@article{SmirnovOsipovPikovskij2018, author = {Smirnov, Lev A. and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Solitary synchronization waves in distributed oscillator populations}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {98}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.98.062222}, pages = {062222-1 -- 062222-7}, year = {2018}, abstract = {We demonstrate the existence of solitary waves of synchrony in one-dimensional arrays of oscillator populations with Laplacian coupling. Characterizing each community with its complex order parameter, we obtain lattice equations similar to those of the discrete nonlinear Schrodinger system. Close to full synchrony, we find solitary waves for the order parameter perturbatively, starting from the known phase compactons and kovatons; these solutions are extended numerically to the full domain of possible synchrony levels. For nonidentical oscillators, the existence of dissipative solitons is shown.}, language = {en} } @article{MunyaevSmirnovKostinetal.2020, author = {Munyaev, Vyacheslav O. and Smirnov, Lev A. and Kostin, Vasily A. and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Analytical approach to synchronous states of globally coupled noisy rotators}, series = {New journal of physics : the open-access journal for physics}, volume = {22}, journal = {New journal of physics : the open-access journal for physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab6f93}, pages = {14}, year = {2020}, abstract = {We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed.}, language = {en} } @article{SmirnovOsipovPikovskij2017, author = {Smirnov, Lev A. and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Chimera patterns in the Kuramoto-Battogtokh model}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {50}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {8}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/aa55f1}, pages = {10}, year = {2017}, abstract = {Kuramoto and Battogtokh (2002 Nonlinear Phenom. Complex Syst. 5 380) discovered chimera states represented by stable coexisting synchrony and asynchrony domains in a lattice of coupled oscillators. After a reformulation in terms of a local order parameter, the problem can be reduced to partial differential equations. We find uniformly rotating, spatially periodic chimera patterns as solutions of a reversible ordinary differential equation, and demonstrate a plethora of such states. In the limit of neutral coupling they reduce to analytical solutions in the form of one-and two-point chimera patterns as well as localized chimera solitons. Patterns at weakly attracting coupling are characterized by virtue of a perturbative approach. Stability analysis reveals that only the simplest chimeras with one synchronous region are stable.}, language = {en} } @article{BolotovSmirnovOsipovetal.2018, author = {Bolotov, Maxim I. and Smirnov, Lev A. and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Simple and complex chimera states in a nonlinearly coupled oscillatory medium}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {28}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.5011678}, pages = {9}, year = {2018}, abstract = {We consider chimera states in a one-dimensional medium of nonlinear nonlocally coupled phase oscillators. In terms of a local coarse-grained complex order parameter, the problem of finding stationary rotating nonhomogeneous solutions reduces to a third-order ordinary differential equation. This allows finding chimera-type and other inhomogeneous states as periodic orbits of this equation. Stability calculations reveal that only some of these states are stable. We demonstrate that an oscillatory instability leads to a breathing chimera, for which the synchronous domain splits into subdomains with different mean frequencies. Further development of instability leads to turbulent chimeras. Published by AIP Publishing.}, language = {en} } @article{MunyaevSmirnovKostinetal.2020, author = {Munyaev, Vyacheslav and Smirnov, Lev A. and Kostin, Vasily and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Analytical approach to synchronous states of globally coupled noisy rotators}, series = {New Journal of Physics}, volume = {22}, journal = {New Journal of Physics}, number = {2}, publisher = {Springer Science}, address = {New York}, pages = {15}, year = {2020}, abstract = {We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed.}, language = {en} } @article{SmirnovBolotovBolotovetal.2022, author = {Smirnov, Lev A. and Bolotov, Maxim and Bolotov, Dmitri and Osipov, Grigory V. and Pikovsky, Arkady}, title = {Finite-density-induced motility and turbulence of chimera solitons}, series = {New Journal of Physics}, volume = {24}, journal = {New Journal of Physics}, publisher = {IOP}, address = {London}, issn = {1367-2630}, doi = {10.1088/1367-2630/ac63d9}, pages = {15}, year = {2022}, abstract = {We consider a one-dimensional oscillatory medium with a coupling through a diffusive linear field. In the limit of fast diffusion this setup reduces to the classical Kuramoto-Battogtokh model. We demonstrate that for a finite diffusion stable chimera solitons, namely localized synchronous domain in an infinite asynchronous environment, are possible. The solitons are stable also for finite density of oscillators, but in this case they sway with a nearly constant speed. This finite-density-induced motility disappears in the continuum limit, as the velocity of the solitons is inverse proportional to the density. A long-wave instability of the homogeneous asynchronous state causes soliton turbulence, which appears as a sequence of soliton mergings and creations. As the instability of the asynchronous state becomes stronger, this turbulence develops into a spatio-temporal intermittency.}, language = {en} } @article{BolotovSmirnovOsipovetal.2017, author = {Bolotov, Maxim I. and Smirnov, Lev A. and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Breathing chimera in a system of phase oscillators}, series = {JETP Letters}, volume = {106}, journal = {JETP Letters}, publisher = {Pleiades Publ.}, address = {New York}, issn = {0021-3640}, doi = {10.1134/S0021364017180059}, pages = {393 -- 399}, year = {2017}, abstract = {Chimera states consisting of synchronous and asynchronous domains in a medium of nonlinearly coupled phase oscillators have been considered. Stationary inhomogeneous solutions of the Ott-Antonsen equation for a complex order parameter that correspond to fundamental chimeras have been constructed. The direct numerical simulation has shown that these structures under certain conditions are transformed to oscillatory (breathing) chimera regimes because of the development of instability.}, language = {en} } @article{CaesarRahmstorfFeulner2020, author = {Caesar, Levke and Rahmstorf, Stefan and Feulner, Georg}, title = {On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming}, series = {Environmental research letters}, volume = {15}, journal = {Environmental research letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ab63e3}, pages = {7}, year = {2020}, abstract = {According to established understanding, deep-water formation in the North Atlantic and Southern Ocean keeps the deep ocean cold, counter-acting the downward mixing of heat from the warmer surface waters in the bulk of the world ocean. Therefore, periods of strong Atlantic meridional overturning circulation (AMOC) are expected to coincide with cooling of the deep ocean and warming of the surface waters. It has recently been proposed that this relation may have reversed due to global warming, and that during the past decades a strong AMOC coincides with warming of the deep ocean and relative cooling of the surface, by transporting increasingly warmer waters downward. Here we present multiple lines of evidence, including a statistical evaluation of the observed global mean temperature, ocean heat content, and different AMOC proxies, that lead to the opposite conclusion: even during the current ongoing global temperature rise a strong AMOC warms the surface. The observed weakening of the AMOC has therefore delayed global surface warming rather than enhancing it. Social Media Abstract: The overturning circulation in the Atlantic Ocean has weakened in response to global warming, as predicted by climate models. Since it plays an important role in transporting heat, nutrients and carbon, a slowdown will affect global climate processes and the global mean temperature. Scientists have questioned whether this slowdown has worked to cool or warm global surface temperatures. This study analyses the overturning strength and global mean temperature evolution of the past decades and shows that a slowdown acts to reduce the global mean temperature. This is because a slower overturning means less water sinks into the deep ocean in the subpolar North Atlantic. As the surface waters are cold there, the sinking normally cools the deep ocean and thereby indirectly warms the surface, thus less sinking implies less surface warming and has a cooling effect. For the foreseeable future, this means that the slowing of the overturning will likely continue to slightly reduce the effect of the general warming due to increasing greenhouse gas concentrations.}, language = {en} } @article{BekirJelkenJungetal.2021, author = {Bekir, Marek and Jelken, Joachim and Jung, Se-Hyeong and Pich, Andrij and Pacholski, Claudia and Kopyshev, Alexey and Santer, Svetlana}, title = {Dual responsiveness of microgels induced by single light stimulus}, series = {Applied physics letters}, volume = {118}, journal = {Applied physics letters}, number = {9}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/5.0036376}, pages = {6}, year = {2021}, abstract = {We report on the multiple response of microgels triggered by a single optical stimulus. Under irradiation, the volume of the microgels is reversibly switched by more than 20 times. The irradiation initiates two different processes: photo-isomerization of the photo-sensitive surfactant, which forms a complex with the anionic microgel, rendering it photo-responsive; and local heating due to a thermo-plasmonic effect within the structured gold layer on which the microgel is deposited. The photo-responsivity is related to the reversible accommodation/release of the photo-sensitive surfactant depending on its photo-isomerization state, while the thermo-sensitivity is intrinsically built in. We show that under exposure to green light, the thermo-plasmonic effect generates a local hot spot in the gold layer, resulting in the shrinkage of the microgel. This process competes with the simultaneous photo-induced swelling. Depending on the position of the laser spot, the spatiotemporal control of reversible particle shrinking/swelling with a predefined extent on a per-second base can be implemented.}, language = {en} } @article{RosenauPikovskij2021, author = {Rosenau, Philip and Pikovskij, Arkadij}, title = {Waves in strongly nonlinear Gardner-like equations on a lattice}, series = {Nonlinearity / the Institute of Physics and the London Mathematical Society}, volume = {34}, journal = {Nonlinearity / the Institute of Physics and the London Mathematical Society}, number = {8}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0951-7715}, doi = {10.1088/1361-6544/ac0f51}, pages = {5872 -- 5896}, year = {2021}, abstract = {We introduce and study a family of lattice equations which may be viewed either as a strongly nonlinear discrete extension of the Gardner equation, or a non-convex variant of the Lotka-Volterra chain. Their deceptively simple form supports a very rich family of complex solitary patterns. Some of these patterns are also found in the quasi-continuum rendition, but the more intriguing ones, like interlaced pairs of solitary waves, or waves which may reverse their direction either spontaneously or due a collision, are an intrinsic feature of the discrete realm.}, language = {en} } @article{HortonKhanCahilletal.2020, author = {Horton, Benjamin P. and Khan, Nicole S. and Cahill, Niamh and Lee, Janice S. H. and Shaw, Timothy A. and Garner, Andra J. and Kemp, Andrew C. and Engelhart, Simon E. and Rahmstorf, Stefan}, title = {Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey}, series = {npj Climate and Atmospheric Science}, volume = {3}, journal = {npj Climate and Atmospheric Science}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2397-3722}, doi = {10.1038/s41612-020-0121-5}, pages = {1 -- 8}, year = {2020}, abstract = {Sea-level rise projections and knowledge of their uncertainties are vital to make informed mitigation and adaptation decisions. To elicit projections from members of the scientific community regarding future global mean sea-level (GMSL) rise, we repeated a survey originally conducted five years ago. Under Representative Concentration Pathway (RCP) 2.6, 106 experts projected a likely (central 66\% probability) GMSL rise of 0.30-0.65 m by 2100, and 0.54-2.15 m by 2300, relative to 1986-2005. Under RCP 8.5, the same experts projected a likely GMSL rise of 0.63-1.32 m by 2100, and 1.67-5.61 m by 2300. Expert projections for 2100 are similar to those from the original survey, although the projection for 2300 has extended tails and is higher than the original survey. Experts give a likelihood of 42\% (original survey) and 45\% (current survey) that under the high-emissions scenario GMSL rise will exceed the upper bound (0.98 m) of the likely range estimated by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, which is considered to have an exceedance likelihood of 17\%. Responses to open-ended questions suggest that the increases in upper-end estimates and uncertainties arose from recent influential studies about the impact of marine ice cliff instability on the meltwater contribution to GMSL rise from the Antarctic Ice Sheet.}, language = {en} } @article{MohammadyAuffevesAnders2020, author = {Mohammady, M. Hamed and Auff{\`e}ves, Alexia and Anders, Janet}, title = {Energetic footprints of irreversibility in the quantum regime}, series = {Communications Physics}, volume = {3}, journal = {Communications Physics}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2399-3650}, doi = {10.1038/s42005-020-0356-9}, pages = {1 -- 14}, year = {2020}, abstract = {In classical thermodynamic processes the unavoidable presence of irreversibility, quantified by the entropy production, carries two energetic footprints: the reduction of extractable work from the optimal, reversible case, and the generation of a surplus of heat that is irreversibly dissipated to the environment. Recently it has been shown that in the quantum regime an additional quantum irreversibility occurs that is linked to decoherence into the energy basis. Here we employ quantum trajectories to construct distributions for classical heat and quantum heat exchanges, and show that the heat footprint of quantum irreversibility differs markedly from the classical case. We also quantify how quantum irreversibility reduces the amount of work that can be extracted from a state with coherences. Our results show that decoherence leads to both entropic and energetic footprints which both play an important role in the optimization of controlled quantum operations at low temperature. In classical thermodynamics irreversibility occurs whenever a non-thermal system is brought into contact with a thermal environment. Using quantum trajectories the authors here establish two energetic footprints of quantum irreversible processes, and find that while quantum irreversibility leads to the occurrence of a quantum heat and a reduction of work production, the two are not linked in the same manner as the classical laws of thermodynamics would dictate.}, language = {en} } @article{Schmidt2015, author = {Schmidt, Joachim}, title = {Die Arbeit bei irreversibler Druck-Volumen-{\"A}nderung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74931}, year = {2015}, abstract = {For the calculation of the work in an irreversible pressure-volume change, we propose approxima-tions, which in contrast to the usual representation in the literature reflect the work performed during expansion and compression symmetrically. The calculations are based on the Reversible-Share-Theorem: Is used the force to overcome for calculating the work, so it captures only the configurational reversible work share.}, language = {de} } @article{MeyerAghionKantz2022, author = {Meyer, Philipp and Aghion, Erez and Kantz, Holger}, title = {Decomposing the effect of anomalous diffusion enables direct calculation of the Hurst exponent and model classification for single random paths}, series = {Journal of physics / Institute of Physics. A, Mathematical, nuclear and general}, volume = {55}, journal = {Journal of physics / Institute of Physics. A, Mathematical, nuclear and general}, number = {27}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac72d4}, pages = {22}, year = {2022}, abstract = {Recently, a large number of research teams from around the world collaborated in the so-called 'anomalous diffusion challenge'. Its aim: to develop and compare new techniques for inferring stochastic models from given unknown time series, and estimate the anomalous diffusion exponent in data. We use various numerical methods to directly obtain this exponent using the path increments, and develop a questionnaire for model selection based on feature analysis of a set of known stochastic processes given as candidates. Here, we present the theoretical background of the automated algorithm which we put for these tasks in the diffusion challenge, as a counter to other pure data-driven approaches.}, language = {en} } @article{BodrovaChechkinCherstvyetal.2016, author = {Bodrova, Anna S. and Chechkin, Aleksei V. and Cherstvy, Andrey G. and Safdari, Hadiseh and Sokolov, Igor M. and Metzler, Ralf}, title = {Underdamped scaled Brownian motion}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep30520}, year = {2016}, abstract = {It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.}, language = {en} } @article{SafdariCherstvyChechkinetal.2017, author = {Safdari, Hadiseh and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Bodrova, Anna and Metzler, Ralf}, title = {Aging underdamped scaled Brownian motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {95}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.95.012120}, pages = {15}, year = {2017}, abstract = {We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic, and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the ballistic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD trajectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffusive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken, both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered, with a mixed logarithmic and power-law dependence of the ensemble-and time-averaged MSDs of the particles. In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the short time ballistic limit. The approaches developed here open ways for considering other stochastic processes under physically important conditions when a finite particle mass and aging in the system cannot be neglected.}, language = {en} } @article{CherstvySafdariMetzler2021, author = {Cherstvy, Andrey G. and Safdari, Hadiseh and Metzler, Ralf}, title = {Anomalous diffusion, nonergodicity, and ageing for exponentially and logarithmically time-dependent diffusivity}, series = {Journal of physics. D, Applied physics}, volume = {54}, journal = {Journal of physics. D, Applied physics}, number = {19}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0022-3727}, doi = {10.1088/1361-6463/abdff0}, pages = {18}, year = {2021}, abstract = {We investigate a diffusion process with a time-dependent diffusion coefficient, both exponentially increasing and decreasing in time, D(t)=D-0(e +/- 2 alpha t). For this (hypothetical) nonstationary diffusion process we compute-both analytically and from extensive stochastic simulations-the behavior of the ensemble- and time-averaged mean-squared displacements (MSDs) of the particles, both in the over- and underdamped limits. Simple asymptotic relations derived for the short- and long-time behaviors are shown to be in excellent agreement with the results of simulations. The diffusive characteristics in the presence of ageing are also considered, with dramatic differences of the over- versus underdamped regime. Our results for D(t)=D-0(e +/- 2 alpha t) extend and generalize the class of diffusive systems obeying scaled Brownian motion featuring a power-law-like variation of the diffusivity with time, D(t) similar to t(alpha-1). We also examine the logarithmically increasing diffusivity, D(t)=D(0)log[t/tau(0)], as another fundamental functional dependence (in addition to the power-law and exponential) and as an example of diffusivity slowly varying in time. One of the main conclusions is that the behavior of the massive particles is predominantly ergodic, while weak ergodicity breaking is repeatedly found for the time-dependent diffusion of the massless particles at short times. The latter manifests itself in the nonequivalence of the (both nonaged and aged) MSD and the mean time-averaged MSD. The current findings are potentially applicable to a class of physical systems out of thermal equilibrium where a rapid increase or decrease of the particles' diffusivity is inherently realized. One biological system potentially featuring all three types of time-dependent diffusion (power-law-like, exponential, and logarithmic) is water diffusion in the brain tissues, as we thoroughly discuss in the end.}, language = {en} } @article{LetellierAbrahamShepelyanskyetal.2021, author = {Letellier, Christophe and Abraham, Ralph and Shepelyansky, Dima L. and Rossler, Otto E. and Holmes, Philip and Lozi, Rene and Glass, Leon and Pikovsky, Arkady and Olsen, Lars F. and Tsuda, Ichiro and Grebogi, Celso and Parlitz, Ulrich and Gilmore, Robert and Pecora, Louis M. and Carroll, Thomas L.}, title = {Some elements for a history of the dynamical systems theory}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {31}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {5}, publisher = {AIP Publishing}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/5.0047851}, pages = {20}, year = {2021}, abstract = {Writing a history of a scientific theory is always difficult because it requires to focus on some key contributors and to "reconstruct" some supposed influences. In the 1970s, a new way of performing science under the name "chaos" emerged, combining the mathematics from the nonlinear dynamical systems theory and numerical simulations. To provide a direct testimony of how contributors can be influenced by other scientists or works, we here collected some writings about the early times of a few contributors to chaos theory. The purpose is to exhibit the diversity in the paths and to bring some elements-which were never published-illustrating the atmosphere of this period. Some peculiarities of chaos theory are also discussed.