@article{KrapfMarinariMetzleretal.2018, author = {Krapf, Diego and Marinari, Enzo and Metzler, Ralf and Oshanin, Gleb and Xu, Xinran and Squarcini, Alessio}, title = {Power spectral density of a single Brownian trajectory}, series = {New journal of physics : the open-access journal for physics}, volume = {20}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/aaa67c}, pages = {30}, year = {2018}, abstract = {The power spectral density (PSD) of any time-dependent stochastic processX (t) is ameaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of X-t over an infinitely large observation timeT, that is, it is defined as an ensemble-averaged property taken in the limitT -> infinity. Alegitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation timeT. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is afluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.}, language = {en} } @article{LeiendeckerLichtBorghsetal.2018, author = {Leiendecker, Mai-Thi and Licht, Christopher J. and Borghs, Jannik and Mooney, David J. and Zimmermann, Marc and B{\"o}ker, Alexander}, title = {Physical polyurethane hydrogels via charge shielding through acids or salts}, series = {Macromolecular rapid communications}, volume = {39}, journal = {Macromolecular rapid communications}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201700711}, pages = {5}, year = {2018}, abstract = {Physical hydrogels with tunable stress-relaxation and excellent stress recovery are formed from anionic polyurethanes via addition of acids, monovalent salts, or divalent salts. Gel properties can be widely adjusted through pH, salt valence, salt concentration, and monomer composition. We propose and investigate a novel gelation mechanism based on a colloidal system interacting through charge repulsion and chrage shielding, allowing a broad use of the material, from acidic (pH 4-5.5) to pH-neutral hydrogels with Young's moduli ranging from 10 to 140 kPa.}, language = {en} } @article{Sachse2018, author = {Sachse, Manuel}, title = {A planetary dust ring generated by impact-ejection from the Galilean satellites}, series = {Icarus : international journal of solar system studies}, volume = {303}, journal = {Icarus : international journal of solar system studies}, publisher = {Elsevier}, address = {San Diego}, issn = {0019-1035}, doi = {10.1016/j.icarus.2017.10.011}, pages = {166 -- 180}, year = {2018}, abstract = {All outer planets in the Solar System are surrounded by a ring system. Many of these rings are dust rings or they contain at least a high proportion of dust. They are often formed by impacts of micro-meteoroids onto embedded bodies. The ejected material typically consists of micron-sized charged particles, which are susceptible to gravitational and non-gravitational forces. Generally, detailed information on the dynamics and distribution of the dust requires expensive numerical simulations of a large number of particles. Here we develop a relatively simple and fast, semi-analytical model for an impact-generated planetary dust ring governed by the planet's gravity and the relevant perturbation forces for the dynamics of small charged particles. The most important parameter of the model is the dust production rate, which is a linear factor in the calculation of the dust densities. We apply our model to dust ejected from the Galilean satellites using production rates obtained from flybys of the dust sources. The dust densities predicted by our model are in good agreement with numerical simulations and with in situ measurements by the Galileo spacecraft. The lifetimes of large particles are about two orders of magnitude greater than those of small ones, which implies a flattening of the size distribution in circumplanetary space. Information about the distribution of circumplanetary dust is also important for the risk assessment of spacecraft orbits in the respective regions.}, language = {en} } @misc{GudowskaNowakLindenbergMetzler2017, author = {Gudowska-Nowak, Ewa and Lindenberg, Katja and Metzler, Ralf}, title = {Preface: Marian Smoluchowski's 1916 paper—a century of inspiration}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {50}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {38}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/aa8529}, pages = {8}, year = {2017}, language = {en} } @article{ChengKliemDing2018, author = {Cheng, Xin and Kliem, Bernhard and Ding, Mingde}, title = {Unambiguous evidence of filament splitting-induced partial eruptions}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {856}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab08d}, pages = {15}, year = {2018}, abstract = {Coronal mass ejections are often considered to result from the full eruption of a magnetic flux rope (MFR). However, it is recognized that, in some events, the MFR may release only part of its flux, with the details of the implied splitting not completely established due to limitations in observations. Here, we investigate two partial eruption events including a confined and a successful one. Both partial eruptions are a consequence of the vertical splitting of a filament-hosting MFR involving internal reconnection. A loss of equilibrium in the rising part of the magnetic flux is suggested by the impulsive onset of both events and by the delayed onset of reconnection in the confined event. The remaining part of the flux might be line-tied to the photosphere in a bald patch (BP) separatrix surface, and we confirm the existence of extended BP sections for the successful eruption. The internal reconnection is signified by brightenings in the body of one filament and between the rising and remaining parts of both filaments. It evolves quickly into the standard current sheet reconnection in the wake of the eruption. As a result, regardless of being confined or successful, both eruptions produce hard X-ray sources and flare loops below the erupting but above the surviving flux, as well as a pair of flare ribbons enclosing the latter.}, language = {en} } @article{BaushevBarkov2018, author = {Baushev, Anton N. and Barkov, M. V.}, title = {Why does Einasto profile index n similar to 6 occur so frequently?