombination, interface recombination, charge transfer, and photon recycling. In this article, an overview is given of the theory and application to specific halide perovskite compositions, illustrating the variables that should be considered when applying photoluminescence analysis in these materials.}, language = {en} } @article{WangSmithSkroblinetal.2020, author = {Wang, Qiong and Smith, Joel A. and Skroblin, Dieter and Steele, Julian A. and Wolff, Christian Michael and Caprioglio, Pietro and Stolterfoht, Martin and K{\"o}bler, Hans and Turren-Cruz, Silver-Hamill and Li, Meng and Gollwitzer, Christian and Neher, Dieter and Abate, Antonio}, title = {Managing phase purities and crystal orientation for high-performance and photostable cesium lead halide perovskite solar cells}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {9}, publisher = {WILEY-VCH}, address = {Weinheim}, pages = {9}, year = {2020}, abstract = {Inorganic perovskites with cesium (Cs+) as the cation have great potential as photovoltaic materials if their phase purity and stability can be addressed. Herein, a series of inorganic perovskites is studied, and it is found that the power conversion efficiency of solar cells with compositions CsPbI1.8Br1.2, CsPbI2.0Br1.0, and CsPbI2.2Br0.8 exhibits a high dependence on the initial annealing step that is found to significantly affect the crystallization and texture behavior of the final perovskite film. At its optimized annealing temperature, CsPbI1.8Br1.2 exhibits a pure orthorhombic phase and only one crystal orientation of the (110) plane. Consequently, this allows for the best efficiency of up to 14.6\% and the longest operational lifetime, T-S80, of approximate to 300 h, averaged of over six solar cells, during the maximum power point tracking measurement under continuous light illumination and nitrogen atmosphere. This work provides essential progress on the enhancement of photovoltaic performance and stability of CsPbI3 - xBrx perovskite solar cells.}, language = {en} } @article{SamsonRechPerdigonToroetal.2020, author = {Samson, Stephanie and Rech, Jeromy and Perdig{\´o}n-Toro, Lorena and Peng, Zhengxing and Shoaee, Safa and Ade, Harald and Neher, Dieter and Stolterfoht, Martin and You, Wei}, title = {Organic solar cells with large insensitivity to donor polymer molar mass across all acceptor classes}, series = {ACS applied polymer materials}, volume = {2}, journal = {ACS applied polymer materials}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2637-6105}, doi = {10.1021/acsapm.0c01041}, pages = {5300 -- 5308}, year = {2020}, abstract = {Donor polymer number-average molar mass (M-n) has long been known to influence organic photovoltaic (OPV) performance via changes in both the polymer properties and the resulting bulk heterojunction morphology. The exact nature of these M-n effects varies from system to system, although there is generally some intermediate M-n that results in optimal performance. Interestingly, our earlier work with the difluorobenzotriazole (FTAZ)-based donor polymer, paired with either N2200 (polymer acceptor) or PC61BM (fullerene acceptor), PcBm demonstrated <10\% variation in power conversion efficiency and a consistent morphology over a large span of M-n (30 kg/mol to over 100 kg/mol). Would such insensitivity to polymer M-n still hold true when prevailing small molecular acceptors were used with FTAZ? To answer this question, we explored the impact of FTAZ on OPVs with ITIC, a high-performance small-molecule fused-ring electron acceptor (FREA). By probing the photovoltaic characteristics of the resulting OPVs, we show that a similar FTAZ mn insensitivity is also found in the FTAZ:ITIC system. This study highlights a single-donor polymer which, when paired with an archetypal fullerene, polymer, and FREA, results in systems that are largely insensitive to donor M. Our results may have implications in polymer batch-to-batch reproducibility, in particular, relaxing the need for tight M-n control during synthesis.}, language = {en} } @misc{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {7}, issn = {1866-8372}, doi = {10.25932/publishup-52566}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525668}, pages = {12}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} } @article{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {7}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {10}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} } @article{RaoufiHoermannLigorioetal.2020, author = {Raoufi, Meysam and H{\"o}rmann, Ulrich and Ligorio, Giovanni and Hildebrandt, Jana and P{\"a}tzel, Michael and Schultz, Thorsten and Perdig{\´o}n-Toro, Lorena and Koch, Norbert and List-Kratochvil, Emil and Hecht, Stefan and Neher, Dieter}, title = {Simultaneous effect of ultraviolet radiation and surface modification on the work function and hole injection properties of ZnO thin films}, series = {Physica Status Solidi. A , Applications and materials science}, volume = {217}, journal = {Physica Status Solidi. A , Applications and materials science}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201900876}, pages = {1 -- 6}, year = {2020}, abstract = {The combined effect of ultraviolet (UV) light soaking and self-assembled monolayer deposition on the work function (WF) of thin ZnO layers and on the efficiency of hole injection into the prototypical conjugated polymer poly(3-hexylthiophen-2,5-diyl) (P3HT) is systematically investigated. It is shown that the WF and injection efficiency depend strongly on the history of UV light exposure. Proper treatment of the ZnO layer enables ohmic hole injection into P3HT, demonstrating ZnO as a potential anode material for organic optoelectronic devices. The results also suggest that valid conclusions on the energy-level alignment at the ZnO/organic interfaces may only be drawn if the illumination history is precisely known and controlled. This is inherently problematic when comparing electronic data from ultraviolet photoelectron spectroscopy (UPS) measurements carried out under different or ill-defined illumination conditions.}, language = {en} } @article{CiemerRehmKurthsetal.2020, author = {Ciemer, Catrin and Rehm, Lars and Kurths, J{\"u}rgen and Donner, Reik Volker and Winkelmann, Ricarda and Boers, Niklas}, title = {An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures}, series = {Environmental Research Letters}, volume = {15}, journal = {Environmental Research Letters}, number = {9}, publisher = {IOP - Institute of Physics Publishing}, address = {Bristol}, pages = {10}, year = {2020}, abstract = {Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months.