}, language = {en} } @article{ReschSchoenigerKleinschmittetal.2022, author = {Resch, Gustav and Sch{\"o}niger, Franziska and Kleinschmitt, Christoph and Franke, Katja and Thonig, Richard and Lilliestam, Johan}, title = {Deep decarbonization of the European power sector calls for dispatchable CSP}, series = {AIP conference proceedings}, journal = {AIP conference proceedings}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1551-7616}, doi = {10.1063/5.0086710}, pages = {050006-1 -- 050006-9}, year = {2022}, abstract = {Concentrating Solar Power (CSP) offers flexible and decarbonized power generation and is one of the few dispatchable renewable technologies able to generate renewable electricity on demand. Today (2018) CSP contributes only 5TWh to the European power generation, but it has the potential to become one of the key pillars for European decarbonization pathways. In this paper we investigate how factors and pivotal policy decisions leading to different futures and associated CSP deployment in Europe in the years up to 2050. In a second step we characterize the scenarios with their associated system cost and the costs of support policies. We show that the role of CSP in Europe critically depends on political developments and the success or failure of policies outside renewable power. In particular, the uptake of CSP depends on the overall decarbonization ambition, the degree of cross border trade of renewable electricity and is enabled by the presence of strong grid interconnection between Southern and Norther European Member States as well as by future electricity demand growth. The presence of other baseload technologies, prominently nuclear power in France, reduce the role and need for CSP. Assuming favorable technological development, we find a strong role for CSP in Europe in all modeled scenarios: contributing between 100TWh to 300TWh of electricity to a future European power system. This would require increasing the current European CSP fleet by a factor of 20 to 60 in the next 30 years. To achieve this financial support between € 0.4-2 billion per year into CSP would be needed, representing only a small share of overall support needs for power-system transformation. Cooperation of Member States could further help to reduce this cost.}, language = {en} } @article{HornemannEichertHoehletal.2022, author = {Hornemann, Andrea and Eichert, Diane Madeleine and Hoehl, Arne and Tiersch, Brigitte and Ulm, Gerhard and Ryadnov, Maxim G. and Beckhoff, Burkhard}, title = {Investigating Membrane-Mediated Antimicrobial Peptide Interactions with Synchrotron Radiation Far-Infrared Spectroscopy}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {23}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.202100815}, pages = {11}, year = {2022}, abstract = {Synchrotron radiation-based Fourier transform infrared spectroscopy enables access to vibrational information from mid over far infrared to even terahertz domains. This information may prove critical for the elucidation of fundamental bio-molecular phenomena including folding-mediated innate host defence mechanisms. Antimicrobial peptides (AMPs) represent one of such phenomena. These are major effector molecules of the innate immune system, which favour attack on microbial membranes. AMPs recognise and bind to the membranes whereupon they assemble into pores or channels destabilising the membranes leading to cell death. However, specific molecular interactions responsible for antimicrobial activities have yet to be fully understood. Herein we probe such interactions by assessing molecular specific variations in the near-THz 400-40 cm(-1) range for defined helical AMP templates in reconstituted phospholipid membranes. In particular, we show that a temperature-dependent spectroscopic analysis, supported by 2D correlative tools, provides direct evidence for the membrane-induced and folding-mediated activity of AMPs. The far-FTIR study offers a direct and information-rich probe of membrane-related antimicrobial interactions.}, language = {en} } @article{ManiKupschMuelleretal.2022, author = {Mani, Deepak and Kupsch, Andreas and M{\"u}ller, Bernd R. and Bruno, Giovanni}, title = {Diffraction Enhanced Imaging Analysis with Pseudo-Voigt Fit Function}, series = {Journal of imaging : open access journal}, volume = {8}, journal = {Journal of imaging : open access journal}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2313-433X}, doi = {10.3390/jimaging8080206}, pages = {13}, year = {2022}, abstract = {Diffraction enhanced imaging (DEI) is an advanced digital radiographic imaging technique employing the refraction of X-rays to contrast internal interfaces. This study aims to qualitatively and quantitatively evaluate images acquired using this technique and to assess how different fitting functions to the typical rocking curves (RCs) influence the quality of the images. RCs are obtained for every image pixel. This allows the separate determination of the absorption and the refraction properties of the material in a position-sensitive manner. Comparison of various types of fitting functions reveals that the Pseudo-Voigt (PsdV) function is best suited to fit typical RCs. A robust algorithm was developed in the Python programming language, which reliably extracts the physically meaningful information from each pixel of the image. We demonstrate the potential of the algorithm with two specimens: a silicone gel specimen that has well-defined interfaces, and an additively manufactured polycarbonate specimen.}, language = {en} } @article{HoehleFritzscheBollAvetisyanetal.2021, author = {H{\"o}hle, Barbara and Fritzsche, Tom and Boll-Avetisyan, Natalie and Hullebus, Marc and Gafos, Adamantios I.}, title = {Respect the surroundings}, series = {JASA Express Letters}, volume = {1}, journal = {JASA Express Letters}, number = {2}, publisher = {AIP Publ.}, address = {Melville}, issn = {2691-1191}, doi = {10.1121/10.0003574}, pages = {7}, year = {2021}, abstract = {Fourteen-month-olds' ability to distinguish a just learned word, /bu?k/, from its minimally different word, /du?k/, was assessed under two pre-exposure conditions: one where /b, d/-initial forms occurred in a varying vowel context and another where the vowel was fixed but the final consonant varied. Infants in the experiments benefited from the variable vowel but not from the variable final consonant context, suggesting that vowel variability but not all kinds of variability are beneficial. These results are discussed in the context of time-honored observations on the vowel-dependent nature of place of articulation cues for consonants.}, language = {en} } @article{MaheswaranAgarwalSivakumaretal.2019, author = {Maheswaran, Rathinasamy and Agarwal, Ankit and Sivakumar, Bellie and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Wavelet analysis of precipitation extremes over India and teleconnections to climate indices}, series = {Stochastic Environmental Research and Risk Assessment}, volume = {33}, journal = {Stochastic Environmental Research and Risk Assessment}, number = {11-12}, publisher = {Springer}, address = {New York}, issn = {1436-3240}, doi = {10.1007/s00477-019-01738-3}, pages = {2053 -- 2069}, year = {2019}, abstract = {Precipitation patterns and extremes are significantly influenced by various climatic factors and large-scale atmospheric circulation patterns. This study uses wavelet coherence analysis to detect significant interannual and interdecadal oscillations in monthly precipitation extremes across India and their teleconnections to three prominent climate indices, namely, Nino 3.4, Pacific Decadal Oscillation, and Indian Ocean Dipole (IOD). Further, partial wavelet coherence analysis is used to estimate the standalone relationship between the climate indices and precipitation after removing the effect of interdependency. The wavelet analysis of monthly precipitation extremes at 30 different locations across India reveals that (a) interannual (2-8 years) and interdecadal (8-32 years) oscillations are statistically significant, and (b) the oscillations vary in both time and space. The results from the partial wavelet coherence analysis reveal that Nino 3.4 and IOD are the significant drivers of Indian precipitation at interannual and interdecadal scales. Intriguingly, the study also confirms that the strength of influence of large-scale atmospheric circulation patterns on Indian precipitation extremes varies with spatial physiography of the region.}, language = {en} } @article{OzturkMarwanKorupetal.2018, author = {Ozturk, Ugur and Marwan, Norbert and Korup, Oliver and Saito, H. and Agarwa, Ankit and Grossman, M. J. and Zaiki, M. and Kurths, J{\"u}rgen}, title = {Complex networks for tracking extreme rainfall during typhoons}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {28}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {7}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.5004480}, pages = {8}, year = {2018}, abstract = {Reconciling the paths of extreme rainfall with those of typhoons remains difficult despite advanced forecasting techniques. We use complex networks defined by a nonlinear synchronization measure termed event synchronization to track extreme rainfall over the Japanese islands. Directed networks objectively record patterns of heavy rain brought by frontal storms and typhoons but mask out contributions of local convective storms. We propose a radial rank method to show that paths of extreme rainfall in the typhoon season (August-November, ASON) follow the overall southwest-northeast motion of typhoons and mean rainfall gradient of Japan. The associated eye-of-the-typhoon tracks deviate notably and may thus distort estimates of heavy typhoon rainfall. We mainly found that the lower spread of rainfall tracks in ASON may enable better hindcasting than for westerly-fed frontal storms in June and July.}, language = {en} } @article{AgarwalMaheswaranMarwanetal.2018, author = {Agarwal, Ankit and Maheswaran, Rathinasamy and Marwan, Norbert and Caesar, Levke and Kurths, J{\"u}rgen}, title = {Wavelet-based multiscale similarity measure for complex networks}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {91}, journal = {The European physical journal : B, Condensed matter and complex systems}, number = {11}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2018-90460-6}, pages = {12}, year = {2018}, abstract = {In recent years, complex network analysis facilitated the identification of universal and unexpected patterns in complex climate systems. However, the analysis and representation of a multiscale complex relationship that exists in the global climate system are limited. A logical first step in addressing this issue is to construct multiple networks over different timescales. Therefore, we propose to apply the wavelet multiscale correlation (WMC) similarity measure, which is a combination of two state-of-the-art methods, viz. wavelet and Pearson's correlation, for investigating multiscale processes through complex networks. Firstly we decompose the data over different timescales using the wavelet approach and subsequently construct a corresponding network by Pearson's correlation. The proposed approach is illustrated and tested on two synthetics and one real-world example. The first synthetic case study shows the efficacy of the proposed approach to unravel scale-specific connections, which are often undiscovered at a single scale. The second synthetic case study illustrates that by dividing and constructing a separate network for each time window we can detect significant changes in the signal structure. The real-world example investigates the behavior of the global sea surface temperature (SST) network at different timescales. Intriguingly, we notice that spatial dependent structure in SST evolves temporally. Overall, the proposed measure has an immense potential to provide essential insights on understanding and extending complex multivariate process studies at multiple scales.}, language = {en} } @article{HaubitzDrobotTsushimaetal.2021, author = {Haubitz, Toni and Drobot, Bj{\"o}rn and Tsushima, Satoru and Steudtner, Robin and Stumpf, Thorsten and Kumke, Michael Uwe}, title = {Quenching mechanism of uranyl(VI) by chloride and bromide in aqueous and non-aqueous solutions}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {125}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {20}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.1c02487}, pages = {4380 -- 4389}, year = {2021}, abstract = {A major hindrance in utilizing uranyl(VI) luminescence as a standard analytical tool, for example, in environmental monitoring or nuclear industries, is quenching by other ions such as halide ions, which are present in many relevant matrices of uranyl(VI) speciation. Here, we demonstrate through a combination of time-resolved laser-induced fluorescence spectroscopy, transient absorption spectroscopy, and quantum chemistry that coordinating solvent molecules play a crucial role in U(VI) halide luminescence quenching. We show that our previously suggested quenching mechanism based on an internal redox reaction of the 1:2-uranyl-halide-complex holds also true for bromide-induced quenching of uranyl(VI). By adopting specific organic solvents, we were able to suppress the separation of the oxidized halide ligand X-2(center dot-) and the formed uranyl(V) into fully solvated ions, thereby "reigniting" U(VI) luminescence. Time-dependent density functional theory calculations show that quenching occurs through the outer-sphere complex of U(VI) and halide in water, while the ligand-to-metal charge transfer is strongly reduced in acetonitrile.}, language = {en} } @article{WangCherstvyKantzetal.2021, author = {Wang, Wei and Cherstvy, Andrey G. and Kantz, Holger and Metzler, Ralf and Sokolov, Igor M.}, title = {Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Institute of Physics}, address = {Woodbury, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.024105}, pages = {27}, year = {2021}, abstract = {How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of their ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs) and how does stochastic resetting impact nonergodicity? We examine, both analytically and by simulations, the implications of resetting on the MSD- and TAMSD-based spreading dynamics of particles executing fractional Brownian motion (FBM) with a long-time memory, heterogeneous diffusion processes (HDPs) with a power-law space-dependent diffusivity D(x) = D0|x|gamma and their "combined" process of HDP-FBM. We find, inter alia, that the resetting dynamics of originally ergodic FBM for superdiffusive Hurst exponents develops disparities in scaling and magnitudes of the MSDs and mean TAMSDs indicating weak ergodicity breaking. For subdiffusive HDPs we also quantify the nonequivalence of the MSD and TAMSD and observe a new trimodal form of the probability density function. For reset FBM, HDPs and HDP-FBM we compute analytically and verify by simulations the short-time MSD and TAMSD asymptotes and long-time plateaus reminiscent of those for processes under confinement. We show that certain characteristics of these reset processes are functionally similar despite a different stochastic nature of their nonreset variants. Importantly, we discover nonmonotonicity of the ergodicitybreaking parameter EB as a function of the resetting rate r. For all reset processes studied we unveil a pronounced resetting-induced nonergodicity with a maximum of EB at intermediate r and EB similar to(1/r )-decay at large r. Alongside the emerging MSD-versus-TAMSD disparity, this r-dependence of EB can be an experimentally testable prediction. We conclude by discussing some implications to experimental systems featuring resetting dynamics.}, language = {en} } @article{SinghGorskaSandev2022, author = {Singh, Rishu Kumar and G{\´o}rska, Katarzyna and Sandev, Trifce}, title = {General approach to stochastic resetting}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {105}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.105.064133}, pages = {6}, year = {2022}, abstract = {We address the effect of stochastic resetting on diffusion and subdiffusion process. For diffusion we find that mean square displacement relaxes to a constant only when the distribution of reset times possess finite mean and variance. In this case, the leading order contribution to the probability density function (PDF) of a Gaussian propagator under resetting exhibits a cusp independent of the specific details of the reset time distribution. For subdiffusion we derive the PDF in Laplace space for arbitrary resetting protocol. Resetting at constant rate allows evaluation of the PDF in terms of H function. We analyze the steady state and derive the rate function governing the relaxation behavior. For a subdiffusive process the steady state could exist even if the distribution of reset times possesses only finite mean.}, language = {en} } @article{RamosBuilesJaramilloPovedaetal.2017, author = {Ramos, Antonio M. T. and Builes-Jaramillo, Alejandro and Poveda, German and Goswami, Bedartha and Macau, Elbert E. N. and Kurths, J{\"u}rgen and Marwan, Norbert}, title = {Recurrence measure of conditional dependence and applications}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {95}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.95.052206}, pages = {8}, year = {2017}, abstract = {Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Herewe propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts.}, language = {en} } @article{MahataPandayRupakhetietal.2017, author = {Mahata, Khadak Singh and Panday, Arnico Kumar and Rupakheti, Maheswar and Singh, Ashish and Naja, Manish and Lawrence, Mark}, title = {Seasonal and diurnal variations in methane and carbon dioxide in the Kathmandu Valley in the foothills of the central Himalayas}, series = {Atmospheric Chemistry and Physics}, volume = {17}, journal = {Atmospheric Chemistry and Physics}, number = {20}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1680-7316}, doi = {10.5194/acp-17-12573-2017}, pages = {12573 -- 12596}, year = {2017}, abstract = {The SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) international air pollution measurement campaign was carried out from December 2012 to June 2013 in the Kathmandu Valley and surrounding regions in Nepal. The Kathmandu Valley is a bowl-shaped basin with a severe air pollution problem. This paper reports measurements of two major greenhouse gases (GHGs), methane (CH4) and carbon dioxide (CO2), along with the pollutant CO, that began during the campaign and were extended for 1 year at the SusKat-ABC supersite in Bode, a semi-urban location in the Kathmandu Valley. Simultaneous measurements were also made during 2015 in Bode and a nearby rural site (Chanban) similar to 25 km (aerial distance) to the southwest of Bode on the other side of a tall ridge. The ambient mixing ratios of methane (CH4), carbon dioxide (CO2), water vapor, and carbon monoxide (CO) were measured with a cavity ring-down spectrometer (G2401; Picarro, USA) along with meteorological parameters for 1 year (March 2013-March 2014). These measurements are the first of their kind in the central Himalayan foothills. At Bode, the annual average mixing ratios of CO2 and CH4 were 419.3 (+/- 6.0) ppm and 2.192 (+/- 0.066) ppm, respectively. These values are higher than the levels observed at background sites such as Mauna Loa, USA (CO2: 396.8 +/- 2.0 ppm, CH4: 1.831 +/- 0.110 ppm) and Waliguan, China (CO2: 397.7 +/- 3.6 ppm, CH4: 1.879 +/- 0.009 ppm) during the same period and at other urban and semi-urban sites in the region, such as Ahmedabad and Shadnagar (India). They varied slightly across the seasons at Bode, with seasonal average CH4 mixing ratios of 2.157 (+/- 0.230) ppm in the pre-monsoon season, 2.199 (+/- 0.241) ppm in the monsoon, 2.210 (+/- 0.200) ppm in the post-monsoon, and 2.214 (+/- 0.209) ppm in the winter season. The average CO2 mixing ratios were 426.2 (+/- 25.5) ppm in the pre-monsoon, 413.5 (+/- 24.2) ppm in the monsoon, 417.3 (+/- 23.1) ppm in the postmonsoon, and 421.9 (+/- 20.3) ppm in the winter season. The maximum seasonal mean mixing ratio of CH4 in winter was only 0.057 ppm or 2.6\% higher than the seasonal minimum during the pre-monsoon period, while CO2 was 12.8 ppm or 3.1\% higher during the pre-monsoon period (seasonal maximum) than during the monsoon (seasonal minimum). On the other hand, the CO mixing ratio at Bode was 191\% higher during the winter than during the monsoon season. The enhancement in CO2 mixing ratios during the pre-monsoon season is associated with additional CO2 emissions from forest fires and agro-residue burning in northern South Asia in addition to local emissions in the Kathmandu Valley. Published CO = CO2 ratios of different emission sources in Nepal and India were compared with the observed CO = CO2 ratios in this study. This comparison suggested that the major sources in the Kathmandu Valley were residential cooking and vehicle exhaust in all seasons except winter. In winter, brick kiln emissions were a major source. Simultaneous measurements in Bode and Chanban (15 July-3 October 2015) revealed that the mixing ratios of CO2, CH4, and CO were 3.8, 12, and 64\% higher in Bode than Chanban. The Kathmandu Valley thus has significant emissions from local sources, which can also be attributed to its bowl-shaped geography that is conducive to pollution build-up. At Bode, all three gas species (CO2, CH4, and CO) showed strong diurnal patterns in their mixing ratios with a pronounced morning peak (ca. 08:00), a dip in the afternoon, and a gradual increase again through the night until the next morning. CH4 and CO at Chanban, however, did not show any noticeable diurnal variations. These measurements provide the first insights into the diurnal and seasonal variation in key greenhouse gases and air pollutants and their local and regional sources, which is important information for atmospheric research in the region.