}, series = {Journal of cosmology and astroparticle physics}, journal = {Journal of cosmology and astroparticle physics}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1475-7516}, doi = {10.1088/1475-7516/2018/03/034}, pages = {15}, year = {2018}, abstract = {We consider the behavior of spherically symmetric Einasto halos composed of gravitating particles in the Fokker-Planck approximation. This approach allows us to consider the undesirable influence of close encounters in the N-body simulations more adequately than the generally accepted criteria. The Einasto profile with index n approximate to 6 is a stationary solution of the Fokker-Planck equation in the halo center. There are some reasons to believe that the solution is an attractor. Then the Fokker-Planck diffusion tends to transform a density profile to the equilibrium one with the Einasto index n approximate to 6. We suggest this effect as a possible reason why the Einasto index n approximate to 6 occurs so frequently in the interpretation of N-body simulation results. The results obtained cast doubt on generally accepted criteria of N-body simulation convergence.}, language = {en} } @article{HaniSparreEllisonetal.2017, author = {Hani, Maan H. and Sparre, Martin and Ellison, Sara L. and Torrey, Paul and Vogelsberger, Mark}, title = {Galaxy mergers moulding the circum-galactic medium}, series = {Monthly notices of the Royal Astronomical Society}, volume = {475}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx3252}, pages = {1160 -- 1176}, year = {2017}, abstract = {Galaxies are surrounded by sizeable gas reservoirs which host a significant amount of metals: the circum-galactic medium (CGM). The CGM acts as a mediator between the galaxy and the extragalactic medium. However, our understanding of how galaxy mergers, a major evolutionary transformation, impact the CGM remains deficient. We present a theoretical study of the effect of galaxy mergers on the CGM. We use hydrodynamical cosmological zoom-in simulations of a major merger selected from the Illustris project such that the z = 0 descendant has a halo mass and stellar mass comparable to the Milky Way. To study the CGM we then re-simulated this system at a 40 times better mass resolution, and included detailed post-processing ionization modelling. Our work demonstrates the effect the merger has on the characteristic size of the CGM, its metallicity, and the predicted covering fraction of various commonly observed gas-phase species, such as H I, C IV, and O VI. We show that merger-induced outflows can increase the CGM metallicity by 0.2-0.3 dex within 0.5 Gyr post-merger. These effects last up to 6 Gyr post-merger. While the merger increases the total metal covering fractions by factors of 2-3, the covering fractions of commonly observed UV ions decrease due to the hard ionizing radiation from the active galactic nucleus, which we model explicitly. Our study of the single simulated major merger presented in this work demonstrates the significant impact that a galaxy interaction can have on the size, metallicity, and observed column densities of the CGM.}, language = {en} } @article{UolaLeverGuehneetal.2018, author = {Uola, Roope and Lever, Fabiano and G{\"u}hne, Otfried and Pellonpaa, Juha-Pekka}, title = {Unified picture for spatial, temporal, and channel steering}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {97}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.97.032301}, pages = {6}, year = {2018}, abstract = {Quantum steering describes how local actions on a quantum system can affect another, spacelike separated, quantum state. Lately, quantum steering has been formulated also for timelike scenarios and for quantum channels. We approach all the three scenarios as one using tools from Stinespring dilations of quantum channels. By applying our technique we link all three steering problems one-to-one with the incompatibility of quantum measurements, a result formerly known only for spatial steering. We exploit this connection by showing how measurement uncertainty relations can be used as tight steering inequalities for all three scenarios. Moreover, we show that certain notions of temporal and spatial steering are fully equivalent and prove a hierarchy between temporal steering and macrorealistic hidden variable models.}, language = {en} } @article{Goychuk2018, author = {Goychuk, Igor}, title = {Sensing magnetic fields with magnetosensitive ion channels}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18030728}, pages = {19}, year = {2018}, abstract = {Magnetic nanoparticles are met across many biological species ranging from magnetosensitive bacteria, fishes, bees, bats, rats, birds, to humans. They can be both of biogenetic origin and due to environmental contamination, being either in paramagnetic or ferromagnetic state. The energy of such naturally occurring single-domain magnetic nanoparticles can reach up to 10-20 room k(B)T in the magnetic field of the Earth, which naturally led to supposition that they can serve as sensory elements in various animals. This work explores within a stochastic modeling framework a fascinating hypothesis of magnetosensitive ion channels with magnetic nanoparticles serving as sensory elements, especially, how realistic it is given a highly dissipative viscoelastic interior of living cells and typical sizes of nanoparticles possibly involved.}, language = {en} } @misc{ParsonsSchuesslerGarrigouxetal.2017, author = {Parsons, R. D. and Sch{\"u}ssler, F. and Garrigoux, T. and Balzer, A. and F{\"u}ssling, Matthias and Hoischen, Clemens and Holler, M. and Mitchell, A. and P{\"u}hlhofer, G. and Rowell, G. and Wagner, S. and Bissaldi, E. and Tam, P. H. T.}, title = {The HESS II GRB Observation Scheme}, series = {AIP conference proceedings / American Institute of Physics}, volume = {1792}, journal = {AIP conference proceedings / American Institute of Physics}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, organization = {HESS Collaboration}, isbn = {978-0-7354-1456-3}, issn = {0094-243X}, doi = {10.1063/1.4968980}, pages = {5}, year = {2017}, abstract = {Gamma-ray bursts (GRBs) are some of the Universe's most enigmatic and exotic events. However, at energies above 10 GeV their behaviour remains largely unknown. Although space based telescopes such as the Fermi-LAT have been able to detect GRBs in this energy range, their photon statistics are limited by the small detector size. Such limitations are not present in ground based gamma-ray telescopes such as the H.E.S.S. experiment, which has now entered its second phase with the addition of a large 600 m2 telescope to the centre of the array. Such a large telescope allows H.E.S.S. to access the sub 100-GeV energy range while still maintaining a large effective collection area, helping to potentially probe the short timescale emission of these events. We present a description of the H.E.S.S. GRB observation programme, summarising the performance of the rapid GRB repointing system and the conditions under which GRB observations are initiated. Additionally we will report on the GRB follow-ups made during the 2014-15 observation campaigns.}, language = {en} }