}, language = {en} } @article{SeroussiNowickiPayneetal.2020, author = {Seroussi, Helene and Nowicki, Sophie and Payne, Antony J. and Goelzer, Heiko and Lipscomb, William H. and Abe-Ouchi, Ayako and Agosta, Cecile and Albrecht, Torsten and Asay-Davis, Xylar and Barthel, Alice and Calov, Reinhard and Cullather, Richard and Dumas, Christophe and Galton-Fenzi, Benjamin K. and Gladstone, Rupert and Golledge, Nicholas R. and Gregory, Jonathan M. and Greve, Ralf and Hattermann, Tore and Hoffman, Matthew J. and Humbert, Angelika and Huybrechts, Philippe and Jourdain, Nicolas C. and Kleiner, Thomas and Larour, Eric and Leguy, Gunter R. and Lowry, Daniel P. and Little, Chistopher M. and Morlighem, Mathieu and Pattyn, Frank and Pelle, Tyler and Price, Stephen F. and Quiquet, Aurelien and Reese, Ronja and Schlegel, Nicole-Jeanne and Shepherd, Andrew and Simon, Erika and Smith, Robin S. and Straneo, Fiammetta and Sun, Sainan and Trusel, Luke D. and Van Breedam, Jonas and van de Wal, Roderik S. W. and Winkelmann, Ricarda and Zhao, Chen and Zhang, Tong and Zwinger, Thomas}, title = {ISMIP6 Antarctica}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-14-3033-2020}, pages = {3033 -- 3070}, year = {2020}, abstract = {Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6 :1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.}, language = {en} } @article{ReeseLevermannAlbrechtetal.2020, author = {Reese, Ronja and Levermann, Anders and Albrecht, Torsten and Seroussi, Helene and Winkelmann, Ricarda}, title = {The role of history and strength of the oceanic forcing in sea level projections from Antarctica with the Parallel Ice Sheet Model}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-14-3097-2020}, pages = {3097 -- 3110}, year = {2020}, abstract = {Mass loss from the Antarctic Ice Sheet constitutes the largest uncertainty in projections of future sea level rise. Ocean-driven melting underneath the floating ice shelves and subsequent acceleration of the inland ice streams are the major reasons for currently observed mass loss from Antarctica and are expected to become more important in the future. Here we show that for projections of future mass loss from the Antarctic Ice Sheet, it is essential (1) to better constrain the sensitivity of sub-shelf melt rates to ocean warming and (2) to include the historic trajectory of the ice sheet. In particular, we find that while the ice sheet response in simulations using the Parallel Ice Sheet Model is comparable to the median response of models in three Antarctic Ice Sheet Intercomparison projects - initMIP, LARMIP-2 and ISMIP6 - conducted with a range of ice sheet models, the projected 21st century sea level contribution differs significantly depending on these two factors. For the highest emission scenario RCP8.5, this leads to projected ice loss ranging from 1:4 to 4:0 cm of sea level equivalent in simulations in which ISMIP6 ocean forcing drives the PICO ocean box model where parameter tuning leads to a comparably low sub-shelf melt sensitivity and in which no surface forcing is applied. This is opposed to a likely range of 9:1 to 35:8 cm using the exact same initial setup, but emulated from the LARMIP-2 experiments with a higher melt sensitivity, even though both projects use forcing from climate models and melt rates are calibrated with previous oceanographic studies. Furthermore, using two initial states, one with a previous historic simulation from 1850 to 2014 and one starting from a steady state, we show that while differences between the ice sheet configurations in 2015 seem marginal at first sight, the historic simulation increases the susceptibility of the ice sheet to ocean warming, thereby increasing mass loss from 2015 to 2100 by 5\% to 50 \%. Hindcasting past ice sheet changes with numerical models would thus provide valuable tools to better constrain projections. Our results emphasize that the uncertainty that arises from the forcing is of the same order of magnitude as the ice dynamic response for future sea level projections.}, language = {en} } @article{ZeitzLevermannWinkelmann2020, author = {Zeitz, Maria and Levermann, Anders and Winkelmann, Ricarda}, title = {Sensitivity of ice loss to uncertainty in flow law parameters in an idealized one-dimensional geometry}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {10}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-14-3537-2020}, pages = {3537 -- 3550}, year = {2020}, abstract = {Acceleration of the flow of ice drives mass losses in both the Antarctic and the Greenland Ice Sheet. The projections of possible future sea-level rise rely on numerical ice-sheet models, which solve the physics of ice flow, melt, and calving. While major advancements have been made by the ice-sheet modeling community in addressing several of the related uncertainties, the flow law, which is at the center of most process-based ice-sheet models, is not in the focus of the current scientific debate. However, recent studies show that the flow law parameters are highly uncertain and might be different from the widely accepted standard values. Here, we use an idealized flow-line setup to investigate how these uncertainties in the flow law translate into uncertainties in flow-driven mass loss. In order to disentangle the effect of future warming on the ice flow from other effects, we perform a suite of experiments with the Parallel Ice Sheet Model (PISM), deliberately excluding changes in the surface mass balance. We find that changes in the flow parameters within the observed range can lead up to a doubling of the flow-driven mass loss within the first centuries of warming, compared to standard parameters. The spread of ice loss due to the uncertainty in flow parameters is on the same order of magnitude as the increase in mass loss due to surface warming. While this study focuses on an idealized flow-line geometry, it is likely that this uncertainty carries over to realistic three-dimensional simulations of Greenland and Antarctica.