}, language = {en} } @article{ArminChenJinetal.2018, author = {Armin, Ardalan and Chen, Zhiming and Jin, Yaocheng and Zhang, Kai and Huang, Fei and Shoaee, Safa}, title = {A Shockley-Type polymer}, series = {Advanced energy materials}, volume = {8}, journal = {Advanced energy materials}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201701450}, pages = {9}, year = {2018}, abstract = {Charge extraction rate in solar cells made of blends of electron donating/accepting organic semiconductors is typically slow due to their low charge carrier mobility. This sets a limit on the active layer thickness and has hindered the industrialization of organic solar cells (OSCs). Herein, charge transport and recombination properties of an efficient polymer (NT812):fullerene blend are investigated. This system delivers power conversion efficiency of >9\% even when the junction thickness is as large as 800 nm. Experimental results indicate that this material system exhibits exceptionally low bimolecular recombination constant, 800 times smaller than the diffusion-controlled electron and hole encounter rate. Comparing theoretical results based on a recently introduced modified Shockley model for fill factor, and experiments, clarifies that charge collection is nearly ideal in these solar cells even when the thickness is several hundreds of nanometer. This is the first realization of high-efficiency Shockley-type organic solar cells with junction thicknesses suitable for scaling up.}, language = {en} } @article{RamachandranRupakhetiCherianetal.2022, author = {Ramachandran, Srikanthan and Rupakheti, Maheswar and Cherian, R. and Lawrence, Mark}, title = {Climate Benefits of Cleaner Energy Transitions in East and South Asia Through Black Carbon Reduction}, series = {Frontiers in environmental science}, volume = {10}, journal = {Frontiers in environmental science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-665X}, doi = {10.3389/fenvs.2022.842319}, pages = {16}, year = {2022}, abstract = {The state of air pollution has historically been tightly linked to how we produce and use energy. Air pollutant emissions over Asia are now changing rapidly due to cleaner energy transitions; however, magnitudes of benefits for climate and air quality remain poorly quantified. The associated risks involve adverse health impacts, reduced agricultural yields, reduced freshwater availability, contributions to climate change, and economic costs. We focus particularly on climate benefits of energy transitions by making first-time use of two decades of high quality observations of atmospheric loading of light-absorbing black carbon (BC) over Kanpur (South Asia) and Beijing (East Asia) and relating these observations to changing energy, emissions, and economic trends in India and China. Our analysis reveals that absorption aerosol optical depth (AAOD) due to BC has decreased substantially, by 40\% over Kanpur and 60\% over Beijing between 2001 and 2017, and thus became decoupled from regional economic growth. Furthermore, the resultant decrease in BC emissions and BC AAOD over Asia is regionally coherent and occurs primarily due to transitions into cleaner energies (both renewables and fossil fuels) and not due to the decrease in primary energy supply or decrease in use of fossil use and biofuels and waste. Model simulations show that BC aerosols alone contribute about half of the surface temperature change (warming) of the total forcing due to greenhouse gases, natural and internal variability, and aerosols, thus clearly revealing the climate benefits due to a reduction in BC emissions, which would significantly reduce global warming. However, this modeling study excludes responses from natural variability, circulation, and sea ice responses, which cause relatively strong temperature fluctuations that may mask signals from BC aerosols. Our findings show additional benefits for climate (beyond benefits of CO2 reduction) and for several other issues of sustainability over South and East Asia, provide motivation for ongoing cleaner energy production, and consumption transitions, especially when they are associated with reduced emissions of air pollutants. Such an analysis connecting the trends in energy transitions and aerosol absorption loading, unavailable so far, is crucial for simulating the aerosol climate impacts over Asia which is quite uncertain.}, language = {en} } @article{ChaurasiaDietrichRosswog2021, author = {Chaurasia, Swami Vivekanandji and Dietrich, Tim and Rosswog, Stephan}, title = {Black hole-neutron star simulations with the BAM code}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {104}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {8}, publisher = {American Physical Society}, address = {Ridge, NY}, issn = {2470-0010}, doi = {10.1103/PhysRevD.104.084010}, pages = {15}, year = {2021}, abstract = {The first detections of black hole-neutron star mergers (GW200105 and GW200115) by the LIGO-Virgo-Kagra Collaboration mark a significant scientific breakthrough. The physical interpretation of pre- and postmerger signals requires careful cross-examination between observational and theoretical modelling results. Here we present the first set of black hole-neutron star simulations that were obtained with the numerical-relativity code BAM. Our initial data are constructed using the public LORENE spectral library, which employs an excision of the black hole interior. BAM, in contrast, uses the moving-puncture gauge for the evolution. Therefore, we need to "stuff" the black hole interior with smooth initial data to evolve the binary system in time. This procedure introduces constraint violations such that the constraint damping properties of the evolution system are essential to increase the accuracy of the simulation and in particular to reduce spurious center-of-mass drifts. Within BAM we evolve the Z4c equations and we compare our gravitational-wave results with those of the SXS collaboration and results obtained with the SACRA code. While we find generally good agreement with the reference solutions and phase differences less than or similar to 0.5 rad at the moment of merger, the absence of a clean convergence order in our simulations does not allow for a proper error quantification. We finally present a set of different initial conditions to explore how the merger of black hole neutron star systems depends on the involved masses, spins, and equations of state.}, language = {en} } @article{SushchBrosePohletal.2022, author = {Sushch, Iurii and Brose, Robert and Pohl, Martin and Plotko, Pavlo and Das, Samata}, title = {Leptonic nonthermal emission from supernova remnants evolving in the circumstellar magnetic field}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {926}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac3cb8}, pages = {14}, year = {2022}, abstract = {The very-high-energy (VHE; E > 100 GeV) gamma-ray emission observed from a number of supernova remnants (SNRs) indicates particle acceleration to high energies at the shock of the remnants and a potentially significant contribution to Galactic cosmic rays. It is extremely difficult to determine whether protons (through hadronic interactions and subsequent pion decay) or electrons (through inverse Compton scattering on ambient photon fields) are responsible for this emission. For a successful diagnostic, a good understanding of the spatial and energy distribution of the underlying particle population is crucial. Most SNRs are created in core-collapse explosions and expand into the wind bubble of their progenitor stars. This circumstellar medium features a complex spatial distribution of gas and magnetic field which naturally strongly affects the resulting particle population. In this work, we conduct a detailed study of the spectro-spatial evolution of the electrons accelerated at the forward shock of core-collapse SNRs and their nonthermal radiation, using the RATPaC code that is designed for the time- and spatially dependent treatment of particle acceleration at SNR shocks. We focus on the impact of the spatially inhomogeneous magnetic field through the efficiency of diffusion and synchrotron cooling. It is demonstrated that the structure of the circumstellar magnetic field can leave strong signatures in the spectrum and morphology of the resulting nonthermal emission.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Chromey, A. J. and Connolly, M. P. and Cui, Wei and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kertzman, M. and Kieda, David and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, Marcos and Sembroski, G. H. and Shahinyan, Karlen and Sushch, I. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Abdollahi, S. and Ajello, Marco and Baldini, Luca and Barbiellini, G. and Bastieri, Denis and Bellazzini, Ronaldo and Berenji, B. and Bissaldi, Elisabetta and Blandford, R. D. and Bonino, R. and Bottacini, E. and Brandt, Terri J. and Bruel, P. and Buehler, R. and Cameron, R. A. and Caputo, R. and Caraveo, P. A. and Castro, D. and Cavazzuti, E. and Charles, Eric and Chiaro, G. and Ciprini, S. and Cohen-Tanugi, Johann and Costantin, D. and Cutini, S. and de Palma, F. and Di Lalla, N. and Di Mauro, M. and Di Venere, L. and Dominguez, A. and Favuzzi, C. and Fegan, S. J. and Franckowiak, Anna and Fukazawa, Yasushi and Funk, Stefan and Fusco, Piergiorgio and Gargano, Fabio and Gasparrini, Dario and Giglietto, Nicola and Giordano, F. and Giroletti, Marcello and Green, D. and Grenier, I. A. and Guillemot, L. and Guiriec, Sylvain and Hays, Elizabeth and Hewitt, John W. and Horan, D. and Johannesson, G. and Kensei, S. and Kuss, M. and Larsson, Stefan and Latronico, L. and Lemoine-Goumard, Marianne and Li, J. and Longo, Francesco and Loparco, Francesco and Lovellette, M. N. and Lubrano, Pasquale and Magill, Jeffrey D. and Maldera, Simone and Mazziotta, Mario Nicola and McEnery, J. E. and Michelson, P. F. and Mitthumsiri, W. and Mizuno, Tsunefumi and Monzani, Maria Elena and Morselli, Aldo and Moskalenko, Igor V. and Negro, M. and Nuss, E. and Ojha, R. and Omodei, Nicola and Orienti, M. and Orlando, E. and Palatiello, M. and Paliya, Vaidehi S. and Paneque, D. and Perkins, Jeremy S. and Persic, M. and Pesce-Rollins, Melissa and Petrosian, Vahe' and Piron, F. and Porter, Troy A. and Principe, G. and Raino, S. and Rando, Riccardo and Rani, B. and Razzano, Massimilano and Razzaque, Soebur and Reimer, A. and Reimer, Olaf and Reposeur, T. and Sgro, C. and Siskind, E. J. and Spandre, Gloria and Spinelli, P. and Suson, D. J. and Tajima, Hiroyasu and Thayer, J. B. and Thompson, David J. and Torres, Diego F. and Tosti, Gino and Troja, Eleonora and Valverde, J. and Vianello, Giacomo and Vogel, M. and Wood, K. and Yassine, M. and Alfaro, R. and Alvarez, C. and Alvarez, J. D. and Arceo, R. and Arteaga-Velazquez, J. C. and Rojas, D. Avila and Ayala Solares, H. A. and Becerril, A. and Belmont-Moreno, E. and BenZvi, S. Y. and Bernal, A. and Braun, J. and Brisbois, C. and Caballero-Mora, K. S. and Capistran, T. and Carraminana, A. and Casanova, Sabrina and Castillo, M. and Cotti, U. and Cotzomi, J. and Coutino de Leon, S. and De Leon, C. and De la Fuente, E. and Dichiara, S. and Dingus, B. L. and DuVernois, M. A. and Diaz-Velez, J. C. and Engel, K. and Enriquez-Rivera, O. and Fiorino, D. W. and Fleischhack, H. and Fraija, N. and Garcia-Gonzalez, J. A. and Garfias, F. and Gonzalez Munoz, A. and Gonzalez, M. M. and Goodman, J. A. and Hampel-Arias, Z. and Harding, J. P. and Hernandez, S. and Hernandez-Almada, A. and Hona, B. and Hueyotl-Zahuantitla, F. and Hui, C. M. and Huntemeyer, P. and Iriarte, A. and Jardin-Blicq, A. and Joshi, V. and Kaufmann, S. and Lara, A. and Lauer, R. J. and Lee, W. H. and Lennarz, D. and Leon Vargas, H. and Linnemann, J. T. and Longinotti, A. L. and Luis-Raya, G. and Luna-Garcia, R. and Lopez-Coto, R. and Malone, K. and Marinelli, S. S. and Martinez, O. and Martinez-Castellanos, I. and Martinez-Castro, J. and Martinez-Huerta, H. and Matthews, J. A. and Miranda-Romagnoli, P. and Moreno, E. and Mostafa, M. and Nayerhoda, A. and Nellen, L. and Newbold, M. and Nisa, M. U. and Noriega-Papaqui, R. and Pelayo, R. and Pretz, J. and Perez-Perez, E. G. and Ren, Z. and Rho, C. D. and Riviere, C. and Rosa-Gonzalez, D. and Rosenberg, M. and Ruiz-Velasco, E. and Salazar, H. and Greus, F. Salesa and Sandoval, A. and Schneider, M. and Arroyo, M. Seglar and Sinnis, G. and Smith, A. J. and Springer, R. W. and Surajbali, P. and Taboada, Ignacio and Tibolla, O. and Tollefson, K. and Torres, I. and Ukwatta, Tilan N. and Villasenor, L. and Weisgarber, T. and Westerhoff, Stefan and Wisher, I. G. and Wood, J. and Yapici, Tolga and Yodh, G. and Zepeda, A. and Zhou, H.}, title = {VERITAS and Fermi-LAT Observations of TeV Gamma-Ray Sources Discovered by HAWC in the 2HWC Catalog}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {866}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration Fermi-LAT Collaboration HAWC Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aade4e}, pages = {18}, year = {2018}, abstract = {The High Altitude Water Cherenkov (HAWC) collaboration recently published their 2HWC catalog, listing 39 very high energy (VHE; >100 GeV) gamma-ray sources based on 507 days of observation. Among these, 19 sources are not associated with previously known teraelectronvolt (TeV) gamma-ray sources. We have studied 14 of these sources without known counterparts with VERITAS and Fermi-LAT. VERITAS detected weak gamma-ray emission in the 1 TeV-30 TeV band in the region of DA 495, a pulsar wind nebula coinciding with 2HWC J1953+294, confirming the discovery of the source by HAWC. We did not find any counterpart for the selected 14 new HAWC sources from our analysis of Fermi-LAT data for energies higher than 10 GeV. During the search, we detected gigaelectronvolt (GeV) gamma-ray emission coincident with a known TeV pulsar wind nebula, SNR G54.1+0.3 (VER J1930+188), and a 2HWC source, 2HWC J1930+188. The fluxes for isolated, steady sources in the 2HWC catalog are generally in good agreement with those measured by imaging atmospheric Cherenkov telescopes. However, the VERITAS fluxes for SNR G54.1+0.3, DA 495, and TeV J2032+4130 are lower than those measured by HAWC, and several new HAWC sources are not detected by VERITAS. This is likely due to a change in spectral shape, source extension, or the influence of diffuse emission in the source region.}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Bugaev, V and Cui, Wei and Danie, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Flinders, A. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Huttens, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Nieto, Daniel and Ong, R. A. and Otte, A. N. and Park, Nahee and Petrashyk, A. and Pohl, Martin and Popkow, Alexis and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynold, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Brisken, W. F. and Pontrelli, P.}, title = {HESS J1943+213}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {862}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aacbd0}, pages = {15}, year = {2018}, abstract = {HESS J1943+213 is a very high energy (VHE; > 100 GeV) gamma-ray source in the direction of the Galactic plane. Studies exploring the classification of the source are converging toward its identification as an extreme synchrotron BL Lac object. Here we present 38 hr of VERITAS observations of HESS J1943+213 taken over 2 yr. The source is detected with a significance of similar to 20 standard deviations, showing a remarkably stable flux and spectrum in VHE gamma-rays. Multifrequency Very Long Baseline Array (VLBA) observations of the source confirm the extended, jet-like structure previously found in the 1.6 GHz band with the European VLBI Network and detect this component in the 4.6 and 7.3 GHz bands. The radio spectral indices of the core and the jet and the level of polarization derived from the VLBA observations are in a range typical for blazars. Data from VERITAS, Fermi-LAT, Swift-XRT, the FLWO 48 ' telescope, and archival infrared and hard X-ray observations are used to construct and model the spectral energy distribution (SED) of the source with a synchrotron self-Compton model. The well-measured gamma-ray peak of the SED with VERITAS and Fermi-LAT provides constraining upper limits on the source redshift. Possible contribution of secondary gamma-rays from ultra-high-energy cosmic-ray-initiated electromagnetic cascades to the gamma-ray emission is explored, finding that only a segment of the VHE spectrum can be accommodated with this process. A variability search is performed across X-ray and gamma-ray bands. No statistically significant flux or spectral variability is detected.}, language = {en} } @article{AceroAloisioAmansetal.2017, author = {Acero, F. and Aloisio, R. and Amans, J. and Amato, Elena and Antonelli, L. A. and Aramo, C. and Armstrong, T. and Arqueros, F. and Asano, Katsuaki and Ashley, M. and Backes, M. and Balazs, C. and Balzer, A. and Bamba, Aya and Barkov, Maxim and Barrio, J. A. and Benbow, Wystan and Bernloehr, K. and Beshley, V. and Bigongiari, C. and Biland, A. and Bilinsky, A. and Bissaldi, Elisabetta and Biteau, J. and Blanch, O. and Blasi, P. and Blazek, J. and Boisson, C. and Bonanno, G. and Bonardi, A. and Bonavolonta, C. and Bonnoli, G. and Braiding, C. and Brau-Nogue, S. and Bregeon, J. and Brown, A. M. and Bugaev, V. and Bulgarelli, A. and Bulik, T. and Burton, Michael and Burtovoi, A. and Busetto, G. and Bottcher, M. and Cameron, R. and Capalbi, M. and Caproni, Anderson and Caraveo, P. and Carosi, R. and Cascone, E. and Cerruti, M. and Chaty, Sylvain and Chen, A. and Chen, X. and Chernyakova, M. and Chikawa, M. and Chudoba, J. and Cohen-Tanugi, J. and Colafrancesco, S. and Conforti, V. and Contreras, J. L. and Costa, A. and Cotter, G. and Covino, Stefano and Covone, G. and Cumani, P. and Cusumano, G. and Daniel, M. and Dazzi, F. and De Angelis, A. and De Cesare, G. and De Franco, A. and De Frondat, F. and Dal Pino, E. M. de Gouveia and De Lisio, C. and Lopez, R. de los Reyes and De Lotto, B. and de Naurois, M. and De Palma, F. and Del Santo, M. and Delgado, C. and della Volpe, D. and Di Girolamo, T. and Di Giulio, C. and Di Pierro, F. and Di Venere, L. and Doro, M. and Dournaux, J. and Dumas, D. and Dwarkadas, Vikram V. and Diaz, C. and Ebr, J. and Egberts, Kathrin and Einecke, S. and Elsaesser, D. and Eschbach, S. and Falceta-Goncalves, D. and Fasola, G. and Fedorova, E. and Fernandez-Barral, A. and Ferrand, Gilles and Fesquet, M. and Fiandrini, E. and Fiasson, A. and Filipovic, Miroslav D. and Fioretti, V. and Font, L. and Fontaine, Gilles and Franco, F. J. and Freixas Coromina, L. and Fujita, Yutaka and Fukui, Y. and Funk, S. and Forster, A. and Gadola, A. and Lopez, R. Garcia and Garczarczyk, M. and Giglietto, N. and Giordano, F. and Giuliani, A. and Glicenstein, J. and Gnatyk, R. and Goldoni, P. and Grabarczyk, T. and Graciani, R. and Graham, J. and Grandi, P. and Granot, Jonathan and Green, A. J. and Griffiths, S. and Gunji, S. and Hakobyan, H. and Hara, S. and Hassan, T. and Hayashida, M. and Heller, M. and Helo, J. C. and Hinton, J. and Hnatyk, B. and Huet, J. and Huetten, M. and Humensky, T. B. and Hussein, M. and Horandel, J. and Ikeno, Y. and Inada, T. and Inome, Y. and Inoue, S. and Inoue, T. and Inoue, Y. and Ioka, K. and Iori, Maurizio and Jacquemier, J. and Janecek, P. and Jankowsky, D. and Jung, I. and Kaaret, P. and Katagiri, H. and Kimeswenger, S. and Kimura, Shigeo S. and Knodlseder, J. and Koch, B. and Kocot, J. and Kohri, K. and Komin, N. and Konno, Y. and Kosack, K. and Koyama, S. and Kraus, Michaela and Kubo, Hidetoshi and Mezek, G. Kukec and Kushida, J. and La Palombara, N. and Lalik, K. and Lamanna, G. and Landt, H. and Lapington, J. and Laporte, P. and Lee, S. and Lees, J. and Lefaucheur, J. and Lenain, J. -P. and Leto, Giuseppe and Lindfors, E. and Lohse, T. and Lombardi, S. and Longo, F. and Lopez, M. and Lucarelli, F. and Luque-Escamilla, Pedro Luis and Lopez-Coto, R. and Maccarone, M. C. and Maier, G. and Malaguti, G. and Mandat, D. and Maneva, G. and Mangano, S. and Marcowith, Alexandre and Marti, J. and Martinez, M. and Martinez, G. and Masuda, S. and Maurin, G. and Maxted, N. and Melioli, Claudio and Mineo, T. and Mirabal, N. and Mizuno, T. and Moderski, R. and Mohammed, M. and Montaruli, T. and Moralejo, A. and Mori, K. and Morlino, G. and Morselli, A. and Moulin, Emmanuel and Mukherjee, R. and Mundell, C. and Muraishi, H. and Murase, Kohta and Nagataki, Shigehiro and Nagayoshi, T. and Naito, T. and Nakajima, D. and Nakamori, T. and Nemmen, R. and Niemiec, Jacek and Nieto, D. and Nievas-Rosillo, M. and Nikolajuk, M. and Nishijima, K. and Noda, K. and Nogues, L. and Nosek, D. and Novosyadlyj, B. and Nozaki, S. and Ohira, Yutaka and Ohishi, M. and Ohm, S. and Okumura, A. and Ong, R. A. and Orito, R. and Orlati, A. and Ostrowski, M. and Oya, I. and Padovani, Marco and Palacio, J. and Palatka, M. and Paredes, Josep M. and Pavy, S. and Persic, M. and Petrucci, P. and Petruk, Oleh and Pisarski, A. and Pohl, Martin and Porcelli, A. and Prandini, E. and Prast, J. and Principe, G. and Prouza, M. and Pueschel, Elisa and Puelhofer, G. and Quirrenbach, A. and Rameez, M. and Reimer, O. and Renaud, M. and Ribo, M. and Rico, J. and Rizi, V. and Rodriguez, J. and Fernandez, G. Rodriguez and Rodriguez Vazquez, J. J. and Romano, Patrizia and Romeo, G. and Rosado, J. and Rousselle, J. and Rowell, G. and Rudak, B. and Sadeh, I. and Safi-Harb, S. and Saito, T. and Sakaki, N. and Sanchez, D. and Sangiorgi, P. and Sano, H. and Santander, M. and Sarkar, S. and Sawada, M. and Schioppa, E. J. and Schoorlemmer, H. and Schovanek, P. and Schussler, F. and Sergijenko, O. and Servillat, M. and Shalchi, A. and Shellard, R. C. and Siejkowski, H. and Sillanpaa, A. and Simone, D. and Sliusar, V. and Sol, H. and Stanic, S. and Starling, R. and Stawarz, L. and Stefanik, S. and Stephan, M. and Stolarczyk, T. and Szanecki, M. and Szepieniec, T. and Tagliaferri, G. and Tajima, H. and Takahashi, M. and Takeda, J. and Tanaka, M. and Tanaka, S. and Tejedor, L. A. and Telezhinsky, Igor O. and Temnikov, P. and Terada, Y. and Tescaro, D. and Teshima, M. and Testa, V. and Thoudam, S. and Tokanai, F. and Torres, D. F. and Torresi, E. and Tosti, G. and Townsley, C. and Travnicek, P. and Trichard, C. and Trifoglio, M. and Tsujimoto, S. and Vagelli, V. and Vallania, P. and Valore, L. and van Driel, W. and van Eldik, C. and Vandenbroucke, Justin and Vassiliev, V. and Vecchi, M. and Vercellone, Stefano and Vergani, S. and Vigorito, C. and Vorobiov, S. and Vrastil, M. and Vazquez Acosta, M. L. and Wagner, S. J. and Wagner, R. and Wakely, S. P. and Walter, R. and Ward, J. E. and Watson, J. J. and Weinstein, A. and White, M. and White, R. and Wierzcholska, A. and Wilcox, P. and Williams, D. A. and Wischnewski, R. and Wojcik, P. and Yamamoto, T. and Yamamoto, H. and Yamazaki, Ryo and Yanagita, S. and Yang, L. and Yoshida, T. and Yoshida, M. and Yoshiike, S. and Yoshikoshi, T. and Zacharias, M. and Zampieri, L. and Zanin, R. and Zavrtanik, M. and Zavrtanik, D. and Zdziarski, A. and Zech, Alraune and Zechlin, Hannes and Zhdanov, V. and Ziegler, A. and Zorn, J.}, title = {Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {840}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa6d67}, pages = {14}, year = {2017}, abstract = {We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.}, language = {en} } @article{ArcherBenbowBirdetal.2019, author = {Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Chromey, A. J. and Cui, Wei and Falcone, A. and Feng, Qi and Finley, J. P. and Fortson, Lucy and Furniss, Amy and Gent, A. and Gueta, O. and Hanna, David and Hassan, T. and Hervet, Olivier and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McCann, A. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Pandel, D. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Richards, Gregory T. and Roache, E. and Sadeh, I and Santander, Marcos and Scott, S. S. and Sembroski, G. H. and Shahinyan, Karlen and Sushch, Iurii and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B.}, title = {A Search for Pulsed Very High-energy Gamma-Rays from 13 Young Pulsars in Archival VERITAS Data}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {876}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab14f4}, pages = {14}, year = {2019}, abstract = {We conduct a search for periodic emission in the very high-energy (VHE) gamma-ray band (E > 100 GeV) from a total of 13 pulsars in an archival VERITAS data set with a total exposure of over 450 hr. The set of pulsars includes many of the brightest young gamma-ray pulsars visible in the Northern Hemisphere. The data analysis resulted in nondetections of pulsed VHE gamma-rays from each pulsar. Upper limits on a potential VHE gamma-ray flux are derived at the 95\% confidence level above three energy thresholds using two methods. These are the first such searches for pulsed VHE emission from each of the pulsars, and the obtained limits constrain a possible flux component manifesting at VHEs as is seen for the Crab pulsar.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buckley, J. H. and Christiansen, Jessie L. and Chromey, A. J. and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Gueta, O. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Lang, M. J. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, Marcos and Scott, S. S. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Kaur, A.}, title = {VERITAS Observations of the BL Lac Object TXS 0506+056}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {2041-8205}, doi = {10.3847/2041-8213/aad053}, pages = {6}, year = {2018}, abstract = {On 2017 September 22, the IceCube Neutrino Observatory reported the detection of the high-energy neutrino event IC 170922A, of potential astrophysical origin. It was soon determined that the neutrino direction was consistent with the location of the gamma-ray blazar TXS 0506+056. (3FGL J0509.4+ 0541), which was in an elevated gamma-ray emission state as measured by the Fermi satellite. Very Energetic Radiation Imaging Telescope Array System (VERITAS) observations of the neutrino/blazar region started on 2017 September 23 in response to the neutrino alert and continued through 2018 February 6. While no significant very-high-energy (VHE; E > 100 GeV) emission was observed from the blazar by VERITAS in the two-week period immediately following the IceCube alert, TXS 0506+ 056 was detected by VERITAS with a significance of 5.8 standard deviations (sigma) in the full 35 hr data set. The average photon flux of the source during this period was (8.9 +/- 1.6). x. 10(-12) cm(-2) s(-1), or 1.6\% of the Crab Nebula flux, above an energy threshold of 110 GeV, with a soft spectral index of 4.8. +/-. 1.3.}, language = {en} } @article{ArchambaultArcherBenbowetal.2017, author = {Archambault, S. and Archer, A. and Benbow, Wystan and Bird, Ralph and Bourbeau, E. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Connolly, M. P. and Cui, W. and Dwarkadas, Vikram V. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Griffin, S. and Huetten, M. and Hanna, D. and Holder, J. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, Nahee and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Slane, P. and Staszak, D. and Telezhinsky, Igor O. and Trepanier, S. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Weisgarber, T. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Gamma-ray Observations of Tycho's Supernova Remnant with VERITAS and Fermi}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {836}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/836/1/23}, pages = {8}, year = {2017}, language = {en} } @article{AbeysekaraArcherAuneetal.2018, author = {Abeysekara, A. U. and Archer, A. and Aune, Taylor and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Bugaev, V. and Cui, Wei and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Furniss, Amy and Gotthelf, Eric V. and Grube, J. and Hanna, David and Hervet, O. and Holder, J. and Huang, K. and Hughes, G. and Humensky, T. B. and Huetten, M. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Pandel, Dirk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Popkow, Alexis and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rousselle, J. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Ward, J. E. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Zitzer, B.}, title = {A Very High Energy gamma-Ray Survey toward the Cygnus Region of the Galaxy}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aac4a2}, pages = {33}, year = {2018}, abstract = {We present results from deep observations toward the Cygnus region using 300 hr of very high energy (VHE)gamma-ray data taken with the VERITAS Cerenkov telescope array and over 7 yr of high-energy.-ray data taken with the Fermi satellite at an energy above 1 GeV. As the brightest region of diffuse gamma-ray emission in the northern sky, the Cygnus region provides a promising area to probe the origins of cosmic rays. We report the identification of a potential Fermi-LAT counterpart to VER J2031+415 (TeV J2032+4130) and resolve the extended VHE source VER J2019+368 into two source candidates (VER J2018+367* and VER J2020+368*) and characterize their energy spectra. The Fermi-LAT morphology of 3FGL J2021.0+4031e (the Gamma Cygni supernova remnant) was examined, and a region of enhanced emission coincident with VER J2019+407 was identified and jointly fit with the VERITAS data. By modeling 3FGL J2015.6+3709 as two sources, one located at the location of the pulsar wind nebula CTB 87 and one at the quasar QSO J2015+371, a continuous spectrum from 1 GeV to 10 TeV was extracted for VER J2016+371 (CTB 87). An additional 71 locations coincident with Fermi-LAT sources and other potential objects of interest were tested for VHE gamma-ray emission, with no emission detected and upper limits on the differential flux placed at an average of 2.3\% of the Crab Nebula flux. We interpret these observations in a multiwavelength context and present the most detailed gamma-ray view of the region to date.}, language = {en} } @article{AbeysekaraBenbowBirdetal.2018, author = {Abeysekara, A. U. and Benbow, Wystan and Bird, Ralph and Brantseg, T. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Connolly, M. P. and Cui, Wei and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Gunawardhana, Isuru and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kertzman, M. and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Williams, D. A. and Zitzer, B. and Jorstad, Svetlana G. and Marscher, Alan P. and Lister, Matthew L. and Kovalev, Yuri Y. and Pushkarev, A. B. and Savolainen, Tuomas and Agudo, I. and Molina, S. N. and Gomez, J. L. and Larionov, Valeri M. and Borman, G. A. and Mokrushina, A. A. and Tornikoski, Merja and Lahteenmaki, A. and Chamani, W. and Enestam, S. and Kiehlmann, S. and Hovatta, Talvikki and Smith, P. S. and Pontrelli, P.}, title = {Multiwavelength Observations of the Blazar BL Lacertae}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {856}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab35c}, pages = {14}, year = {2018}, abstract = {Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL. Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL. Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of similar to 2.3 hr and a decay time of similar to 36 min. The peak flux above 200 GeV is (4.2 +/- 0.6) x 10(-6) photon m(-2) s(-1) measured with a 4-minute-binned light curve, corresponding to similar to 180\% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Bugaev, V. and Connolly, M. P. and Cui, Wei and Errando, Manel and Falcone, A. and Feng, Qi and Finley, John P. and Flinders, A. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Park, N. and Perkins, Jeremy S. and Petrashyk, A. and Pohl, Martin and Popkow, Alexis and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Zitzer, B. and Vurm, Indrek and Beloborodov, Andrei}, title = {A Strong Limit on the Very-high-energy Emission from GRB 150323A}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {857}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab371}, pages = {6}, year = {2018}, abstract = {On 2015 March 23, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) responded to a Swift-Burst Alert Telescope (BAT) detection of a gamma-ray burst, with observations beginning 270 s after the onset of BAT emission, and only 135 s after the main BAT emission peak. No statistically significant signal is detected above 140 GeV. The VERITAS upper limit on the fluence in a 40-minute integration corresponds to about 1\% of the prompt fluence. Our limit is particularly significant because the very-high-energy (VHE) observation started only similar to 2 minutes after the prompt emission peaked, and Fermi-Large Area Telescope observations of numerous other bursts have revealed that the high-energy emission is typically delayed relative to the prompt radiation and lasts significantly longer. Also, the proximity of GRB 150323A (z = 0.593) limits the attenuation by the extragalactic background light to similar to 50\% at 100-200 GeV. We conclude that GRB 150323A had an intrinsically very weak high-energy afterglow, or that the GeV spectrum had a turnover below similar to 100 GeV. If the GRB exploded into the stellar wind of a massive progenitor, the VHE non-detection constrains the wind density parameter to be A greater than or similar to 3 x 10(11) g . cm(-1), consistent with a standard Wolf-Rayet progenitor. Alternatively, the VHE emission from the blast wave would be weak in a very tenuous medium such as the interstellar medium, which therefore cannot be ruled out as the environment of GRB 150323A.}, language = {en} } @article{BroseSushchPohletal.2019, author = {Brose, Robert and Sushch, Iuri and Pohl, Martin and Luken, K. J. and Filipovic, M. D. and Lin, R.}, title = {Nonthermal emission from the reverse shock of the youngest galactic supernova remnant G1.9+0.3}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {627}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834430}, pages = {9}, year = {2019}, abstract = {Context. The youngest Galactic supernova remnant G1.9+0.3 is an interesting target for next-generation gamma-ray observatories. So far, the remnant is only detected in the radio and the X-ray bands, but its young age of approximate to 100 yr and inferred shock speed of approximate to 14 000 km s(-1) could make it an efficient particle accelerator. Aims. We aim to model the observed radio and X-ray spectra together with the morphology of the remnant. At the same time, we aim to estimate the gamma-ray flux from the source and evaluate the prospects of its detection with future gamma-ray experiments. Methods. We performed spherical symmetric 1D simulations with the RATPaC code, in which we simultaneously solved the transport equation for cosmic rays, the transport equation for magnetic turbulence, and the hydro-dynamical equations for the gas flow. Separately computed distributions of the particles accelerated at the forward and the reverse shock were then used to calculate the spectra of synchrotron, inverse Compton, and pion-decay radiation from the source. Results. The emission from G1.9+0.3 can be self-consistently explained within the test-particle limit. We find that the X-ray flux is dominated by emission from the forward shock while most of the radio emission originates near the reverse shock, which makes G1.9+0.3 the first remnant with nonthermal radiation detected from the reverse shock. The flux of very-high-energy gamma-ray emission from G1.9+0.3 is expected to be close to the sensitivity threshold of the Cherenkov Telescope Array. The limited time available to grow large-scale turbulence limits the maximum energy of particles to values below 100 TeV, hence G1.9+0.3 is not a PeVatron.}, language = {en} } @article{AlawashraPohl2022, author = {Alawashra, Mahmoud and Pohl, Martin}, title = {Suppression of the TeV Pair-beam-Plasma Instability by a Tangled Weak Intergalactic Magnetic Field}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {929}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac5a4b}, pages = {8}, year = {2022}, abstract = {We study the effect of a tangled sub-fG level intergalactic magnetic field (IGMF) on the electrostatic instability of a blazar-induced pair beam. Sufficiently strong IGMF may significantly deflect the TeV pair beams, which would reduce the flux of secondary cascade emission below the observational limits. A similar flux reduction may result from the electrostatic beam-plasma instability, which operates the best in the absence of IGMF. Considering IGMF with correlation lengths smaller than a kiloparsec, we find that weak magnetic fields increase the transverse momentum of the pair-beam particles, which dramatically reduces the linear growth rate of the electrostatic instability and hence the energy-loss rate of the pair beam. We show that the beam-plasma instability is eliminated as an effective energy-loss agent at a field strength three orders of magnitude below that needed to suppress the secondary cascade emission by magnetic deflection. For intermediate-strength IGMF, we do not know a viable process to explain the observed absence of GeV-scale cascade emission.}, language = {en} } @article{RienksWimmerSanchezBarrigaetal.2019, author = {Rienks, Emile D. L. and Wimmer, S. and Sanchez-Barriga, Jaime and Caha, O. and Mandal, Partha Sarathi and Ruzicka, J. and Ney, A. and Steiner, H. and Volobuev, V. V. and Groiss, H. and Albu, M. and Kothleitner, G. and Michalicka, J. and Khan, S. A. and Minar, J. and Ebert, H. and Bauer, G. and Freyse, Friedrich and Varykhalov, Andrei and Rader, Oliver and Springholz, Gunther}, title = {Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures}, series = {Nature : the international weekly journal of science}, volume = {576}, journal = {Nature : the international weekly journal of science}, number = {7787}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/s41586-019-1826-7}, pages = {423 -- 428}, year = {2019}, abstract = {Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE), which provides quantized edge states for lossless charge-transport applications(1-8). The edge states are hosted by a magnetic energy gap at the Dirac point(2), but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, T-C (ref. (8)). Here we use low-temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below T-C. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is five times larger than theoretically predicted(9). Using multiscale analysis we show that this enhancement is due to a remarkable structure modification induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap(10). Mn-doped Bi2Se3 (ref. (11)) and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin-orbit interaction by comparison with Mn-doped Bi2Te3. Our findings provide insights that will be crucial in pushing lossless transport in topological insulators towards room-temperature applications.}, language = {en} } @article{IwamotoAmanoHoshinoetal.2019, author = {Iwamoto, Masanori and Amano, Takanobu and Hoshino, Masahiro and Matsumoto, Yosuke and Niemiec, Jacek and Ligorini, Arianna and Kobzar, Oleh and Pohl, Martin}, title = {Precursor Wave Amplification by Ion-Electron Coupling through Wakefield in Relativistic Shocks}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {883}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/ab4265}, pages = {6}, year = {2019}, abstract = {We investigated electromagnetic precursor wave emission in relativistic shocks by using two-dimensional particle-in-cell simulations. We found that the wave amplitude is significantly enhanced by a positive feedback process associated with ion-electron coupling through the wakefields for high magnetization. The wakefields collapse during the nonlinear process of the parametric decay instability in the near-upstream region, where nonthermal electrons and ions are generated. The intense coherent emission and the particle acceleration may operate in high-energy astrophysical objects.}, language = {en} } @article{PetrukKuzyoOrlandoetal.2018, author = {Petruk, Oleh and Kuzyo, T. and Orlando, S. and Pohl, Martin and Miceli, M. and Bocchino, F. and Beshley, V. and Brose, Robert}, title = {Post-adiabatic supernova remnants in an interstellar magnetic field}, series = {Monthly notices of the Royal Astronomical Society}, volume = {479}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1750}, pages = {4253 -- 4270}, year = {2018}, abstract = {We present very-high-resolution 1D MHD simulations of the late-stage supernova remnants (SNRs). In the post-adiabatic stage, the magnetic field has an important and significant dynamical effect on the shock dynamics, the flow structure, and hence the acceleration and emission of cosmic rays. We find that the tangential component of the magnetic field provides pressure support that to a fair degree prevents the collapse of the radiative shell and thus limits the total compression ratio of the partially or fully radiative forward shock. A consequence is that the spectra of cosmic rays would not be as hard as in hydrodynamic simulations. We also investigated the effect on the flow profiles of the magnetic-field inclination and a large-scale gradient in the gas density and/or the magnetic field. A positive density gradient shortens the evolutionary stages, whereas a shock obliquity lowers the shock compression. The compression of the tangential component of the magnetic field leads to its dominance in the downstream region of post-adiabatic shocks for a wide range of orientation of the upstream field, which may explain why one preferentially observes tangential radio polarization in old SNRs. As most cosmic rays are produced at late stages of SNR evolution, the post-adiabatic phase and the influence of the magnetic field during it are most important for modeling the cosmic-ray acceleration at old SNRs and the gamma-ray emission from late-stage SNRs interacting with clouds.}, language = {en} } @article{MaciasGordonCrockeretal.2018, author = {Macias, Oscar and Gordon, Chris and Crocker, Roland M. and Coleman, Brendan and Paterson, Dylan and Horiuchi, Shunsaku and Pohl, Martin}, title = {Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess}, series = {Nature Astronomy}, volume = {2}, journal = {Nature Astronomy}, number = {5}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-3366}, doi = {10.1038/s41550-018-0414-3}, pages = {387 -- 392}, year = {2018}, abstract = {An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this 'Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.}, language = {en} } @article{DenkerKuckeinVermaetal.2018, author = {Denker, Carsten and Kuckein, Christoph and Verma, Meetu and Manrique Gonzalez, Sergio Javier Gonzalez and Diercke, Andrea and Enke, Harry and Klar, Jochen and Balthasar, Horst and Louis, Rohan E. and Dineva, Ekaterina Ivanova}, title = {High-cadence Imaging and Imaging Spectroscopy at the GREGOR Solar Telescope-A Collaborative Research Environment for High-resolution Solar Physics}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {236}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/1538-4365/aab773}, pages = {12}, year = {2018}, abstract = {In high-resolution solar physics, the volume and complexity of photometric, spectroscopic, and polarimetric ground-based data significantly increased in the last decade, reaching data acquisition rates of terabytes per hour. This is driven by the desire to capture fast processes on the Sun and the necessity for short exposure times "freezing" the atmospheric seeing, thus enabling ex post facto image restoration. Consequently, large-format and high-cadence detectors are nowadays used in solar observations to facilitate image restoration. Based on our experience during the "early science" phase with the 1.5 m GREGOR solar telescope (2014-2015) and the subsequent transition to routine observations in 2016, we describe data collection and data management tailored toward image restoration and imaging spectroscopy. We outline our approaches regarding data processing, analysis, and archiving for two of GREGOR's post-focus instruments (see http://gregor.aip.de), i.e., the GREGOR Fabry-P{\´e}rot Interferometer (GFPI) and the newly installed High-Resolution Fast Imager (HiFI). The heterogeneous and complex nature of multidimensional data arising from high-resolution solar observations provides an intriguing but also a challenging example for "big data" in astronomy. The big data challenge has two aspects: (1) establishing a workflow for publishing the data for the whole community and beyond and (2) creating a collaborative research environment (CRE), where computationally intense data and postprocessing tools are colocated and collaborative work is enabled for scientists of multiple institutes. This requires either collaboration with a data center or frameworks and databases capable of dealing with huge data sets based on virtual observatory (VO) and other community standards and procedures.}, language = {en} } @article{VafinRafighiPohletal.2018, author = {Vafin, Sergei and Rafighi, Iman and Pohl, Martin and Niemiec, Jacek}, title = {The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {857}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab552}, pages = {12}, year = {2018}, abstract = {This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2-4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1\% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.