}, language = {en} } @article{AlbrechtWinkelmannLevermann2020, author = {Albrecht, Torsten and Winkelmann, Ricarda and Levermann, Anders}, title = {Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM)}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-14-633-2020}, pages = {633 -- 656}, year = {2020}, abstract = {The Parallel Ice Sheet Model (PISM) is applied to the Antarctic Ice Sheet over the last two glacial cycles (approximate to 210 000 years) with a resolution of 16 km. An ensemble of 256 model runs is analyzed in which four relevant model parameters have been systematically varied using full-factorial parameter sampling. Parameters and plausible parameter ranges have been identified in a companion paper (Albrecht et al., 2020) and are associated with ice dynamics, climatic forcing, basal sliding and bed deformation and represent distinct classes of model uncertainties. The model is scored against both modern and geologic data, including reconstructed grounding-line locations, elevation-age data, ice thickness, surface velocities and uplift rates. An aggregated score is computed for each ensemble member that measures the overall model-data misfit, including measurement uncertainty in terms of a Gaussian error model (Briggs and Tarasov, 2013). The statistical method used to analyze the ensemble simulation results follows closely the simple averaging method described in Pollard et al. (2016). This analysis reveals clusters of best-fit parameter combinations, and hence a likely range of relevant model and boundary parameters, rather than individual best-fit parameters. The ensemble of reconstructed histories of Antarctic Ice Sheet volumes provides a score-weighted likely range of sea-level contributions since the Last Glacial Maximum (LGM) of 9.4 +/- 4.1m (or 6.5 +/- 2.0 x 10(6) km(3)), which is at the upper range of most previous studies. The last deglaciation occurs in all ensemble simulations after around 12 000 years before present and hence after the meltwater pulse 1A (MWP1a). Our ensemble analysis also provides an estimate of parametric uncertainty bounds for the present-day state that can be used for PISM projections of future sea-level contributions from the Antarctic Ice Sheet.}, language = {en} } @article{GarbeAlbrechtLevermannetal.2020, author = {Garbe, Julius and Albrecht, Torsten and Levermann, Anders and Donges, Jonathan and Winkelmann, Ricarda}, title = {The hysteresis of the Antarctic Ice Sheet}, series = {Nature : the international weekly journal of science}, volume = {585}, journal = {Nature : the international weekly journal of science}, number = {7826}, publisher = {Macmillan Publishers Limited}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/s41586-020-2727-5}, pages = {538 -- 544}, year = {2020}, abstract = {More than half of Earth's freshwater resources are held by the Antarctic Ice Sheet, which thus represents by far the largest potential source for global sea-level rise under future warming conditions(1). Its long-term stability determines the fate of our coastal cities and cultural heritage. Feedbacks between ice, atmosphere, ocean, and the solid Earth give rise to potential nonlinearities in its response to temperature changes. So far, we are lacking a comprehensive stability analysis of the Antarctic Ice Sheet for different amounts of global warming. Here we show that the Antarctic Ice Sheet exhibits a multitude of temperature thresholds beyond which ice loss is irreversible. Consistent with palaeodata(2)we find, using the Parallel Ice Sheet Model(3-5), that at global warming levels around 2 degrees Celsius above pre-industrial levels, West Antarctica is committed to long-term partial collapse owing to the marine ice-sheet instability. Between 6 and 9 degrees of warming above pre-industrial levels, the loss of more than 70 per cent of the present-day ice volume is triggered, mainly caused by the surface elevation feedback. At more than 10 degrees of warming above pre-industrial levels, Antarctica is committed to become virtually ice-free. The ice sheet's temperature sensitivity is 1.3 metres of sea-level equivalent per degree of warming up to 2 degrees above pre-industrial levels, almost doubling to 2.4 metres per degree of warming between 2 and 6 degrees and increasing to about 10 metres per degree of warming between 6 and 9 degrees. Each of these thresholds gives rise to hysteresis behaviour: that is, the currently observed ice-sheet configuration is not regained even if temperatures are reversed to present-day levels. In particular, the West Antarctic Ice Sheet does not regrow to its modern extent until temperatures are at least one degree Celsius lower than pre-industrial levels. Our results show that if the Paris Agreement is not met, Antarctica's long-term sea-level contribution will dramatically increase and exceed that of all other sources.
Modelling shows that the Antarctic Ice Sheet exhibits multiple temperature thresholds beyond which ice loss would become irreversible, and once melted, the ice sheet can regain its previous mass only if the climate cools well below pre-industrial temperatures.}, language = {en} } @article{WunderlingWilleitDongesetal.2020, author = {Wunderling, Nico and Willeit, Matteo and Donges, Jonathan and Winkelmann, Ricarda}, title = {Global warming due to loss of large ice masses and Arctic summer sea ice}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-020-18934-3}, pages = {14}, year = {2020}, abstract = {Several large-scale cryosphere elements such as the Arctic summer sea ice, the mountain glaciers, the Greenland and West Antarctic Ice Sheet have changed substantially during the last century due to anthropogenic global warming. However, the impacts of their possible future disintegration on global mean temperature (GMT) and climate feedbacks have not yet been comprehensively evaluated. Here, we quantify this response using an Earth system model of intermediate complexity. Overall, we find a median additional global warming of 0.43 degrees C (interquartile range: 0.39-0.46 degrees C) at a CO2 concentration of 400 ppm. Most of this response (55\%) is caused by albedo changes, but lapse rate together with water vapour (30\%) and cloud feedbacks (15\%) also contribute significantly. While a decay of the ice sheets would occur on centennial to millennial time scales, the Arctic might become ice-free during summer within the 21st century. Our findings imply an additional increase of the GMT on intermediate to long time scales. The disintegration of cryosphere elements such as the Arctic summer sea ice, mountain glaciers, Greenland and West Antarctica is associated with temperature and radiative feedbacks. In this work, the authors quantify these feedbacks and find an additional global warming of 0.43 degrees C.}, language = {en} } @article{AbdallaAdamAharonianetal.2020, author = {Abdalla, H. and Adam, R. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arcaro, C. and Armand, C. and Armstrong, T. and Ashkar, H. and Backes, M. and Baghmanyan, V. and Martins, V. Barbosa and Barnacka, A. and Barnard, M. and Becherini, Y. and Berge, D. and Bernlohr, K. and Bi, B. and Bottcher, M. and Boisson, C. and Bolmont, J. and de Lavergne, M. de Bony and Bordas, Pol and Breuhaus, M. and Brun, F. and Brun, P. and Bryan, M. and Buchele, M. and Bulik, T. and Bylund, T. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Chand, T. and Chandra, S. and Chen, A. and Cotter, G. and Curylo, M. and Mbarubucyeye, J. Damascene and Davids, I. D. and Davies, J. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V. and Duffy, C. and Dyks, J. and Egberts, Kathrin and Eichhorn, F. and Einecke, S. and Emery, G. and Ernenwein, J. -P. and Feijen, K. and Fegan, S. and Fiasson, A. and de Clairfontaine, G. Fichet and Fontaine, G. and Funk, S. and Fussling, Matthias and Gabici, S. and Gallant, Y. A. and Giavitto, G. and Giunti, L. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Hermann, G. and Hinton, J. A. and Hofmann, W. and Hoischen, Clemens and Holch, T. L. and Holler, M. and Horbe, M. and Horns, D. and Huber, D. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jardin-Blicq, A. and Joshi, V. and Jung-Richardt, I. and Kasai, E. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Khangulyan, D. and Khelifi, B. and Klepser, S. and Kluzniak, W. and Komin, Nu. and Konno, R. and Kosack, K. and Kostunin, D. and Kreter, M. and Lamanna, G. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Levy, C. and Lohse, T. and Lypova, I. and Mackey, J. and Majumdar, J. and Malyshev, D. and Malyshev, D. and Marandon, V. and Marchegiani, P. and Marcowith, Alexandre and Mares, A. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Meintjes, P. J. and Meyer, M. and Mitchell, A. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Montanari, A. and Moore, C. and Morris, P. and Moulin, Emmanuel and Muller, J. and Murach, T. and Nakashima, K. and Nayerhoda, A. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and O'Brien, Patrick and Odaka, H. and Ohm, S. and Olivera-Nieto, L. and Wilhelmi, E. de Ona and Ostrowski, M. and Oya, I. and Panter, M. and Panny, S. and Parsons, R. D. and Peron, G. and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V. and Noel, A. Priyana and Prokhorov, D. A. and Prokoph, H. and Puhlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reichherzer, P. and Reimer, A. and Reimer, O. and Remy, Q. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V. and Sailer, S. and Sanchez, D. A. and Santangelo, Andrea and Sasaki, M. and Scalici, M. and Schussler, F. and Schutte, H. M. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Specovius, A. and Spencer, S. and Spir-Jacob, M. and Stawarz, L. and Sun, L. and Steenkamp, R. and Stegmann, C. and Steinmassl, S. and Steppa, C. and Takahashi, T. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tiziani, D. and Tluczykont, M. and Tomankova, L. and Trichard, C. and Tsirou, M. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Volk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Watson, J. and Werner, F. and White, R. and Wierzcholska, A. and Wong, Yu Wun and Yusafzai, A. and Zacharias, M. and Zanin, R. and Zargaryan, D. and Zdziarski, A. A. and Zech, Alraune and Zhu, S. J. and Ziegler, A. and Zorn, J. and Zouari, S. and Zywucka, N.}, title = {An extreme particle accelerator in the Galactic plane}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {644}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/202038851}, pages = {8}, year = {2020}, abstract = {The unidentified very-high-energy (VHE; E > 0.1 TeV) gamma -ray source, HESS J1826-130, was discovered with the High Energy Stereoscopic System (HESS) in the Galactic plane. The analysis of 215 h of HESS data has revealed a steady gamma -ray flux from HESS J1826-130, which appears extended with a half-width of 0.21 degrees +/- 0.02
(stat)degrees
stat degrees +/- 0.05
(sys)degrees sys degrees . The source spectrum is best fit with either a power-law function with a spectral index Gamma = 1.78 +/- 0.10(stat) +/- 0.20(sys) and an exponential cut-off at 15.2
(+5.5)(-3.2) -3.2+5.5 TeV, or a broken power-law with Gamma (1) = 1.96 +/- 0.06(stat) +/- 0.20(sys), Gamma (2) = 3.59 +/- 0.69(stat) +/- 0.20(sys) for energies below and above E-br = 11.2 +/- 2.7 TeV, respectively. The VHE flux from HESS J1826-130 is contaminated by the extended emission of the bright, nearby pulsar wind nebula, HESS J1825-137, particularly at the low end of the energy spectrum. Leptonic scenarios for the origin of HESS J1826-130 VHE emission related to PSR J1826-1256 are confronted by our spectral and morphological analysis. In a hadronic framework, taking into account the properties of dense gas regions surrounding HESS J1826-130, the source spectrum would imply an astrophysical object capable of accelerating the parent particle population up to greater than or similar to 200 TeV. Our results are also discussed in a multiwavelength context, accounting for both the presence of nearby supernova remnants, molecular clouds, and counterparts detected in radio, X-rays, and TeV energies.}, language = {en} } @article{ChengZhangKliemetal.2020, author = {Cheng, Xin and Zhang, Jie and Kliem, Bernhard and T{\"o}r{\"o}k, Tibor and Xing, Chen and Zhou, Zhenjun and Inhester, Bernd and Ding, Mingde}, title = {Initiation and early kinematic evolution of solar eruptions}, series = {The Astrophysical Journal}, volume = {894}, journal = {The Astrophysical Journal}, number = {2}, publisher = {Cambridge Scientific Publishers}, address = {Cambridge}, issn = {1055-6796}, doi = {10.3847/1538-4357/ab886a}, pages = {1 -- 20}, year = {2020}, abstract = {We investigate the initiation and early evolution of 12 solar eruptions, including six active-region hot channel and six quiescent filament eruptions, which were well observed by the Solar Dynamics Observatory, as well as by the Solar Terrestrial Relations Observatory for the latter. The sample includes one failed eruption and 11 coronal mass ejections, with velocities ranging from 493 to 2140 km s(-1). A detailed analysis of the eruption kinematics yields the following main results. (1) The early evolution of all events consists of a slow-rise phase followed by a main-acceleration phase, the height-time profiles of which differ markedly and can be best fit, respectively, by a linear and an exponential function. This indicates that different physical processes dominate in these phases, which is at variance with models that involve a single process. (2) The kinematic evolution of the eruptions tends to be synchronized with the flare light curve in both phases. The synchronization is often but not always close. A delayed onset of the impulsive flare phase is found in the majority of the filament eruptions (five out of six). This delay and its trend to be larger for slower eruptions favor ideal MHD instability models. (3) The average decay index at the onset heights of the main acceleration is close to the threshold of the torus instability for both groups of events (although, it is based on a tentative coronal field model for the hot channels), suggesting that this instability initiates and possibly drives the main acceleration.