}, language = {en} } @article{MendezMasoPuigdellosasSandevetal.2021, author = {Mendez, Vicenc and Maso-Puigdellosas, Axel and Sandev, Trifce and Campos, Daniel}, title = {Continuous time random walks under Markovian resetting}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {103}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.103.022103}, pages = {8}, year = {2021}, abstract = {We investigate the effects of Markovian resetting events on continuous time random walks where the waiting times and the jump lengths are random variables distributed according to power-law probability density functions. We prove the existence of a nonequilibrium stationary state and finite mean first arrival time. However, the existence of an optimum reset rate is conditioned to a specific relationship between the exponents of both power-law tails. We also investigate the search efficiency by finding the optimal random walk which minimizes the mean first arrival time in terms of the reset rate, the distance of the initial position to the target, and the characteristic transport exponents.}, language = {en} } @article{KitzmannRomanczukWunderlingetal.2022, author = {Kitzmann, Niklas H. and Romanczuk, Pawel and Wunderling, Nico and Donges, Jonathan}, title = {Detecting contagious spreading of urban innovations on the global city network}, series = {European physical journal special topics}, volume = {231}, journal = {European physical journal special topics}, number = {9}, publisher = {Springer}, address = {Heidelberg}, issn = {1951-6355}, doi = {10.1140/epjs/s11734-022-00470-4}, pages = {1609 -- 1624}, year = {2022}, abstract = {Only a fast and global transformation towards decarbonization and sustainability can keep the Earth in a civilization-friendly state. As hotspots for (green) innovation and experimentation, cities could play an important role in this transition. They are also known to profit from each other's ideas, with policy and technology innovations spreading to other cities. In this way, cities can be conceptualized as nodes in a globe-spanning learning network. The dynamics of this process are important for society's response to climate change and other challenges, but remain poorly understood on a macroscopic level. In this contribution, we develop an approach to identify whether network-based complex contagion effects are a feature of sustainability policy adoption by cities, based on dose-response contagion and surrogate data models. We apply this methodology to an exemplary data set, comprising empirical data on the spreading of a public transport innovation (Bus Rapid Transit Systems) and a global inter-city connection network based on scheduled flight routes. Although our approach is not able to identify detailed mechanisms, our results point towards a contagious spreading process, and cannot be explained by either the network structure or the increase in global adoption rate alone. Further research on the role of a city's abstract "global neighborhood" regarding its policy and innovation decisions is thus both needed and promising, and may connect with research on social tipping processes. The methodology is generic, and can be used to compare the predictive power for innovation spreading of different kinds of inter-city network connections, e.g. via transport links, trade, or co-membership in political networks.}, language = {en} } @article{ArchambaultArcherBenbowetal.2017, author = {Archambault, S. and Archer, A. and Benbow, W. and Bird, Ralph and Bourbeau, E. and Bouvier, A. and Buchovecky, M. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Ciupik, L. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Hutten, M. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krause, M. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Trepanier, S. and Wakely, S. P. and Weinstein, A. and Wilcox, P. and Williams, D. A. and Zitzer, B.}, title = {Gamma-ray observations under bright moonlight with VERITAS}, series = {Astroparticle physics}, volume = {91}, journal = {Astroparticle physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-6505}, doi = {10.1016/j.astropartphys.2017.03.001}, pages = {34 -- 43}, year = {2017}, abstract = {Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive photomultiplier tube (PMT) cameras. Exposure to high levels of background illumination degrades the efficiency of and potentially destroys these photo-detectors over time, so IACTs cannot be operated in the same configuration in the presence of bright moonlight as under dark skies. Since September 2012, observations have been carried out with the VERITAS IACTs under bright moonlight (defined as about three times the night-sky-background (NSB) of a dark extragalactic field, typically occurring when Moon illumination > 35\%) in two observing modes, firstly by reducing the voltage applied to the PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to the cameras. This has allowed observations at up to about 30 times previous NSB levels (around 80\% Moon illumination), resulting in 30\% more observing time between the two modes over the course of a year. These additional observations have already allowed for the detection of a flare from the 1ES 1727 + 502 and for an observing program targeting a measurement of the cosmic-ray positron fraction. We provide details of these new observing modes and their performance relative to the standard VERITAS observations. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{MeyerVelazquezPetruketal.2022, author = {Meyer, Dominique M.-A. and Velazquez, Pablo F. and Petruk, Oleh and Chiotellis, Alexandros and Pohl, Martin and Camps-Farina, Artemi and Petrov, Miroslav and Reynoso, Estela M. and Toledo-Roy, Juan C. and Schneiter, E. Matias and Castellanos-Ramirez, Antonio and Esquivel, Alejandro}, title = {Rectangular core-collapse supernova remnants}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1832}, pages = {594 -- 605}, year = {2022}, abstract = {Core-collapse supernova remnants are the gaseous nebulae of galactic interstellar media (ISM) formed after the explosive death of massive stars. Their morphology and emission properties depend both on the surrounding circumstellar structure shaped by the stellar wind-ISM interaction of the progenitor star and on the local conditions of the ambient medium. In the warm phase of the Galactic plane (n approximate to 1 cm(-3), T approximate to 8000 K), an organized magnetic field of strength 7 mu G has profound consequences on the morphology of the wind bubble of massive stars at rest. In this paper, we show through 2.5D magnetohydrodynamical simulations, in the context of a Wolf-Rayet-evolving 35 M 0 star, that it affects the development of its supernova remnant. When the supernova remnant reaches its middle age (15-20 kyr), it adopts a tubular shape that results from the interaction between the isotropic supernova ejecta and the anisotropic, magnetized, shocked stellar progenitor bubble into which the supernova blast wave expands. Our calculations for non-thermal emission, i.e. radio synchrotron and inverse-Compton radiation, reveal that such supernova remnants can, due to projection effects, appear as rectangular objects in certain cases. This mechanism for shaping a supernova remnant is similar to the bipolar and elliptical planetary nebula production by wind-wind interaction in the low-mass regime of stellar evolution. If such a rectangular core-collapse supernova remnant is created, the progenitor star must not have been a runaway star. We propose that such a mechanism is at work in the shaping of the asymmetric core-collapse supernova remnant Puppis A.}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Gillanders, G. and Huetten, M. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Ong, R. A. and Otte, A. N. and Petrashyk, A. and Pohl, M. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Staszak, D. and Sushch, I. and Wakely, S. P. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B.}, title = {Measurement of cosmic-ray electrons at TeV energies by VERITAS}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {98}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {6}, publisher = {American Physical Society}, address = {College Park}, organization = {VERITAS Collaboration}, issn = {2470-0010}, doi = {10.1103/PhysRevD.98.062004}, pages = {7}, year = {2018}, abstract = {Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique probe of our local Galactic neighborhood. CREs lose energy rapidly via synchrotron radiation and inverse-Compton scattering processes while propagating within the Galaxy, and these losses limit their propagation distance. For electrons with TeV energies, the limit is on the order of a kiloparsec. Within that distance, there are only a few known astrophysical objects capable of accelerating electrons to such high energies. It is also possible that the CREs are the products of the annihilation or decay of heavy dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov telescopes in southern Arizona, is primarily utilized for gamma-ray astronomy but also simultaneously collects CREs during all observations. We describe our methods of identifying CREs in VERITAS data and present an energy spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300 hours of observations. A single power-law fit is ruled out in VERITAS data. We find that the spectrum of CREs is consistent with a broken power law, with a break energy at 710 +/- 40(stat) +/- 140(syst) GeV.}, language = {en} } @article{DinevaPearsonIlyinetal.2022, author = {Dineva, Ekaterina Ivanova and Pearson, Jeniveve and Ilyin, Ilya and Verma, Meetu and Diercke, Andrea and Strassmeier, Klaus and Denker, Carsten}, title = {Characterization of chromospheric activity based on Sun-as-a-star spectral and disk-resolved activity indices}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {343}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.20223996}, pages = {23}, year = {2022}, abstract = {The strong chromospheric absorption lines Ca ii H \& K are tightly connected to stellar surface magnetic fields. Only for the Sun, spectral activity indices can be related to evolving magnetic features on the solar disk. The Solar Disk-Integrated (SDI) telescope feeds the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) of the Large Binocular Telescope (LBT) at Mt. Graham International Observatory, Arizona, U.S.A. We present high-resolution, high-fidelity spectra that were recorded on 184 \& 82 days in 2018 \& 2019 and derive the Ca ii H \& K emission ratio, that is, the S-index. In addition, we compile excess brightness and area indices based on full-disk Ca ii K-line-core filtergrams of the Chromospheric Telescope (ChroTel) at Observatorio del Teide, Tenerife, Spain and full-disk ultraviolet (UV) 1600 angstrom images of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). Thus, Sun-as-a-star spectral indices are related to their counterparts derived from resolved images of the solar chromosphere. All indices display signatures of rotational modulation, even during the very low magnetic activity in the minimum of Solar Cycle 24. Bringing together different types of activity indices has the potential to join disparate chromospheric datasets yielding a comprehensive description of chromospheric activity across many solar cycles.}, language = {en} } @article{BohdanNiemiecPohletal.2019, author = {Bohdan, Artem and Niemiec, Jacek and Pohl, Martin and Matsumoto, Yosuke and Amano, Takanobu and Hoshino, Masahiro}, title = {Kinetic Simulations of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants. II. Influence of Shock-surfing Acceleration on Downstream Electron Spectra}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {885}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab43cf}, pages = {9}, year = {2019}, abstract = {We explore electron preacceleration at high-Mach-number nonrelativistic perpendicular shocks at, e.g., young supernova remnants, which are a prerequisite of further acceleration to very high energies via diffusive shock acceleration. Using fully kinetic particle-in-cell simulations of shocks and electron dynamics in them, we investigate the influence of shock-surfing acceleration (SSA) at the shock foot on the nonthermal population of electrons downstream of the shock. The SSA is followed by further energization at the shock ramp where the Weibel instability spawns a type of second-order Fermi acceleration. The combination of these two processes leads to the formation of a nonthermal electron population, but the importance of SSA becomes smaller for larger ion-to-electron mass ratios in the simulation. We discuss the resulting electron spectra and the relevance of our results to the physics of systems with real ion-to-electron mass ratios and fully three-dimensional behavior.}, language = {en} } @article{BenbowBirdBrilletal.2019, author = {Benbow, W. and Bird, R. and Brill, A. and Brose, Robert and Chromey, A. J. and Daniel, M. K. and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Giuri, C. and Gueta, O. and Hanna, D. and Halpern, J. P. and Hassan, Tarek and Holder, J. and Hughes, G. and Humensky, T. B. and Joyce, Amy M. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and Matthews, N. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Nievas-Rosillos, M. and Ong, R. A. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, John and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, Iftach and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Sushch, Iurii and Wakely, S. P. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Williamson, T. J.}, title = {Direct measurement of stellar angular diameters by the VERITAS Cherenkov telescopes}, series = {Nature astronomy}, volume = {3}, journal = {Nature astronomy}, number = {6}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-3366}, doi = {10.1038/s41550-019-0741-z}, pages = {511 -- 516}, year = {2019}, abstract = {The angular size of a star is a critical factor in determining its basic properties1. Direct measurement of stellar angular diameters is difficult: at interstellar distances stars are generally too small to resolve by any individual imaging telescope. This fundamental limitation can be overcome by studying the diffraction pattern in the shadow cast when an asteroid occults a star2, but only when the photometric uncertainty is smaller than the noise added by atmospheric scintillation3. Atmospheric Cherenkov telescopes used for particle astrophysics observations have not generally been exploited for optical astronomy due to the modest optical quality of the mirror surface. However, their large mirror area makes them well suited for such high-time-resolution precision photometry measurements4. Here we report two occultations of stars observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS)5 Cherenkov telescopes with millisecond sampling, from which we are able to provide a direct measurement of the occulted stars' angular diameter at the ≤0.1 mas scale. This is a resolution never achieved before with optical measurements and represents an order of magnitude improvement over the equivalent lunar occultation method6. We compare the resulting stellar radius with empirically derived estimates from temperature and brightness measurements, confirming the latter can be biased for stars with ambiguous stellar classifications.}, language = {en} } @article{MeyerPetrovPohl2020, author = {Meyer, Dominique M.-A. and Petrov, Mykola and Pohl, Martin}, title = {Wind nebulae and supernova remnants of very massive stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {493}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa554}, pages = {3548 -- 3564}, year = {2020}, abstract = {A very small fraction of (runaway) massive stars have masses exceeding 60-70 M-circle dot and are predicted to evolve as luminous blue variable and Wolf-Rayet stars before ending their lives as core-collapse supernovae. Our 2D axisymmetric hydrodynamical simulations explore how a fast wind (2000 km s(-1)) and high mass-loss rate (10(-5)M(circle dot) yr(-1)) can impact the morphology of the circumstellar medium. It is shaped as 100 pc-scale wind nebula that can be pierced by the driving star when it supersonically moves with velocity 20-40 km s(-1) through the interstellar medium (ISM) in the Galactic plane. The motion of such runaway stars displaces the position of the supernova explosion out of their bow shock nebula, imposing asymmetries to the eventual shock wave expansion and engendering Cygnus-loop-like supernova remnants. We conclude that the size (up to more than 200 pc) of the filamentary wind cavity in which the chemically enriched supernova ejecta expand, mixing efficiently the wind and ISM materials by at least 10 per cent in number density, can be used as a tracer of the runaway nature of the very massive progenitors of such 0.1Myr old remnants. Our results motivate further observational campaigns devoted to the bow shock of the very massive stars BD+43 degrees 3654 and to the close surroundings of the synchrotron-emitting Wolf-Rayet shell G2.4+1.4.}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Bugaev, V. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Hutten, M. and Johnson, C. A. and Kaaret, P. and Kelley-Hoskins, N. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Wissel, S. A. and Zitzer, B.}, title = {Measurement of the iron spectrum in cosmic rays by VERITAS}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {98}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {2}, publisher = {American Physical Society}, address = {College Park}, organization = {VERITAS Collaboration}, issn = {2470-0010}, doi = {10.1103/PhysRevD.98.022009}, pages = {15}, year = {2018}, abstract = {We present a new measurement of the energy spectrum of iron nuclei in cosmic rays from 20 TeV to 500 TeV; The measurement makes use of a template-based analysis method, which, for the first time, is applied to the energy reconstruction of iron-induced air showers recorded by the VERITAS array of imaging atmospheric Cherenkov telescopes. The event selection makes use of the direct Cherenkov light which is emitted by charged particles before the first interaction, as well as other parameters related to the shape of the recorded air shower images. The measured spectrum is well described by a power law dF/dE = f(0) center dot (E/E-0)(-gamma) over the full energy range, with gamma = 2.82 +/- 0.30(stat)(-0.27)(+0.24)(syst) and f(0) = (4.82 +/- 0.98(stat)(-2.70)(+2.12)(syst)) x 10(-7) m(-2) s(-1) TeV-1 sr(-1) at E-0 = 50 TeV, with no indication of a cutoff or spectral break. The measured differential flux is compatible with previous results, with improved statistical uncertainty at the highest energies.}, language = {en} } @article{ChenLoischGrossetal.2018, author = {Chen, Ye and Loisch, Gregor and Gross, Matthias and Jao, Chun-Sung and Krasilnikov, Mikhail and Oppelt, Anne and Osterhoff, Jens and Pohl, Martin and Qian, Houjun and Stephan, Frank and Vafin, Sergei}, title = {Generation of quasi continuous-wave electron beams in an L-band normal conducting pulsed RF injector for laboratory astrophysics experiments}, series = {Nuclear instruments \& methods in physics research : a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics ; A, Accelerators, spectrometers, detectors and associated equipment}, volume = {903}, journal = {Nuclear instruments \& methods in physics research : a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics ; A, Accelerators, spectrometers, detectors and associated equipment}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-9002}, doi = {10.1016/j.nima.2018.06.063}, pages = {119 -- 125}, year = {2018}, abstract = {We report on an approach to produce quasi continuous-wave (cw) electron beams with an average beam current of milliamperes and a mean beam energy of a few MeV in a pulsed RF injector. Potential applications are in the planned laboratory astrophysics programs at DESY. The beam generation is based on field emission from a specially designed metallic field emitter. A quasi cw beam profile is formed over subsequent RF cycles at the resonance frequency of the gun cavity. This is realized by debunching in a cut disk structure accelerating cavity (booster) downstream of the gun. The peak and average beam currents can be tuned in beam dynamics simulations by adjusting operation conditions of the booster cavity. Optimization of the transverse beam size at specific positions (e.g., entrance of the plasma experiment) is performed by applying magnetic focusing fields provided by solenoids along the beam line. In this paper, the design of a microtip field emitter is introduced and characterized in electromagnetic field simulations in the gun cavity. A series of particle tracking simulations are conducted for multi-parametric optimization of the parameters of the produced quasi cw electron beams. The obtained results will be presented and discussed. In addition, measurements of the parasitic field emission (PFE) current (dark current) in the PITZ gun will be exemplarily shown to distinguish its order of magnitude from the produced beam current by the designed field emitter.}, language = {en} } @article{VafinRiazantsevaPohl2019, author = {Vafin, Sergei and Riazantseva, Maria and Pohl, Martin}, title = {Coulomb collisions as a candidate for temperature anisotropy constraints in the solar wind}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {871}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/aafb11}, pages = {6}, year = {2019}, abstract = {Many solar wind observations at 1 au indicate that the proton (as well as electron) temperature anisotropy is limited. The data distribution in the (A(a), beta(a),(parallel to))-plane have a rhombic-shaped form around beta(a),(parallel to) similar to 1. The boundaries of the temperature anisotropy at beta(a),(parallel to) > 1 can be well explained by the threshold conditions of the mirror (whistler) and oblique proton (electron) firehose instabilities in a bi-Maxwellian plasma, whereas the physical mechanism of the similar restriction at beta(a),(parallel to) < 1 is still under debate. One possible option is Coulomb collisions, which we revisit in the current work. We derive the relaxation rate nu(A)(aa) of the temperature anisotropy in a bi-Maxwellian plasma that we then study analytically and by observed proton data from WIND. We found that nu(A)(pp) increases toward small beta(p),(parallel to) < 1. We matched the data distribution in the (A(p), beta(p),(parallel to))-plane with the constant contour nu(A)(pp) = 2.8 . 10(-6) s(-1), corresponding to the minimum value for collisions to play a role. This contour fits rather well the left boundary of the rhombic-shaped data distribution in the (A(p), beta(p),(parallel to))-plane. Thus, Coulomb collisions are an interesting candidate for explaining the limitations of the temperature anisotropy in the solar wind with small beta(a),(parallel to) < 1 at 1 au.}, language = {en} } @article{PanchalKojdaSahooetal.2022, author = {Panchal, Gyanendra and Kojda, Sandrino Danny and Sahoo, Sophia and Bagri, Anita and Kunwar, Hemant Singh and Bocklage, Lars and Panchwanee, Anjali and Sathe, Vasant G. and Fritsch, Katharina and Habicht, Klaus and Choudhary, Ram Janay and Phase, Deodutta M.}, title = {Strain and electric field control of magnetic and electrical transport properties in a magnetoelastically coupled Fe3O4/BaTiO3 (001) heterostructure}, series = {Physical review : B, Condensed matter and materials physics}, volume = {105}, journal = {Physical review : B, Condensed matter and materials physics}, number = {22}, publisher = {The American Institute of Physics}, address = {Woodbury, NY}, issn = {2469-9950}, doi = {10.1103/PhysRevB.105.224419}, pages = {8}, year = {2022}, abstract = {We present a study of the control of electric field induced strain on the magnetic and electrical transport properties in a magnetoelastically coupled artificial multiferroic Fe3O4/BaTiO3 heterostructure. In this Fe3O4/BaTiO3 heterostructure, the Fe3O4 thin film is epitaxially grown in the form of bilateral domains, analogous to a-c stripe domains of the underlying BaTiO3(001) substrate. By in situ electric field dependent magnetization measurements, we demonstrate the extrinsic control of the magnetic anisotropy and the characteristic Verwey metal-insulator transition of the epitaxial Fe3O4 thin film in a wide temperature range between 20-300 K, via strain mediated converse magnetoelectric coupling. In addition, we observe strain induced modulations in the magnetic and electrical transport properties of the Fe3O4 thin film across the thermally driven intrinsic ferroelectric and structural phase transitions of the BaTiO3 substrate. In situ electric field dependent Raman measurements reveal that the electric field does not significantly modify the antiphase boundary defects in the Fe3O4 thin film once it is thermodynamically stable after deposition and that the modification of the magnetic properties is mainly caused by strain induced lattice distortions and magnetic anisotropy. These results provide a framework to realize electrical control of the magnetization in a classical highly correlated transition metal oxide.}, language = {en} } @article{ClarkWadgaonkarFreyseetal.2022, author = {Clark, Oliver J. and Wadgaonkar, Indrajit and Freyse, Friedrich and Springholz, Gunther and Battiato, Marco and Sanchez-Barriga, Jaime}, title = {Ultrafast thermalization pathways of excited bulk and surface states in the ferroelectric rashba semiconductor GeTe}, series = {Advanced materials}, volume = {34}, journal = {Advanced materials}, number = {24}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.202200323}, pages = {13}, year = {2022}, abstract = {A large Rashba effect is essential for future applications in spintronics. Particularly attractive is understanding and controlling nonequilibrium properties of ferroelectric Rashba semiconductors. Here, time- and angle-resolved photoemission is utilized to access the ultrafast dynamics of bulk and surface transient Rashba states after femtosecond optical excitation of GeTe. A complex thermalization pathway is observed, wherein three different timescales can be clearly distinguished: intraband thermalization, interband equilibration, and electronic cooling. These dynamics exhibit an unconventional temperature dependence: while the cooling phase speeds up with increasing sample temperature, the opposite happens for interband thermalization. It is demonstrated how, due to the Rashba effect, an interdependence of these timescales on the relative strength of both electron-electron and electron-phonon interactions is responsible for the counterintuitive temperature dependence, with spin-selection constrained interband electron-electron scatterings found both to dominate dynamics away from the Fermi level, and to weaken with increasing temperature. These findings are supported by theoretical calculations within the Boltzmann approach explicitly showing the opposite behavior of all relevant electron-electron and electron-phonon scattering channels with temperature, thus confirming the microscopic mechanism of the experimental findings. The present results are important for future applications of ferroelectric Rashba semiconductors and their excitations in ultrafast spintronics.}, language = {en} } @article{StefancuNanZhuetal.2022, author = {Stefancu, Andrei and Nan, Lin and Zhu, Li and Chis, Vasile and Bald, Ilko and Liu, Min and Leopold, Nicolae and Maier, Stefan A. and Cortes, Emiliano}, title = {Controlling plasmonic chemistry pathways through specific ion effects}, series = {Advanced optical materials}, volume = {10}, journal = {Advanced optical materials}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2195-1071}, doi = {10.1002/adom.202200397}, pages = {10}, year = {2022}, abstract = {Plasmon-driven dehalogenation of brominated purines has been recently explored as a model system to understand fundamental aspects of plasmon-assisted chemical reactions. Here, it is shown that divalent Ca2+ ions strongly bridge the adsorption of bromoadenine (Br-Ade) to Ag surfaces. Such ion-mediated binding increases the molecule's adsorption energy leading to an overlap of the metal energy states and the molecular states, enabling the chemical interface damping (CID) of the plasmon modes of the Ag nanostructures (i.e., direct electron transfer from the metal to Br-Ade). Consequently, the conversion of Br-Ade to adenine almost doubles following the addition of Ca2+. These experimental results, supported by theoretical calculations of the local density of states of the Ag/Br-Ade complex, indicate a change of the charge transfer pathway driving the dehalogenation reaction, from Landau damping (in the lack of Ca2+ ions) to CID (after the addition of Ca2+). The results show that the surface dynamics of chemical species (including water molecules) play an essential role in charge transfer at plasmonic interfaces and cannot be ignored. It is envisioned that these results will help in designing more efficient nanoreactors, harnessing the full potential of plasmon-assisted chemistry.}, language = {en} } @article{YanXueJiangetal.2022, author = {Yan, Xiaoli and Xue, Zhike and Jiang, Chaowei and Priest, E. R. and Kliem, Bernhard and Yang, Liheng and Wang, Jincheng and Kong, Defang and Song, Yongliang and Feng, Xueshang and Liu, Zhong}, title = {Fast plasmoid-mediated reconnection in a solar flare}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-28269-w}, pages = {14}, year = {2022}, abstract = {Magnetic reconnection is a multi-faceted process of energy conversion in astrophysical, space and laboratory plasmas that operates at microscopic scales but has macroscopic drivers and consequences. Solar flares present a key laboratory for its study, leaving imprints of the microscopic physics in radiation spectra and allowing the macroscopic evolution to be imaged, yet a full observational characterization remains elusive. Here we combine high resolution imaging and spectral observations of a confined solar flare at multiple wavelengths with data-constrained magnetohydrodynamic modeling to study the dynamics of the flare plasma from the current sheet to the plasmoid scale. The analysis suggests that the flare resulted from the interaction of a twisted magnetic flux rope surrounding a filament with nearby magnetic loops whose feet are anchored in chromospheric fibrils. Bright cusp-shaped structures represent the region around a reconnecting separator or quasi-separator (hyperbolic flux tube). The fast reconnection, which is relevant for other astrophysical environments, revealed plasmoids in the current sheet and separatrices and associated unresolved turbulent motions. Solar flares provide wide range of observational details about fundamental processes involved. Here, the authors show evidence for magnetic reconnection in a strong confined solar flare displaying all four reconnection flows with plasmoids in the current sheet and the separatrices.}, language = {en} } @article{MorrisBohdanWeidletal.2022, author = {Morris, Paul J. and Bohdan, Artem and Weidl, Martin S. and Pohl, Martin}, title = {Preacceleration in the Electron Foreshock. I. Electron Acoustic Waves}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {931}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac69c7}, pages = {12}, year = {2022}, abstract = {To undergo diffusive shock acceleration, electrons need to be preaccelerated to increase their energies by several orders of magnitude, else their gyroradii will be smaller than the finite width of the shock. In oblique shocks, where the upstream magnetic field orientation is neither parallel nor perpendicular to the shock normal, electrons can escape to the shock upstream, modifying the shock foot to a region called the electron foreshock. To determine the preacceleration in this region, we undertake particle-in-cell simulations of oblique shocks while varying the obliquity and in-plane angles. We show that while the proportion of reflected electrons is negligible for theta (Bn) = 74.degrees 3, it increases to R similar to 5\% for theta (Bn) = 30 degrees, and that, via the electron acoustic instability, these electrons power electrostatic waves upstream with energy density proportional to R (0.6) and a wavelength approximate to 2 lambda (se), where lambda (se) is the electron skin length. While the initial reflection mechanism is typically a combination of shock-surfing acceleration and magnetic mirroring, we show that once the electrostatic waves have been generated upstream, they themselves can increase the momenta of upstream electrons parallel to the magnetic field. In less than or similar to 1\% of cases, upstream electrons are prematurely turned away from the shock and never injected downstream. In contrast, a similar fraction is rescattered back toward the shock after reflection, reinteracts with the shock with energies much greater than thermal, and crosses into the downstream.}, language = {en} } @article{GorenflotPaulkePiersimonietal.2018, author = {Gorenflot, Julien and Paulke, Andreas and Piersimoni, Fortunato and Wolf, Jannic and Kan, Zhipeng and Cruciani, Federico and El Labban, Abdulrahman and Neher, Dieter and Beaujuge, Pierre M. and Laquai, Frederic}, title = {From recombination dynamics to device performance}, series = {dvanced energy materials}, volume = {8}, journal = {dvanced energy materials}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201701678}, pages = {12}, year = {2018}, abstract = {An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, "the" technique to monitor all intermediate states over the entire relevant timescale, is combined with time-delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two-pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device-relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide-bandgap donor polymers: poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)-state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.}, language = {en} } @article{PhuongHosseiniSandbergetal.2020, author = {Phuong, Le Quang and Hosseini, Seyed Mehrdad and Sandberg, Oskar J. and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells}, series = {Solar RRL}, volume = {5}, journal = {Solar RRL}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202000649}, pages = {6}, year = {2020}, abstract = {The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.}, language = {en} } @article{TokmoldinHosseiniRaoufietal.2020, author = {Tokmoldin, Nurlan and Hosseini, Seyed Mehrdad and Raoufi, Meysam and Phuong, Le Quang and Sandberg, Oskar J. and Guan, Huilan and Zou, Yingping and Neher, Dieter and Shoaee, Safa}, title = {Extraordinarily long diffusion length in PM6:Y6 organic solar cells}, series = {Journal of materials chemistry : A, materials for energy and sustainability}, volume = {8}, journal = {Journal of materials chemistry : A, materials for energy and sustainability}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7488}, doi = {10.1039/d0ta03016c}, pages = {7854 -- 7860}, year = {2020}, abstract = {The PM6:Y6 bulk-heterojunction (BHJ) blend system achieves high short-circuit current (J(SC)) values in thick photovoltaic junctions. Here we analyse these solar cells to understand the observed independence of the short-circuit current upon photoactive layer thickness. We employ a range of optoelectronic measurements and analyses, including Mott-Schottky analysis, CELIV, photoinduced absorption spectroscopy, mobility measurements and simulations, to conclude that, the invariant photocurrent for the devices with different active layer thicknesses is associated with the Y6's diffusion length exceeding 300 nm in case of a 300 nm thick cell. This is despite unintentional doping that occurs in PM6 and the associated space-charge effect, which is expected to be even more profound upon photogeneration. This extraordinarily long diffusion length - which is an order of magnitude larger than typical values for organics - dominates transport in the flat-band region of thick junctions. Our work suggests that the performance of the doped PM6:Y6 organic solar cells resembles that of inorganic devices with diffusion transport playing a pivotal role. Ultimately, this is expected to be a key requirement for the fabrication of efficient, high-photocurrent, thick organic solar cells.}, language = {en} } @article{ShivhareErdmannHoermannetal.2018, author = {Shivhare, Rishi and Erdmann, Tim and Hoermann, Ulrich and Collado-Fregoso, Elisa and Zeiske, Stefan and Benduhn, Johannes and Ullbrich, Sascha and Huebner, Rene and Hambsch, Mike and Kiriy, Anton and Voit, Brigitte and Neher, Dieter and Vandewal, Koen and Mannsfeld, Stefan C. B.}, title = {Alkyl Branching Position in Diketopyrrolopyrrole Polymers}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b02739}, pages = {6801 -- 6809}, year = {2018}, abstract = {Diketopyrrolopyrrole (DPP)-based donor acceptor copolymers have gained a significant amount of research interest in the organic electronics community because of their high charge carrier mobilities in organic field-effect transistors (OFETs) and their ability to harvest near-infrared (NIR) photons in solar cells. In this study, we have synthesized four DPP based donor-acceptor copolymers with variations in the donor unit and the branching point of the solubilizing alkyl chains (at the second or sixth carbon position). Grazing incidence wide-angle X-ray scattering (GIWAXS) results suggest that moving the branching point further away from the polymer backbone increases the tendency for aggregation and yields polymer phases with a higher degree of crystallinity (DoC). The polymers were blended with PC70BM and used as active layers in solar cells. A careful analysis of the energetics of the neat polymer and blend films reveals that the charge-transfer state energy (E-CT) of the blend films lies exceptionally close to the singlet energy of the donor (E-D*), indicating near zero electron transfer losses. The difference between the optical gap and open-circuit voltage (V-OC) is therefore determined to be due to rather high nonradiative 418 +/- 13 mV) and unavoidable radiative voltage losses (approximate to 255 +/- 8 mV). Even though the four materials have similar optical gaps, the short-circuit current density (J(SC)) covers a vast span from 7 to 18 mA cm(-2) for the best performing system. Using photoluminescence (PL) quenching and transient charge extraction techniques, we quantify geminate and nongeminate losses and find that fewer excitons reach the donor-acceptor interface in polymers with further away branching points due to larger aggregate sizes. In these material systems, the photogeneration is therefore mainly limited by exciton harvesting efficiency.}, language = {en} } @article{BraungerMundtWolffetal.2018, author = {Braunger, Steffen and Mundt, Laura E. and Wolff, Christian Michael and Mews, Mathias and Rehermann, Carolin and Jost, Marko and Tejada, Alvaro and Eisenhauer, David and Becker, Christiane and Andres Guerra, Jorge and Unger, Eva and Korte, Lars and Neher, Dieter and Schubert, Martin C. and Rech, Bernd and Albrecht, Steve}, title = {Cs(x)FA(1-x)Pb(l(1-y)Br(y))(3) Perovskite Compositions}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {122}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {30}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.8b06459}, pages = {17123 -- 17135}, year = {2018}, abstract = {We report on the formation of wrinkle-patterned surface morphologies in cesium formamidinium-based Cs(x)FA(1-y)Pb(I1-yBry)(3) perovskite compositions with x = 0-0.3 and y = 0-0.3 under various spin-coating conditions. By varying the Cs and Br contents, the perovskite precursor solution concentration and the spin-coating procedure, the occurrence and characteristics of the wrinkle-shaped morphology can be tailored systematically. Cs(0.17)FA(0.83)Pb(I0.83Br0.17)(3) perovskite layers were analyzed regarding their surface roughness, microscopic structure, local and overall composition, and optoelectronic properties. Application of these films in p-i-n perovskite solar cells (PSCs) with indium-doped tin oxide/NiOx/perovskite/C-60/bathocuproine/Cu architecture resulted in up to 15.3 and 17.0\% power conversion efficiency for the flat and wrinkled morphology, respectively. Interestingly, we find slightly red-shifted photoluminescence (PL) peaks for wrinkled areas and we are able to directly correlate surface topography with PL peak mapping. This is attributed to differences in the local grain size, whereas there is no indication for compositional demixing in the films. We show that the perovskite composition, crystallization kinetics, and layer thickness strongly influence the formation of wrinkles which is proposed to be related to the release of compressive strain during perovskite crystallization. Our work helps us to better understand film formation and to further improve the efficiency of PSCs with widely used mixed-perovskite compositions.}, language = {en} } @article{KegelmannTockhornWolffetal.2019, author = {Kegelmann, Lukas and Tockhorn, Philipp and Wolff, Christian Michael and M{\´a}rquez, Jos{\´e} A. and Caicedo D{\´a}vila, Sebasti{\´a}n and Korte, Lars and Unold, Thomas and Loevenich, Wilfried and Neher, Dieter and Rech, Bernd and Albrecht, Steve}, title = {Mixtures of Dopant-Free Spiro-OMeTAD and Water-Free PEDOT as a Passivating Hole Contact in Perovskite Solar Cells}, series = {ACS applied materials \& interfaces}, volume = {11}, journal = {ACS applied materials \& interfaces}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.9b01332}, pages = {9172 -- 9181}, year = {2019}, abstract = {Doped spiro-OMeTAD at present is the most commonly used hole transport material (HTM) in n-i-p-type perovskite solar cells, enabling high efficiencies around 22\%. However, the required dopants were shown to induce nonradiative recombination of charge carriers and foster degradation of the solar cell. Here, in a novel approach, highly conductive and inexpensive water-free poly(3,4-ethylenedioxythiophene) (PEDOT) is used to replace these dopants. The resulting spiro-OMeTAD/PEDOT (SpiDOT) mixed films achieve higher lateral conductivities than layers of doped spiro-OMeTAD. Furthermore, combined transient and steady-state photoluminescence studies reveal a passivating effect of PEDOT, suppressing nonradiative recombination losses at the perovskite/HTM interface. This enables excellent quasi-Fermi level splitting values of up to 1.24 eV in perovskite/SpiDOT layer stacks and high open-circuit voltages (V-OC) up to 1.19 V in complete solar cells. Increasing the amount of dopant-free spiro-OMeTAD in SpiDOT layers is shown to enhance hole extraction and thereby improves the fill factor in solar cells. As a consequence, stabilized efficiencies up to 18.7\% are realized, exceeding cells with doped spiro-OMeTAD as a HTM in this study. Moreover, to the best of our knowledge, these results mark the lowest nonradiative recombination loss in the V-OC (140 mV with respect to the Shockley-Queisser limit) and highest efficiency reported so far for perovskite solar cells using PEDOT as a HTM.}, language = {en} } @article{ZuoShoaeeKemerinketal.2021, author = {Zuo, Guangzheng and Shoaee, Safa and Kemerink, Martijn and Neher, Dieter}, title = {General rules for the impact of energetic disorder and mobility on nongeminate recombination in phase-separated organic solar cells}, series = {Physical review applied}, volume = {16}, journal = {Physical review applied}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {2331-7019}, doi = {10.1103/PhysRevApplied.16.034027}, pages = {19}, year = {2021}, abstract = {State-of-the-art organic solar cells exhibit power conversion efficiencies of 18\% and above. These devices benefit from the suppression of free charge recombination with regard to the Langevin limit of charge encounter in a homogeneous medium. It is recognized that the main cause of suppressed free charge recombination is the reformation and resplitting of charge-transfer (CT) states at the interface between donor and acceptor domains. Here, we use kinetic Monte Carlo simulations to understand the interplay between free charge motion and recombination in an energetically disordered phase-separated donor-acceptor blend. We identify conditions for encounter-dominated and resplitting-dominated recombination. In the former regime, recombination is proportional to mobility for all parameters tested and only slightly reduced with respect to the Langevin limit. In contrast, mobility is not the decisive parameter that determines the nongeminate recombination coefficient, k(2), in the latter case, where k2 is a sole function of the morphology, CT and charge-separated (CS) energetics, and CT-state decay properties. Our simulations also show that free charge encounter in the phase-separated disordered blend is determined by the average mobility of all carriers, while CT reformation and resplitting involves mostly states near the transport energy. Therefore, charge encounter is more affected by increased disorder than the resplitting of the CT state. As a consequence, for a given mobility, larger energetic disorder, in combination with a higher hopping rate, is preferred. These findings have implications for the understanding of suppressed recombination in solar cells with nonfullerene acceptors, which are known to exhibit lower energetic disorder than that of fullerenes.