}, language = {en} } @article{FulmerGallagherHamannetal.2020, author = {Fulmer, Leah M. and Gallagher, John S. and Hamann, Wolf-Rainer and Oskinova, Lidia M. and Ramachandran, Varsha}, title = {Testing massive star evolution, star-formation history, and feedback at low metallicity}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {633}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201834314}, pages = {9}, year = {2020}, abstract = {Context. The supergiant ionized shell SMC-SGS 1 (DEM 167), which is located in the outer Wing of the Small Magellanic Cloud (SMC), resembles structures that originate from an energetic star-formation event and later stimulate star formation as they expand into the ambient medium. However, stellar populations within and surrounding SMC-SGS 1 tell a different story. Aims. We present a photometric study of the stellar population encompassed by SMC-SGS 1 in order to trace the history of such a large structure and its potential influence on star formation within the low-density, low-metallicity environment of the SMC. Methods. For a stellar population that is physically associated with SMC-SGS 1, we combined near-ultraviolet (NUV) photometry from the Galaxy Evolution Explorer with archival optical (V-band) photometry from the ESO Danish 1.54 m Telescope. Given their colors and luminosities, we estimated stellar ages and masses by matching observed photometry to theoretical stellar isochrone models. Results. We find that the investigated region supports an active, extended star-formation event spanning similar to 25-40 Myr ago, as well as continued star formation into the present. Using a standard initial mass function, we infer a lower bound on the stellar mass from this period of similar to 3 x 10(4) M-circle dot, corresponding to a star-formation intensity of similar to 6 x 10(-3) M-circle dot kpc(-2) yr(-1). Conclusions. The spatial and temporal distributions of young stars encompassed by SMC-SGS 1 imply a slow, consistent progression of star formation over millions of years. Ongoing star formation, both along the edge and interior to SMC-SGS 1, suggests a combined stimulated and stochastic mode of star formation within the SMC Wing. We note that a slow expansion of the shell within this low-density environment may preserve molecular clouds within the volume of the shell, leaving them to form stars even after nearby stellar feedback expels local gas and dust.}, language = {en} } @article{ToenjesPikovsky2020, author = {T{\"o}njes, Ralf and Pikovsky, Arkady}, title = {Low-dimensional description for ensembles of identical phase oscillators subject to Cauchy noise}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {102}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.102.052315}, pages = {5}, year = {2020}, abstract = {We study ensembles of globally coupled or forced identical phase oscillators subject to independent white Cauchy noise. We demonstrate that if the oscillators are forced in several harmonics, stationary synchronous regimes can be exactly described with a finite number of complex order parameters. The corresponding distribution of phases is a product of wrapped Cauchy distributions. For sinusoidal forcing, the Ott-Antonsen low-dimensional reduction is recovered.}, language = {en} } @article{GongToenjesPikovsky2020, author = {Gong, Chen Chris and T{\"o}njes, Ralf and Pikovsky, Arkady}, title = {Coupled M{\"o}bius maps as a tool to model Kuramoto phase synchronization}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {102}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.102.022206}, pages = {12}, year = {2020}, abstract = {We propose Mobius maps as a tool to model synchronization phenomena in coupled phase oscillators. Not only does the map provide fast computation of phase synchronization, it also reflects the underlying group structure of the sinusoidally coupled continuous phase dynamics. We study map versions of various known continuous-time collective dynamics, such as the synchronization transition in the Kuramoto-Sakaguchi model of nonidentical oscillators, chimeras in two coupled populations of identical phase oscillators, and Kuramoto-Battogtokh chimeras on a ring, and demonstrate similarities and differences between the iterated map models and their known continuous-time counterparts.}, language = {en} } @misc{GarciaBenitoQuartiQuelozetal.2020, author = {Garc{\´i}a-Benito, In{\´e}s and Quarti, Claudio and Queloz, Valentin I. E. and Hofstetter, Yvonne J. and Becker-Koch, David and Caprioglio, Pietro and Neher, Dieter and Orlandi, Simonetta and Cavazzini, Marco and Pozzi, Gianluca and Even, Jacky and Nazeeruddin, Mohammad Khaja and Vaynzof, Yana and Grancini, Giulia}, title = {Fluorination of organic spacer impacts on the structural and optical response of 2D perovskites}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51242}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512420}, pages = {13}, year = {2020}, abstract = {Low-dimensional hybrid perovskites have triggered significant research interest due to their intrinsically tunable optoelectronic properties and technologically relevant material stability. In particular, the role of the organic spacer on the inherent structural and optical features in two-dimensional (2D) perovskites is paramount for material optimization. To obtain a deeper understanding of the relationship between spacers and the corresponding 2D perovskite film properties, we explore the influence of the partial substitution of hydrogen atoms by fluorine in an alkylammonium organic cation, resulting in (Lc)(2)PbI4 and (Lf)(2)PbI4 2D perovskites, respectively. Consequently, optical analysis reveals a clear 0.2 eV blue-shift in the excitonic position at room temperature. This result can be mainly attributed to a band gap opening, with negligible effects on the exciton binding energy. According to Density Functional Theory (DFT) calculations, the band gap increases due to a larger distortion of the structure that decreases the atomic overlap of the wavefunctions and correspondingly bandwidth of the valence and conduction bands. In addition, fluorination impacts the structural rigidity of the 2D perovskite, resulting in a stable structure at room temperature and the absence of phase transitions at a low temperature, in contrast to the widely reported polymorphism in some non-fluorinated materials that exhibit such a phase transition. This indicates that a small perturbation in the material structure can strongly influence the overall structural stability and related phase transition of 2D perovskites, making them more robust to any phase change. This work provides key information on how the fluorine content in organic spacer influence the structural distortion of 2D perovskites and their optical properties which possess remarkable importance for future optoelectronic applications, for instance in the field of light-emitting devices or sensors.