}, language = {en} } @article{ZuWolffRalaiarisoaetal.2019, author = {Zu, Fengshuo and Wolff, Christian Michael and Ralaiarisoa, Maryline and Amsalem, Patrick and Neher, Dieter and Koch, Norbert}, title = {Unraveling the Electronic Properties of Lead Halide Perovskites with Surface Photovoltage in Photoemission Studies}, series = {ACS applied materials \& interfaces}, volume = {11}, journal = {ACS applied materials \& interfaces}, number = {24}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.9b05293}, pages = {21578 -- 21583}, year = {2019}, abstract = {The tremendous success of metal-halide perovskites, especially in the field of photovoltaics, has triggered a substantial number of studies in understanding their optoelectronic properties. However, consensus regarding the electronic properties of these perovskites is lacking due to a huge scatter in the reported key parameters, such as work function (Φ) and valence band maximum (VBM) values. Here, we demonstrate that the surface photovoltage (SPV) is a key phenomenon occurring at the perovskite surfaces that feature a non-negligible density of surface states, which is more the rule than an exception for most materials under study. With ultraviolet photoelectron spectroscopy (UPS) and Kelvin probe, we evidence that even minute UV photon fluxes (500 times lower than that used in typical UPS experiments) are sufficient to induce SPV and shift the perovskite Φ and VBM by several 100 meV compared to dark. By combining UV and visible light, we establish flat band conditions (i.e., compensate the surface-state-induced surface band bending) at the surface of four important perovskites, and find that all are p-type in the bulk, despite a pronounced n-type surface character in the dark. The present findings highlight that SPV effects must be considered in all surface studies to fully understand perovskites' photophysical properties.}, language = {en} } @article{ZuSchultzWolffetal.2020, author = {Zu, Fengshuo and Schultz, Thorsten and Wolff, Christian Michael and Shin, Dongguen and Frohloff, Lennart and Neher, Dieter and Amsalem, Patrick and Koch, Norbert}, title = {Position-locking of volatile reaction products by atmosphere and capping layers slows down photodecomposition of methylammonium lead triiodide perovskite}, series = {RSC Advances}, volume = {10}, journal = {RSC Advances}, number = {30}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/d0ra03572f}, pages = {17534 -- 17542}, year = {2020}, abstract = {The remarkable progress of metal halide perovskites in photovoltaics has led to the power conversion efficiency approaching 26\%. However, practical applications of perovskite-based solar cells are challenged by the stability issues, of which the most critical one is photo-induced degradation. Bare CH3NH3PbI3 perovskite films are known to decompose rapidly, with methylammonium and iodine as volatile species and residual solid PbI2 and metallic Pb, under vacuum under white light illumination, on the timescale of minutes. We find, in agreement with previous work, that the degradation is non-uniform and proceeds predominantly from the surface, and that illumination under N-2 and ambient air (relative humidity 20\%) does not induce substantial degradation even after several hours. Yet, in all cases the release of iodine from the perovskite surface is directly identified by X-ray photoelectron spectroscopy. This goes in hand with a loss of organic cations and the formation of metallic Pb. When CH3NH3PbI3 films are covered with a few nm thick organic capping layer, either charge selective or non-selective, the rapid photodecomposition process under ultrahigh vacuum is reduced by more than one order of magnitude, and becomes similar in timescale to that under N-2 or air. We conclude that the light-induced decomposition reaction of CH3NH3PbI3, leading to volatile methylammonium and iodine, is largely reversible as long as these products are restrained from leaving the surface. This is readily achieved by ambient atmospheric pressure, as well as a thin organic capping layer even under ultrahigh vacuum. In addition to explaining the impact of gas pressure on the stability of this perovskite, our results indicate that covalently "locking" the position of perovskite components at the surface or an interface should enhance the overall photostability.}, language = {en} } @article{NakoudiGiannakakiDandouetal.2019, author = {Nakoudi, Konstantina and Giannakaki, Elina and Dandou, Aggeliki and Tombrou, Maria and Komppula, Mika}, title = {Planetary boundary layer height by means of lidar and numerical simulations over New Delhi, India}, series = {Atmospheric measurement techniques : an interactive open access journal of the European Geosciences Union}, volume = {12}, journal = {Atmospheric measurement techniques : an interactive open access journal of the European Geosciences Union}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1867-1381}, doi = {10.5194/amt-12-2595-2019}, pages = {2595 -- 2610}, year = {2019}, abstract = {In this work, the height of the planetary boundary layer (PBLH) is investigated over Gwal Pahari (Gual Pahari), New Delhi, for almost a year. To this end, ground-based measurements from a multiwavelength Raman lidar were used. The modified wavelet covariance transform (WCT) method was utilized for PBLH retrievals. Results were compared to data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the Weather Research and Forecasting (WRF) model. In order to examine the difficulties of PBLH detection from lidar, we analyzed three cases of PBLH diurnal evolution under different meteorological and aerosol load conditions. In the presence of multiple aerosol layers, the employed algorithm exhibited high efficiency (r = 0.9) in the attribution of PBLH, whereas weak aerosol gradients induced high variability in the PBLH. A sensitivity analysis corroborated the stability of the utilized methodology. The comparison with CALIPSO observations yielded satisfying results (r = 0.8), with CALIPSO slightly overestimating the PBLH. Due to the relatively warmer and drier winter and, correspondingly, colder and rainier pre-monsoon season, the seasonal PBLH cycle during the measurement period was slightly weaker than the cycle expected from long-term climate records.}, language = {en} } @article{OrtizAmezcuaGuerreroRascadoJoseGranadosMunozetal.2017, author = {Ortiz-Amezcua, Pablo and Guerrero-Rascado, Juan Luis and Jose Granados-Munoz, Maria and Benavent-Oltra, Jose Antonio and B{\"o}ckmann, Christine and Samaras, Stefanos and Stachlewska, Iwona Sylwia and Janicka, Lucja and Baars, Holger and Bohlmann, Stephanie and Alados-Arboledas, Lucas}, title = {Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations}, series = {Atmospheric Chemistry and Physics}, volume = {17}, journal = {Atmospheric Chemistry and Physics}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1680-7316}, doi = {10.5194/acp-17-5931-2017}, pages = {5931 -- 5946}, year = {2017}, abstract = {Strong events of long-range transported biomass burning aerosol were detected during July 2013 at three EARLINET (European Aerosol Research Lidar Network) stations, namely Granada (Spain), Leipzig (Germany) and Warsaw (Poland). Satellite observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) instruments, as well as modeling tools such as HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and NAAPS (Navy Aerosol Analysis and Prediction System), have been used to estimate the sources and transport paths of those North American forest fire smoke particles. A multiwavelength Raman lidar technique was applied to obtain vertically resolved particle optical properties, and further inversion of those properties with a regularization algorithm allowed for retrieving microphysical information on the studied particles. The results highlight the presence of smoke layers of 1-2 km thickness, located at about 5 km a.s.l. altitude over Granada and Leipzig and around 2.5 km a.s.l. at Warsaw. These layers were intense, as they accounted for more than 30\% of the total AOD (aerosol optical depth) in all cases, and presented optical and microphysical features typical for different aging degrees: color ratio of lidar ratios (LR532/LR355) around 2, alpha-related angstrom exponents of less than 1, effective radii of 0.3 mu m and large values of single scattering albedos (SSA), nearly spectrally independent. The intensive microphysical properties were compared with columnar retrievals form co-located AERONET (Aerosol Robotic Network) stations. The intensity of the layers was also characterized in terms of particle volume concentration, and then an experimental relationship between this magnitude and the particle extinction coefficient was established.}, language = {en} } @article{ZaragozaCardielGomezGonzalezMayyaetal.2022, author = {Zaragoza-Cardiel, Javier and G{\´o}mez-Gonz{\´a}lez, V{\´i}ctor Mauricio Alfonso and Mayya, Yalia Divakara and Ramos-Larios, Gerardo}, title = {Nebular abundance gradient in the Cartwheel galaxy using MUSE data}, series = {Monthly notices of the Royal Astronomical Society}, volume = {514}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1423}, pages = {1689 -- 1705}, year = {2022}, abstract = {We here present the results from a detailed analysis of nebular abundances of commonly observed ions in the collisional ring galaxy Cartwheel using the Very Large Telescope (VLT) Multi-Unit Spectroscopic Explorer (MUSE) data set. The analysis includes 221 H II regions in the star-forming ring, in addition to 40 relatively fainter H a-emitting regions in the spokes, disc, and the inner ring. The ionic abundances of He, N, O, and Fe are obtained using the direct method (DM) for 9, 20, 20, and 17 ring H II regions, respectively, where the S++ temperature-sensitive line is detected. For the rest of the regions, including all the nebulae between the inner and the outer ring, we obtained O abundances using the strong-line method (SLM). The ring regions have a median 12 + log O/H = 8.19 +/- 0.15, log N/O = -1.57 +/- 0.09 and log Fe/O = -2.24 +/- 0.09 using the DM. Within the range of O abundances seen in the Cartwheel, the N/O and Fe/O values decrease proportionately with increasing O, suggesting local enrichment of O without corresponding enrichment of primary N and Fe. The O abundances of the disc H II regions obtained using the SLM show a well-defined radial gradient. The mean O abundance of the ring H II regions is lower by similar to 0.1 dex as compared to the extrapolation of the radial gradient. The observed trends suggest the preservation of the pre-collisional abundance gradient, displacement of most of the processed elements to the ring, as predicted by the recent simulation by Renaud et al., and post-collisional infall of metal-poor gas in the ring.}, language = {en} } @article{SposiniChechkinSokolovetal.2022, author = {Sposini, Vittoria and Chechkin, Aleksei and Sokolov, Igor M. and Roldan-Vargas, Sandalo}, title = {Detecting temporal correlations in hopping dynamics in Lennard-Jones liquids}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {32}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac7e0a}, pages = {15}, year = {2022}, abstract = {Lennard-Jones mixtures represent one of the popular systems for the study of glass-forming liquids. Spatio/temporal heterogeneity and rare (activated) events are at the heart of the slow dynamics typical of these systems. Such slow dynamics is characterised by the development of a plateau in the mean-squared displacement (MSD) at intermediate times, accompanied by a non-Gaussianity in the displacement distribution identified by exponential tails. As pointed out by some recent works, the non-Gaussianity persists at times beyond the MSD plateau, leading to a Brownian yet non-Gaussian regime and thus highlighting once again the relevance of rare events in such systems. Single-particle motion of glass-forming liquids is usually interpreted as an alternation of rattling within the local cage and cage-escape motion and therefore can be described as a sequence of waiting times and jumps. In this work, by using a simple yet robust algorithm, we extract jumps and waiting times from single-particle trajectories obtained via molecular dynamics simulations. We investigate the presence of correlations between waiting times and find negative correlations, which becomes more and more pronounced when lowering the temperature.}, language = {en} } @article{BolotovSmirnovBubnovaetal.2021, author = {Bolotov, Maxim I. and Smirnov, Lev A. and Bubnova, E. S. and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Spatiotemporal regimes in the Kuramoto-Battogtokh system of nonidentical oscillators}, series = {Journal of experimental and theoretical physics}, volume = {132}, journal = {Journal of experimental and theoretical physics}, number = {1}, publisher = {Springer}, address = {Heidelberg [u.a.]}, issn = {1063-7761}, doi = {10.1134/S1063776121010106}, pages = {127 -- 147}, year = {2021}, abstract = {We consider the spatiotemporal states of an ensemble of nonlocally coupled nonidentical phase oscillators, which correspond to different regimes of the long-term evolution of such a system. We have obtained homogeneous, twisted, and nonhomogeneous stationary solutions to the Ott-Antonsen equations corresponding to key variants of the realized collective rotational motion of elements of the medium in question with nonzero mesoscopic characteristics determining the degree of coherence of the dynamics of neighboring particles. We have described the procedures of the search for the class of nonhomogeneous solutions as stationary points of the auxiliary point map and of determining the stability based on analysis of the eigenvalue spectrum of the composite operator. Static and breather cluster regimes have been demonstrated and described, as well as the regimes with an irregular behavior of averaged complex fields including, in particular, the local order parameter.}, language = {en} } @article{KlettCherstvyShinetal.2021, author = {Klett, Kolja and Cherstvy, Andrey G. and Shin, Jaeoh and Sokolov, Igor M. and Metzler, Ralf}, title = {Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.064603}, pages = {18}, year = {2021}, abstract = {We employ Langevin-dynamics simulations to unveil non-Brownian and non-Gaussian center-of-mass self-diffusion of massive flexible dumbbell-shaped particles in crowded two-dimensional solutions. We study the intradumbbell dynamics of the relative motion of the two constituent elastically coupled disks. Our main focus is on effects of the crowding fraction phi and of the particle structure on the diffusion characteristics. We evaluate the time-averaged mean-squared displacement (TAMSD), the displacement probability-density function (PDF), and the displacement autocorrelation function (ACF) of the dimers. For the TAMSD at highly crowded conditions of dumbbells, e.g., we observe a transition from the short-time ballistic behavior, via an intermediate subdiffusive regime, to long-time Brownian-like spreading dynamics. The crowded system of dimers exhibits two distinct diffusion regimes distinguished by the scaling exponent of the TAMSD, the dependence of the diffusivity on phi, and the features of the displacement-ACF. We attribute these regimes to a crowding-induced transition from viscous to viscoelastic diffusion upon growing phi. We also analyze the relative motion in the dimers, finding that larger phi suppress their vibrations and yield strongly non-Gaussian PDFs of rotational displacements. For the diffusion coefficients D(phi) of translational and rotational motion of the dumbbells an exponential decay with phi for weak and a power-law variation D(phi) proportional to (phi - phi(star))(2.4) for strong crowding is found. A comparison of simulation results with theoretical predictions for D(phi) is discussed and some relevant experimental systems are overviewed.}, language = {en} } @article{DoerriesLoosKlapp2021, author = {D{\"o}rries, Timo and Loos, Sarah Anna Marie and Klapp, Sabine H. L.}, title = {Correlation functions of non-Markovian systems out of equilibrium}, series = {Journal of statistical mechanics: theory and experiment : JSTAT}, journal = {Journal of statistical mechanics: theory and experiment : JSTAT}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1742-5468}, doi = {10.1088/1742-5468/abdead}, pages = {36}, year = {2021}, abstract = {This paper is concerned with correlation functions of stochastic systems with memory, a prominent example being a molecule or colloid moving through a complex (e.g. viscoelastic) fluid environment. Analytical investigations of such systems based on non-Markovian stochastic equations are notoriously difficult. A common approximation is that of a single-exponential memory, corresponding to the introduction of one auxiliary variable coupled to the Markovian dynamics of the main variable. As a generalization, we here investigate a class of 'toy' models with altogether three degrees of freedom, giving rise to more complex forms of memory. Specifically, we consider, mainly on an analytical basis, the under- and overdamped motion of a colloidal particle coupled linearly to two auxiliary variables, where the coupling between variables can be either reciprocal or non-reciprocal. Projecting out the auxiliary variables, we obtain non-Markovian Langevin equations with friction kernels and colored noise, whose structure is similar to that of a generalized Langevin equation. For the present systems, however, the non-Markovian equations may violate the fluctuation-dissipation relation as well as detailed balance, indicating that the systems are out of equilibrium. We then study systematically the connection between the coupling topology of the underlying Markovian system and various autocorrelation functions. We demonstrate that already two auxiliary variables can generate surprisingly complex (e.g. non-monotonic or oscillatory) memory and correlation functions. Finally, we show that a minimal overdamped model with two auxiliary variables and suitable non-reciprocal coupling yields correlation functions resembling those describing hydrodynamic backflow in an optical trap.}, language = {en} } @article{CherstvyWangMetzleretal.2021, author = {Cherstvy, Andrey G. and Wang, Wei and Metzler, Ralf and Sokolov, Igor M.}, title = {Inertia triggers nonergodicity of fractional Brownian motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.024115}, pages = {12}, year = {2021}, abstract = {How related are the ergodic properties of the over- and underdamped Langevin equations driven by fractional Gaussian noise? We here find that for massive particles performing fractional Brownian motion (FBM) inertial effects not only destroy the stylized fact of the equivalence of the ensemble-averaged mean-squared displacement (MSD) to the time-averaged MSD (TAMSD) of overdamped or massless FBM, but also dramatically alter the values of the ergodicity-breaking parameter (EB). Our theoretical results for the behavior of EB for underdamped or massive FBM for varying particle mass m, Hurst exponent H, and trace length T are in excellent agreement with the findings of stochastic computer simulations. The current results can be of interest for the experimental community employing various single-particle-tracking techniques and aiming at assessing the degree of nonergodicity for the recorded time series (studying, e.g., the behavior of EB versus lag time). To infer FBM as a realizable model of anomalous diffusion for a set single-particle-tracking data when massive particles are being tracked, the EBs from the data should be compared to EBs of massive (rather than massless) FBM.}, language = {en} } @article{GrebenkovMetzlerOshanin2022, author = {Grebenkov, Denis S. and Metzler, Ralf and Oshanin, Gleb}, title = {Search efficiency in the Adam-Delbruck reduction-of-dimensionality scenario versus direct diffusive search}, series = {New journal of physics : the open-access journal for physics}, volume = {24}, journal = {New journal of physics : the open-access journal for physics}, number = {8}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ac8824}, pages = {32}, year = {2022}, abstract = {The time instant-the first-passage time (FPT)-when a diffusive particle (e.g., a ligand such as oxygen or a signalling protein) for the first time reaches an immobile target located on the surface of a bounded three-dimensional domain (e.g., a hemoglobin molecule or the cellular nucleus) is a decisive characteristic time-scale in diverse biophysical and biochemical processes, as well as in intermediate stages of various inter- and intra-cellular signal transduction pathways. Adam and Delbruck put forth the reduction-of-dimensionality concept, according to which a ligand first binds non-specifically to any point of the surface on which the target is placed and then diffuses along this surface until it locates the target. In this work, we analyse the efficiency of such a scenario and confront it with the efficiency of a direct search process, in which the target is approached directly from the bulk and not aided by surface diffusion. We consider two situations: (i) a single ligand is launched from a fixed or a random position and searches for the target, and (ii) the case of 'amplified' signals when N ligands start either from the same point or from random positions, and the search terminates when the fastest of them arrives to the target. For such settings, we go beyond the conventional analyses, which compare only the mean values of the corresponding FPTs. Instead, we calculate the full probability density function of FPTs for both scenarios and study its integral characteristic-the 'survival' probability of a target up to time t. On this basis, we examine how the efficiencies of both scenarios are controlled by a variety of parameters and single out realistic conditions in which the reduction-of-dimensionality scenario outperforms the direct search.