}, language = {en} } @article{ErlerRiebeBeitzetal.2020, author = {Erler, Alexander and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Grothusheitkamp, Daniela and Kunz, Thomas and Methner, Frank-J{\"u}rgen}, title = {Characterization of volatile metabolites formed by molds on barley by mass and ion mobility spectrometry}, series = {Journal of mass spectrometr}, volume = {55}, journal = {Journal of mass spectrometr}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1076-5174}, doi = {10.1002/jms.4501}, pages = {1 -- 10}, year = {2020}, abstract = {The contamination of barley by molds on the field or in storage leads to the spoilage of grain and the production of mycotoxins, which causes major economic losses in malting facilities and breweries. Therefore, on-site detection of hidden fungus contaminations in grain storages based on the detection of volatile marker compounds is of high interest. In this work, the volatile metabolites of 10 different fungus species are identified by gas chromatography (GC) combined with two complementary mass spectrometric methods, namely, electron impact (EI) and chemical ionization at atmospheric pressure (APCI)-mass spectrometry (MS). The APCI source utilizes soft X-radiation, which enables the selective protonation of the volatile metabolites largely without side reactions. Nearly 80 volatile or semivolatile compounds from different substance classes, namely, alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, alkenes, terpenes, oxidized terpenes, sesquiterpenes, and oxidized sesquiterpenes, could be identified. The profiles of volatile and semivolatile metabolites of the different fungus species are characteristic of them and allow their safe differentiation. The application of the same GC parameters and APCI source allows a simple method transfer from MS to ion mobility spectrometry (IMS), which permits on-site analyses of grain stores. Characterization of IMS yields limits of detection very similar to those of APCI-MS. Accordingly, more than 90\% of the volatile metabolites found by APCI-MS were also detected in IMS. In addition to different fungus genera, different species of one fungus genus could also be differentiated by GC-IMS.}, language = {en} } @article{ChenLangeAndjelkovicetal.2020, author = {Chen, Junchao and Lange, Thomas and Andjelkovic, Milos and Simevski, Aleksandar and Krstić, Miloš}, title = {Prediction of solar particle events with SRAM-based soft error rate monitor and supervised machine learning}, series = {Microelectronics reliability}, volume = {114}, journal = {Microelectronics reliability}, publisher = {Elsevier}, address = {Oxford}, issn = {0026-2714}, doi = {10.1016/j.microrel.2020.113799}, pages = {6}, year = {2020}, abstract = {This work introduces an embedded approach for the prediction of Solar Particle Events (SPEs) in space applications by combining the real-time Soft Error Rate (SER) measurement with SRAM-based detector and the offline trained machine learning model. The proposed approach is intended for the self-adaptive fault-tolerant multiprocessing systems employed in space applications. With respect to the state-of-the-art, our solution allows for predicting the SER 1 h in advance and fine-grained hourly tracking of SER variations during SPEs as well as under normal conditions. Therefore, the target system can activate the appropriate mechanisms for radiation hardening before the onset of high radiation levels. Based on the comparison of five different machine learning algorithms trained with the public space flux database, the preliminary results indicate that the best prediction accuracy is achieved with the recurrent neural network (RNN) with long short-term memory (LSTM).}, language = {en} } @article{CabalarFandinoLierler2020, author = {Cabalar, Pedro and Fandi{\~n}o, Jorge and Lierler, Yuliya}, title = {Modular Answer Set Programming as a formal specification language}, series = {Theory and practice of logic programming}, volume = {20}, journal = {Theory and practice of logic programming}, number = {5}, publisher = {Cambridge University Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068420000265}, pages = {767 -- 782}, year = {2020}, abstract = {In this paper, we study the problem of formal verification for Answer Set Programming (ASP), namely, obtaining aformal proofshowing that the answer sets of a given (non-ground) logic programPcorrectly correspond to the solutions to the problem encoded byP, regardless of the problem instance. To this aim, we use a formal specification language based on ASP modules, so that each module can be proved to capture some informal aspect of the problem in an isolated way. This specification language relies on a novel definition of (possibly nested, first order)program modulesthat may incorporate local hidden atoms at different levels. Then,verifyingthe logic programPamounts to prove some kind of equivalence betweenPand its modular specification.}, language = {en} } @phdthesis{Koehler2020, author = {K{\"o}hler, Raphael}, title = {Towards seasonal prediction: stratosphere-troposphere coupling in the atmospheric model ICON-NWP}, doi = {10.25932/publishup-48723}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-487231}, school = {Universit{\"a}t Potsdam}, pages = {viii, 119}, year = {2020}, abstract = {Stratospheric variability is one of the main potential sources for sub-seasonal to seasonal predictability in mid-latitudes in winter. Stratospheric pathways play an important role for long-range teleconnections between tropical phenomena, such as the quasi-biennial oscillation (QBO) and El Ni{\~n}o-Southern Oscillation (ENSO), and the mid-latitudes on the one hand, and linkages between Arctic climate change and the mid-latitudes on the other hand. In order to move forward in the field of extratropical seasonal predictions, it is essential that an atmospheric model is able to realistically simulate the stratospheric circulation and variability. The numerical weather prediction (NWP) configuration of the ICOsahedral Non-hydrostatic atmosphere model ICON is currently being used by the German Meteorological Service for the regular weather forecast, and is intended to produce seasonal predictions in future. This thesis represents the first extensive evaluation of Northern Hemisphere stratospheric winter circulation in ICON-NWP by analysing a large set of seasonal ensemble experiments. An ICON control climatology simulated with a default setup is able to reproduce the basic behaviour of the stratospheric polar vortex. However, stratospheric westerlies are significantly too weak and major stratospheric warmings too frequent, especially in January. The weak stratospheric polar vortex in ICON is furthermore connected to a mean sea level pressure (MSLP) bias pattern resembling the negative phase of the Arctic Oscillation (AO). Since a good representation of the drag exerted by gravity waves is crucial for a realistic simulation of the stratosphere, three sensitivity experiments with reduced gravity wave drag are performed. Both a reduction of the non-orographic and orographic gravity wave drag respectively, lead to a strengthening of the stratospheric vortex and thus a bias reduction in winter, in particular in January. However, the effect of the non-orographic gravity wave drag on the stratosphere is stronger. A third experiment, combining a reduced orographic and non-orographic drag, exhibits the largest stratospheric bias reductions. The analysis of stratosphere-troposphere coupling based on an index of the Northern Annular Mode demonstrates that ICON realistically represents downward coupling. This coupling is intensified and more realistic in experiments with a reduced gravity wave drag, in particular with reduced non-orographic drag. Tropospheric circulation is also affected by the reduced gravity wave drag, especially in January, when the strongly improved stratospheric circulation reduces biases in the MSLP patterns. Moreover, a retuning of the subgrid-scale orography parameterisations leads to a significant error reduction in the MSLP in all months. In conclusion, the combination of these adjusted parameterisations is recommended as a current optimal setup for seasonal simulations with ICON. Additionally, this thesis discusses further possible influences on the stratospheric polar vortex, including the influence of tropical phenomena, such as QBO and ENSO, as well as the influence of a rapidly warming Arctic. ICON does not simulate the quasi-oscillatory behaviour of the QBO and favours weak easterlies in the tropical stratosphere. A comparison with a reanalysis composite of the easterly QBO phase reveals, that the shift towards the easterly QBO in ICON further weakens the stratospheric polar vortex. On the other hand, the stratospheric reaction to ENSO events in ICON is realistic. ICON and the reanalysis exhibit a weakened stratospheric vortex in warm ENSO years. Furthermore, in particular in winter, warm ENSO events favour the negative phase of the Arctic Oscillation, whereas cold events favour the positive phase. The ICON simulations also suggest a significant effect of ENSO on the Atlantic-European sector in late winter. To investigate the influence of Arctic climate change on mid-latitude circulation changes, two differing approaches with transient and fixed sea ice conditions are chosen. Neither ICON approach exhibits the mid-latitude tropospheric negative Arctic Oscillation circulation response to amplified Arctic warming, as it is discussed on the basis of observational evidence. Nevertheless, adding a new model to the current and active discussion on Arctic-midlatitude linkages, further contributes to the understanding of divergent conclusions between model and observational studies.}, language = {en} } @misc{CiemerRehmKurthsetal.2020, author = {Ciemer, Catrin and Rehm, Lars and Kurths, J{\"u}rgen and Donner, Reik Volker and Winkelmann, Ricarda and Boers, Niklas}, title = {An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-52586}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525863}, pages = {12}, year = {2020}, abstract = {Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months.}, language = {en} } @misc{WangSmithSkroblinetal.2020, author = {Wang, Qiong and Smith, Joel A. and Skroblin, Dieter and Steele, Julian A. and Wolff, Christian Michael and Caprioglio, Pietro and Stolterfoht, Martin and K{\"o}bler, Hans and Turren-Cruz, Silver-Hamill and Li, Meng and Gollwitzer, Christian and Neher, Dieter and Abate, Antonio}, title = {Managing phase purities and crystal orientation for high-performance and photostable cesium lead halide perovskite solar cells}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-52537}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525374}, pages = {11}, year = {2020}, abstract = {Inorganic perovskites with cesium (Cs+) as the cation have great potential as photovoltaic materials if their phase purity and stability can be addressed. Herein, a series of inorganic perovskites is studied, and it is found that the power conversion efficiency of solar cells with compositions CsPbI1.8Br1.2, CsPbI2.0Br1.0, and CsPbI2.2Br0.8 exhibits a high dependence on the initial annealing step that is found to significantly affect the crystallization and texture behavior of the final perovskite film. At its optimized annealing temperature, CsPbI1.8Br1.2 exhibits a pure orthorhombic phase and only one crystal orientation of the (110) plane. Consequently, this allows for the best efficiency of up to 14.6\% and the longest operational lifetime, T-S80, of approximate to 300 h, averaged of over six solar cells, during the maximum power point tracking measurement under continuous light illumination and nitrogen atmosphere. This work provides essential progress on the enhancement of photovoltaic performance and stability of CsPbI3 - xBrx perovskite solar cells.}, language = {en} } @article{ChigarevKazakovPikovsky2020, author = {Chigarev, Vladimir and Kazakov, Alexey and Pikovsky, Arkady}, title = {Kantorovich-Rubinstein-Wasserstein distance between overlapping attractor and repeller}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {30}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {7}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/5.0007230}, pages = {10}, year = {2020}, abstract = {We consider several examples of dynamical systems demonstrating overlapping attractor and repeller. These systems are constructed via introducing controllable dissipation to prototypic models with chaotic dynamics (Anosov cat map, Chirikov standard map, and incompressible three-dimensional flow of the ABC-type on a three-torus) and ergodic non-chaotic behavior (skew-shift map). We employ the Kantorovich-Rubinstein-Wasserstein distance to characterize the difference between the attractor and the repeller, in dependence on the dissipation level.}, language = {en} } @article{SchaffenrothCasewellSchneideretal.2020, author = {Schaffenroth, Veronika and Casewell, Sarah L. and Schneider, D. and Kilkenny, David and Geier, Stephan and Heber, Ulrich and Irrgang, Andreas and Przybilla, Norbert and Marsh, Thomas R. and Littlefair, Stuart P. and Dhillon, Vik S.