}, language = {en} } @article{MolinaGarciaSandevSafdarietal.2018, author = {Molina-Garcia, Daniel and Sandev, Trifce and Safdari, Hadiseh and Pagnini, Gianni and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Crossover from anomalous to normal diffusion}, series = {New Journal of Physics}, volume = {20}, journal = {New Journal of Physics}, publisher = {IOP Publishing Ltd}, address = {London und Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/aae4b2}, pages = {28}, year = {2018}, abstract = {Abstract The emerging diffusive dynamics in many complex systems show a characteristic crossover behaviour from anomalous to normal diffusion which is otherwise fitted by two independent power-laws. A prominent example for a subdiffusive-diffusive crossover are viscoelastic systems such as lipid bilayer membranes, while superdiffusive-diffusive crossovers occur in systems of actively moving biological cells. We here consider the general dynamics of a stochastic particle driven by so-called tempered fractional Gaussian noise, that is noise with Gaussian amplitude and power-law correlations, which are cut off at some mesoscopic time scale. Concretely we consider such noise with built-in exponential or power-law tempering, driving an overdamped Langevin equation (fractional Brownian motion) and fractional Langevin equation motion. We derive explicit expressions for the mean squared displacement and correlation functions, including different shapes of the crossover behaviour depending on the concrete tempering, and discuss the physical meaning of the tempering. In the case of power-law tempering we also find a crossover behaviour from faster to slower superdiffusion and slower to faster subdiffusion. As a direct application of our model we demonstrate that the obtained dynamics quantitatively describes the subdiffusion-diffusion and subdiffusion-subdiffusion crossover in lipid bilayer systems. We also show that a model of tempered fractional Brownian motion recently proposed by Sabzikar and Meerschaert leads to physically very different behaviour with a seemingly paradoxical ballistic long time scaling.}, language = {en} } @article{FeldmannMaduarSanteretal.2016, author = {Feldmann, David and Maduar, Salim R. and Santer, Mark and Lomadze, Nino and Vinogradova, Olga I. and Santer, Svetlana}, title = {Manipulation of small particles at solid liquid interface}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep36443}, pages = {10}, year = {2016}, abstract = {The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.}, language = {en} } @article{EkhtiariAgarwalMarwanetal.2019, author = {Ekhtiari, Nikoo and Agarwal, Ankit and Marwan, Norbert and Donner, Reik Volker}, title = {Disentangling the multi-scale effects of sea-surface temperatures on global precipitation}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {29}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {6}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.5095565}, pages = {12}, year = {2019}, abstract = {The oceans and atmosphere interact via a multiplicity of feedback mechanisms, shaping to a large extent the global climate and its variability. To deepen our knowledge of the global climate system, characterizing and investigating this interdependence is an important task of contemporary research. However, our present understanding of the underlying large-scale processes is greatly limited due to the manifold interactions between essential climatic variables at different temporal scales. To address this problem, we here propose to extend the application of complex network techniques to capture the interdependence between global fields of sea-surface temperature (SST) and precipitation (P) at multiple temporal scales. For this purpose, we combine time-scale decomposition by means of a discrete wavelet transform with the concept of coupled climate network analysis. Our results demonstrate the potential of the proposed approach to unravel the scale-specific interdependences between atmosphere and ocean and, thus, shed light on the emerging multiscale processes inherent to the climate system, which traditionally remain undiscovered when investigating the system only at the native resolution of existing climate data sets. Moreover, we show how the relevant spatial interdependence structures between SST and P evolve across time-scales. Most notably, the strongest mutual correlations between SST and P at annual scale (8-16 months) concentrate mainly over the Pacific Ocean, while the corresponding spatial patterns progressively disappear when moving toward longer time-scales. Published under license by AIP Publishing.}, language = {en} } @article{ToetzkeKardjilovLenoiretal.2019, author = {T{\"o}tzke, Christian and Kardjilov, Nikolay and Lenoir, Nicolas and Manke, Ingo and Oswald, Sascha and Tengattini, Alessandro}, title = {What comes NeXT?}, series = {Optics express : the international electronic journal of optics}, volume = {27}, journal = {Optics express : the international electronic journal of optics}, number = {20}, publisher = {Optical Society of America}, address = {Washington}, issn = {1094-4087}, doi = {10.1364/OE.27.028640}, pages = {28640 -- 28648}, year = {2019}, abstract = {Here, we report on a new record in the acquisition time for fast neutron tomography. With an optimized imaging setup, it was possible to acquire single radiographic projection images with 10 ms and full tomographies with 155 projections images and a physical spatial resolution of 200 mu m within 1.5 s. This is about 6.7 times faster than the current record. We used the technique to investigate the water infiltration in the soil with a living lupine root system. The fast imaging setup will be part of the future NeXT instrument at ILL in Grenoble with a great field of possible future applications. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement}, language = {en} } @article{KraemerMarwan2019, author = {Kr{\"a}mer, Hauke Kai and Marwan, Norbert}, title = {Border effect corrections for diagonal line based recurrence quantification analysis measures}, series = {Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics}, volume = {383}, journal = {Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics}, number = {34}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0375-9601}, doi = {10.1016/j.physleta.2019.125977}, pages = {16}, year = {2019}, abstract = {Recurrence Quantification Analysis (RQA) defines a number of quantifiers, which base upon diagonal line structures in the recurrence plot (RP). Due to the finite size of an RP, these lines can be cut by the borders of the RP and, thus, bias the length distribution of diagonal lines and, consequently, the line based RQA measures. In this letter we investigate the impact of the mentioned border effects and of the thickening of diagonal lines in an RP (caused by tangential motion) on the estimation of the diagonal line length distribution, quantified by its entropy. Although a relation to the Lyapunov spectrum is theoretically expected, the mentioned entropy yields contradictory results in many studies. Here we summarize correction schemes for both, the border effects and the tangential motion and systematically compare them to methods from the literature. We show that these corrections lead to the expected behavior of the diagonal line length entropy, in particular meaning zero values in case of a regular motion and positive values for chaotic motion. Moreover, we test these methods under noisy conditions, in order to supply practical tools for applied statistical research.}, language = {en} } @article{AgarwalGuntuBanerjeeetal.2022, author = {Agarwal, Ankit and Guntu, Ravikumar and Banerjee, Abhirup and Gadhawe, Mayuri Ashokrao and Marwan, Norbert}, title = {A complex network approach to study the extreme precipitation patterns in a river basin}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {32}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {1}, publisher = {American Institute of Physics}, address = {Woodbury, NY}, issn = {1054-1500}, doi = {10.1063/5.0072520}, pages = {12}, year = {2022}, abstract = {The quantification of spatial propagation of extreme precipitation events is vital in water resources planning and disaster mitigation. However, quantifying these extreme events has always been challenging as many traditional methods are insufficient to capture the nonlinear interrelationships between extreme event time series. Therefore, it is crucial to develop suitable methods for analyzing the dynamics of extreme events over a river basin with a diverse climate and complicated topography. Over the last decade, complex network analysis emerged as a powerful tool to study the intricate spatiotemporal relationship between many variables in a compact way. In this study, we employ two nonlinear concepts of event synchronization and edit distance to investigate the extreme precipitation pattern in the Ganga river basin. We use the network degree to understand the spatial synchronization pattern of extreme rainfall and identify essential sites in the river basin with respect to potential prediction skills. The study also attempts to quantify the influence of precipitation seasonality and topography on extreme events. The findings of the study reveal that (1) the network degree is decreased in the southwest to northwest direction, (2) the timing of 50th percentile precipitation within a year influences the spatial distribution of degree, (3) the timing is inversely related to elevation, and (4) the lower elevation greatly influences connectivity of the sites. The study highlights that edit distance could be a promising alternative to analyze event-like data by incorporating event time and amplitude and constructing complex networks of climate extremes.}, language = {en} } @article{ClarkFreyseYashinaetal.2022, author = {Clark, Oliver J. and Freyse, Friedrich and Yashina, L. V. and Rader, Oliver and Sanchez-Barriga, Jaime}, title = {Robust behavior and spin-texture stability of the topological surface state in Bi2Se3 upon deposition of gold}, series = {npj quantum materials}, volume = {7}, journal = {npj quantum materials}, number = {1}, publisher = {Nature Publishing Group}, address = {London}, issn = {2397-4648}, doi = {10.1038/s41535-022-00443-9}, pages = {7}, year = {2022}, abstract = {The Dirac point of a topological surface state (TSS) is protected against gapping by time-reversal symmetry. Conventional wisdom stipulates, therefore, that only through magnetisation may a TSS become gapped. However, non-magnetic gaps have now been demonstrated in Bi2Se3 systems doped with Mn or In, explained by hybridisation of the Dirac cone with induced impurity resonances. Recent photoemission experiments suggest that an analogous mechanism applies even when Bi2Se3 is surface dosed with Au. Here, we perform a systematic spin- and angle-resolved photoemission study of Au-dosed Bi2Se3. Although there are experimental conditions wherein the TSS appears gapped due to unfavourable photoemission matrix elements, our photon-energy-dependent spectra unambiguously demonstrate the robustness of the Dirac cone against high Au coverage. We further show how the spin textures of the TSS and its accompanying surface resonances remain qualitatively unchanged following Au deposition, and discuss the mechanism underlying the suppression of the spectral weight.}, language = {en} } @article{PadashSandevKantzetal.2022, author = {Padash, Amin and Sandev, Trifce and Kantz, Holger and Metzler, Ralf and Chechkin, Aleksei}, title = {Asymmetric Levy flights are more efficient in random search}, series = {Fractal and fractional}, volume = {6}, journal = {Fractal and fractional}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2504-3110}, doi = {10.3390/fractalfract6050260}, pages = {23}, year = {2022}, abstract = {We study the first-arrival (first-hitting) dynamics and efficiency of a one-dimensional random search model performing asymmetric Levy flights by leveraging the Fokker-Planck equation with a delta-sink and an asymmetric space-fractional derivative operator with stable index alpha and asymmetry (skewness) parameter beta. We find exact analytical results for the probability density of first-arrival times and the search efficiency, and we analyse their behaviour within the limits of short and long times. We find that when the starting point of the searcher is to the right of the target, random search by Brownian motion is more efficient than Levy flights with beta <= 0 (with a rightward bias) for short initial distances, while for beta>0 (with a leftward bias) Levy flights with alpha -> 1 are more efficient. When increasing the initial distance of the searcher to the target, Levy flight search (except for alpha=1 with beta=0) is more efficient than the Brownian search. Moreover, the asymmetry in jumps leads to essentially higher efficiency of the Levy search compared to symmetric Levy flights at both short and long distances, and the effect is more pronounced for stable indices alpha close to unity.}, language = {en} } @article{GrebenkovKumar2022, author = {Grebenkov, Denis S. and Kumar, Aanjaneya}, title = {First-passage times of multiple diffusing particles with reversible target-binding kinetics}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {32}, publisher = {IOP Publ.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac7e91}, pages = {33}, year = {2022}, abstract = {We investigate a class of diffusion-controlled reactions that are initiated at the time instance when a prescribed number K among N particles independently diffusing in a solvent are simultaneously bound to a target region. In the irreversible target-binding setting, the particles that bind to the target stay there forever, and the reaction time is the Kth fastest first-passage time to the target, whose distribution is well-known. In turn, reversible binding, which is common for most applications, renders theoretical analysis much more challenging and drastically changes the distribution of reaction times. We develop a renewal-based approach to derive an approximate solution for the probability density of the reaction time. This approximation turns out to be remarkably accurate for a broad range of parameters. We also analyze the dependence of the mean reaction time or, equivalently, the inverse reaction rate, on the main parameters such as K, N, and binding/unbinding constants. Some biophysical applications and further perspectives are briefly discussed.}, language = {en} } @article{KoelschDietrichUjevicetal.2022, author = {K{\"o}lsch, Maximilian and Dietrich, Tim and Ujevic, Maximiliano and Br{\"u}gmann, Bernd}, title = {Investigating the mass-ratio dependence of the prompt-collapse threshold with numerical-relativity simulations}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {106}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0010}, doi = {10.1103/PhysRevD.106.044026}, pages = {27}, year = {2022}, abstract = {The next observing runs of advanced gravitational-wave detectors will lead to a variety of binary neutron star detections and numerous possibilities for multimessenger observations of binary neutron star systems. In this context a clear understanding of the merger process and the possibility of prompt black hole formation after merger is important, as the amount of ejected material strongly depends on the merger dynamics. These dynamics are primarily affected by the total mass of the binary, however, the mass ratio also influences the postmerger evolution. To determine the effect of the mass ratio, we investigate the parameter space around the prompt-collapse threshold with a new set of fully relativistic simulations. The simulations cover three equations of state and seven mass ratios in the range of 1.0 <= q <= 1.75, with five to seven simulations of binary systems of different total mass in each case. The threshold mass is determined through an empirical relation based on the collapse time, which allows us to investigate effects of the mass ratio on the threshold mass and also on the properties of the remnant system. Furthermore, we model effects of mass ratio and equation of state on tidal parameters of threshold configurations.}, language = {en} } @article{EmmaSchianchiPannaraleetal.2022, author = {Emma, Mattia and Schianchi, Federico and Pannarale, Francesco and Sagun, Violetta and Dietrich, Tim}, title = {Numerical simulations of dark matter admixed neutron star binaries}, series = {Particles}, volume = {5}, journal = {Particles}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2571-712X}, doi = {10.3390/particles5030024}, pages = {273 -- 286}, year = {2022}, abstract = {Multi-messenger observations of compact binary mergers provide a new way to constrain the nature of dark matter that may accumulate in and around neutron stars. In this article, we extend the infrastructure of our numerical-relativity code BAM to enable the simulation of neutron stars that contain an additional mirror dark matter component. We perform single star tests to verify our code and the first binary neutron star simulations of this kind. We find that the presence of dark matter reduces the lifetime of the merger remnant and favors a prompt collapse to a black hole. Furthermore, we find differences in the merger time for systems with the same total mass and mass ratio, but different amounts of dark matter. Finally, we find that electromagnetic signals produced by the merger of binary neutron stars admixed with dark matter are very unlikely to be as bright as their dark matter-free counterparts. Given the increased sensitivity of multi-messenger facilities, our analysis gives a new perspective on how to probe the presence of dark matter.}, language = {en} } @article{DudiAdhikariBruegmannetal.2022, author = {Dudi, Reetika and Adhikari, Ananya and Br{\"u}gmann, Bernd and Dietrich, Tim and Hayashi, Kota and Kawaguchi, Kyohei and Kiuchi, Kenta and Kyutoku, Koutarou and Shibata, Masaru and Tichy, Wolfgang}, title = {Investigating GW190425 with numerical-relativity simulations}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {106}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {8}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0010}, doi = {10.1103/PhysRevD.106.084039}, pages = {11}, year = {2022}, abstract = {The third observing run of the LIGO-Virgo Collaboration has resulted in many gravitational wave detections, including the binary neutron star merger GW190425. However, none of these events have been accompanied with an electromagnetic transient found during extensive follow-up searches. In this article, we perform new numerical-relativity simulations of binary neutron star and black hole-neutron star systems that have a chirp mass consistent with GW190425. Assuming that the GW190425's sky location was covered with sufficient accuracy during the electromagnetic follow-up searches, we investigate whether the nondetection of the kilonova is compatible with the source parameters estimated through the gravitational -wave analysis and how one can use this information to place constraints on the properties of the system. Our simulations suggest that GW190425 is incompatible with an unequal mass binary neutron star merger with a mass ratio q < 0.8 when considering stiff or moderately stiff equations of state if the binary was face on and covered by the observation. Our analysis shows that a detailed observational result for kilonovae will be useful to constrain the mass ratio of binary neutron stars in future events.}, language = {en} } @article{GiegSchianchiDietrichetal.2022, author = {Gieg, Henrique and Schianchi, Federico and Dietrich, Tim and Ujevic, Maximiliano}, title = {Incorporating a Radiative Hydrodynamics Scheme in the Numerical-Relativity Code BAM}, series = {Universe : open access journal}, volume = {8}, journal = {Universe : open access journal}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2218-1997}, doi = {10.3390/universe8070370}, pages = {25}, year = {2022}, abstract = {To study binary neutron star systems and to interpret observational data such as gravitational-wave and kilonova signals, one needs an accurate description of the processes that take place during the final stages of the coalescence, for example, through numerical-relativity simulations. In this work, we present an updated version of the numerical-relativity code BAM in order to incorporate nuclear-theory-based equations of state and a simple description of neutrino interactions through a neutrino leakage scheme. Different test simulations, for stars undergoing a neutrino-induced gravitational collapse and for binary neutron stars systems, validate our new implementation. For the binary neutron stars systems, we show that we can evolve stably and accurately distinct microphysical models employing the different equations of state: SFHo, DD2, and the hyperonic BHB Lambda phi. Overall, our test simulations have good agreement with those reported in the literature.}, language = {en} } @article{MatzkaSiddiquiLilienkampetal.2017, author = {Matzka, J{\"u}rgen and Siddiqui, Tarique Adnan and Lilienkamp, Henning and Stolle, Claudia and Veliz, Oscar}, title = {Quantifying solar flux and geomagnetic main field influence on the equatorial ionospheric current system at the geomagnetic observatory Huancayo}, series = {Journal of Atmospheric and Solar-Terrestrial Physics}, volume = {163}, journal = {Journal of Atmospheric and Solar-Terrestrial Physics}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-6826}, doi = {10.1016/j.jastp.2017.04.014}, pages = {120 -- 125}, year = {2017}, abstract = {In order to analyse the sensitivity of the equatorial ionospheric current system, i.e. the solar quiet current system and the equatorial electrojet, to solar cycle variations and to the secular variation of the geomagnetic main field, we have analysed 51 years (1935-1985) of geomagnetic observatory data from Huancayo, Peru. This period is ideal to analyse the influence of the main field strength on the amplitude of the quiet daily variation, since the main field decreases significantly from 1935 to 1985, while the distance of the magnetic equator to the observatory remains stable. To this end, we digitised some 19 years of hourly mean values of the horizontal component (H), which have not been available digitally at the World Data Centres. Then, the sensitivity of the amplitude Ali of the quiet daily variation to both solar cycle variations (in terms of sunspot numbers and solar flux F10.7) and changes of the geomagnetic main field strength (due to secular variation) was determined. We confirm an increase of Delta H for the decreasing main field in this period, as expected from physics based models (Cnossen, 2016), but with a somewhat smaller rate of 4.4\% (5.8\% considering one standard error) compared with 6.9\% predicted by the physics based model.}, language = {en} }