}, title = {A quantitative in-depth analysis of the prototype sdB plus BD system SDSS J08205+0008 revisited in the Gaia era}, series = {Monthly notices of the Royal Astronomical Society}, volume = {501}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa3661}, pages = {3847 -- 3870}, year = {2020}, abstract = {Subdwarf B stars are core-helium-burning stars located on the extreme horizontal branch (EHB). Extensive mass loss on the red giant branch is necessary to form them. It has been proposed that substellar companions could lead to the required mass loss when they are engulfed in the envelope of the red giant star. J08205+0008 was the first example of a hot subdwarf star with a close, substellar companion candidate to be found. Here, we perform an in-depth re-analysis of this important system with much higher quality data allowing additional analysis methods. From the higher resolution spectra obtained with ESO-VLT/XSHOOTER, we derive the chemical abundances of the hot subdwarf as well as its rotational velocity. Using the Gaia parallax and a fit to the spectral energy distribution in the secondary eclipse, tight constraints to the radius of the hot subdwarf are derived. From a long-term photometric campaign, we detected a significant period decrease of -3.2(8) x 10(-12) dd(-1). This can be explained by the non-synchronized hot subdwarf star being spun up by tidal interactions forcing it to become synchronized. From the rate of period decrease we could derive the synchronization time-scale to be 4 Myr, much smaller than the lifetime on EHB. By combining all different methods, we could constrain the hot subdwarf to a mass of 0.39-0.50 M-circle dot and a radius of R-sdB = 0.194 +/- 0.008 R-circle dot, and the companion to 0.061-0.071 M-circle dot with a radius of R-comp = 0.092 +/- 0.005 R-circle dot, below the hydrogen-burning limit. We therefore confirm that the companion is most likely a massive brown dwarf.}, language = {en} } @article{PelisoliVosGeieretal.2020, author = {Pelisoli, Ingrid and Vos, Joris and Geier, Stephan and Schaffenroth, Veronika and Baran, Andrzej S.}, title = {Alone but not lonely}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {642}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202038473}, pages = {14}, year = {2020}, abstract = {Context. Hot subdwarfs are core-helium burning stars that show lower masses and higher temperatures than canonical horizontal branch stars. They are believed to be formed when a red giant suffers an extreme mass-loss episode. Binary interaction is suggested to be the main formation channel, but the high fraction of apparently single hot subdwarfs (up to 30\%) has prompted single star formation scenarios to be proposed.Aims. We investigate the possibility that hot subdwarfs could form without interaction by studying wide binary systems. If single formation scenarios were possible, there should be hot subdwarfs in wide binaries that have undergone no interaction.Methods. Angular momentum accretion during interaction is predicted to cause the hot subdwarf companion to spin up to the critical velocity. The effect of this should still be observable given the timescales of the hot subdwarf phase. To study the rotation rates of companions, we have analysed light curves from the Transiting Exoplanet Survey Satellite for all known hot subdwarfs showing composite spectral energy distributions indicating the presence of a main sequence wide binary companion. If formation without interaction were possible, that would also imply the existence of hot subdwarfs in very wide binaries that are not predicted to interact. To identify such systems, we have searched for common proper motion companions with projected orbital distances of up to 0.1 pc to all known spectroscopically confirmed hot subdwarfs using Gaia DR2 astrometry.Results. We find that the companions in composite hot subdwarfs show short rotation periods when compared to field main sequence stars. They display a triangular-shaped distribution with a peak around 2.5 days, similar to what is observed for young open clusters. We also report a shortage of hot subdwarfs with candidate common proper motion companions. We identify only 16 candidates after probing 2938 hot subdwarfs with good astrometry. Out of those, at least six seem to be hierarchical triple systems, in which the hot subdwarf is part of an inner binary.Conclusions. The observed distribution of rotation rates for the companions in known wide hot subdwarf binaries provides evidence of previous interaction causing spin-up. Additionally, there is a shortage of hot subdwarfs in common proper motion pairs, considering the frequency of such systems among progenitors. These results suggest that binary interaction is always required for the formation of hot subdwarfs.}, language = {en} } @phdthesis{Jay2020, author = {Jay, Raphael Martin}, title = {Principles of charge distribution and separation}, school = {Universit{\"a}t Potsdam}, pages = {xi, 162}, year = {2020}, abstract = {The electronic charge distributions of transition metal complexes fundamentally determine their chemical reactivity. Experimental access to the local valence electronic structure is therefore crucial in order to determine how frontier orbitals are delocalized between different atomic sites and electronic charge is spread throughout the transition metal complex. To that end, X-ray spectroscopies are employed in this thesis to study a series of solution-phase iron complexes with respect to the response of their local electronic charge distributions to different external influences. Using resonant inelastic X-ray scattering (RIXS) and X-ray absorption spectroscopy (XAS) at the iron L-edge, changes in local charge densities are investigated at the iron center depending on different ligand cages as well as solvent environments. A varying degree of charge delocalization from the metal center onto the ligands is observed, which is governed by the capabilities of the ligands to accept charge density into their unoccupied orbitals. Specific solvents are furthermore shown to amplify this process. Solvent molecules of strong Lewis-acids withdraw charge from the ligand allowing in turn for more metal charge to be delocalized onto the ligand. The resulting local charge deficiencies at the metal center are, however, counteracted by competing electron-donation channels from the ligand towards the iron, which are additionally revealed. This is interpreted as a compensating effect which strives to maintain local charge densities at the iron center. This mechanism of charge density preservation is found to be of general nature. Using time-resolved RIXS and XAS at the iron L-edge, an analogous interplay of electron donation and back-donation channels is also revealed for the case of charge-transfer excited states. In such transient configurations, the electronic occupation of iron-centered frontier orbitals has been altered by an optical excitation. Changes in local charge densities that are expected to follow an increased or decreased population of iron-centered orbitals are, however, again counteracted. By scaling the degree of electron donation from the ligand onto the metal, local charge densities at the iron center can be efficiently maintained. Since charge-transfer excitations, however, often constitute the initial step in many electron transfer processes, these findings challenge common notions of charge-separation in transition metal dyes.}, language = {en} }