@article{EberhardSchaikSchibalskietal.2020, author = {Eberhard, Julius and Schaik, N. Loes M. B. and Schibalski, Anett and Gr{\"a}ff, Thomas}, title = {Simulating future salinity dynamics in a coastal marshland under different climate scenarios}, series = {Vadose zone journal}, volume = {19}, journal = {Vadose zone journal}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1539-1663}, doi = {10.1002/vzj2.20008}, pages = {15}, year = {2020}, abstract = {Salinization is a well-known problem in agricultural areas worldwide. In the last 20-30 yr, rising salinity in the upper, unconfined aquifer has been observed in the Freepsumer Meer, a grassland near the German North Sea coast. For investigating long-term development of salinity and water balance during 1961-2099, the one-dimensional Soil-Water-Atmosphere-Plant (SWAP) model was set up and calibrated for a soil column in the area. The model setup involves a deep aquifer as the source of salt through upward seepage. In the vertical salt transport equation, dispersion and advection are included. Six different regional outputs of statistical downscaling methods were used as climate scenarios. These comprise different rates of increasing surface temperature and different trends in seasonal rainfall. The simulation results exhibit opposing salinity trends for topsoil and deeper layers. Although projections of some scenarios entail decreasing salinities near the surface, most of them project a rise in subsoil salinity, with the strongest trends of up to +0.9 mg cm(-3) 100 yr(-1) at -65 cm. The results suggest that topsoil salinity trends in the study area are affected by the magnitude of winter rainfall trends, whereas high subsoil salinities correspond to low winter rainfall and high summer temperature. How these projected trends affect the vegetation and thereby future land use will depend on the future management of groundwater levels in the area.}, language = {en} } @article{EmanuelCherstvyMetzleretal.2020, author = {Emanuel, Marc D. and Cherstvy, Andrey G. and Metzler, Ralf and Gompper, Gerhard}, title = {Buckling transitions and soft-phase invasion of two-component icosahedral shells}, series = {Physical review / publ. by The American Physical Society. E, Statistical, nonlinear, and soft matter physics}, volume = {102}, journal = {Physical review / publ. by The American Physical Society. E, Statistical, nonlinear, and soft matter physics}, number = {6}, publisher = {Woodbury}, address = {New York}, issn = {2470-0045}, doi = {10.1103/PhysRevE.102.062104}, pages = {26}, year = {2020}, abstract = {What is the optimal distribution of two types of crystalline phases on the surface of icosahedral shells, such as of many viral capsids? We here investigate the distribution of a thin layer of soft material on a crystalline convex icosahedral shell. We demonstrate how the shapes of spherical viruses can be understood from the perspective of elasticity theory of thin two-component shells. We develop a theory of shape transformations of an icosahedral shell upon addition of a softer, but still crystalline, material onto its surface. We show how the soft component "invades" the regions with the highest elastic energy and stress imposed by the 12 topological defects on the surface. We explore the phase diagram as a function of the surface fraction of the soft material, the shell size, and the incommensurability of the elastic moduli of the rigid and soft phases. We find that, as expected, progressive filling of the rigid shell by the soft phase starts from the most deformed regions of the icosahedron. With a progressively increasing soft-phase coverage, the spherical segments of domes are filled first (12 vertices of the shell), then the cylindrical segments connecting the domes (30 edges) are invaded, and, ultimately, the 20 flat faces of the icosahedral shell tend to be occupied by the soft material. We present a detailed theoretical investigation of the first two stages of this invasion process and develop a model of morphological changes of the cone structure that permits noncircular cross sections. In conclusion, we discuss the biological relevance of some structures predicted from our calculations, in particular for the shape of viral capsids.}, language = {en} } @article{ErlerRiebeBeitzetal.2020, author = {Erler, Alexander and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Grothusheitkamp, Daniela and Kunz, Thomas and Methner, Frank-J{\"u}rgen}, title = {Characterization of volatile metabolites formed by molds on barley by mass and ion mobility spectrometry}, series = {Journal of mass spectrometr}, volume = {55}, journal = {Journal of mass spectrometr}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1076-5174}, doi = {10.1002/jms.4501}, pages = {1 -- 10}, year = {2020}, abstract = {The contamination of barley by molds on the field or in storage leads to the spoilage of grain and the production of mycotoxins, which causes major economic losses in malting facilities and breweries. Therefore, on-site detection of hidden fungus contaminations in grain storages based on the detection of volatile marker compounds is of high interest. In this work, the volatile metabolites of 10 different fungus species are identified by gas chromatography (GC) combined with two complementary mass spectrometric methods, namely, electron impact (EI) and chemical ionization at atmospheric pressure (APCI)-mass spectrometry (MS). The APCI source utilizes soft X-radiation, which enables the selective protonation of the volatile metabolites largely without side reactions. Nearly 80 volatile or semivolatile compounds from different substance classes, namely, alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, alkenes, terpenes, oxidized terpenes, sesquiterpenes, and oxidized sesquiterpenes, could be identified. The profiles of volatile and semivolatile metabolites of the different fungus species are characteristic of them and allow their safe differentiation. The application of the same GC parameters and APCI source allows a simple method transfer from MS to ion mobility spectrometry (IMS), which permits on-site analyses of grain stores. Characterization of IMS yields limits of detection very similar to those of APCI-MS. Accordingly, more than 90\% of the volatile metabolites found by APCI-MS were also detected in IMS. In addition to different fungus genera, different species of one fungus genus could also be differentiated by GC-IMS.}, language = {en} } @article{EvsevleevPaciornikBruno2020, author = {Evsevleev, Sergei and Paciornik, Sidnei and Bruno, Giovanni}, title = {Advanced deep learning-based 3D microstructural characterization of multiphase metal matrix composites}, series = {Advanced engineering materials}, volume = {22}, journal = {Advanced engineering materials}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-1656}, doi = {10.1002/adem.201901197}, pages = {6}, year = {2020}, abstract = {The quantitative analysis of microstructural features is a key to understanding the micromechanical behavior of metal matrix composites (MMCs), which is a premise for their use in practice. Herein, a 3D microstructural characterization of a five-phase MMC is performed by synchrotron X-ray computed tomography (SXCT). A workflow for advanced deep learning-based segmentation of all individual phases in SXCT data is shown using a fully convolutional neural network with U-net architecture. High segmentation accuracy is achieved with a small amount of training data. This enables extracting unprecedently precise microstructural parameters (e.g., volume fractions and particle shapes) to be input, e.g., in micromechanical models.}, language = {en} } @article{FernandezCharcharCherstvyetal.2020, author = {Fernandez, Amanda Diez and Charchar, Patrick and Cherstvy, Andrey G. and Metzler, Ralf and Finnis, Michael W.}, title = {The diffusion of doxorubicin drug molecules in silica nanoslits is non-Gaussian, intermittent and anticorrelated}, series = {Physical chemistry, chemical physics}, volume = {22}, journal = {Physical chemistry, chemical physics}, number = {48}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d0cp03849k}, pages = {27955 -- 27965}, year = {2020}, abstract = {In this study we investigate, using all-atom molecular-dynamics computer simulations, the in-plane diffusion of a doxorubicin drug molecule in a thin film of water confined between two silica surfaces. We find that the molecule diffuses along the channel in the manner of a Gaussian diffusion process, but with parameters that vary according to its varying transversal position. Our analysis identifies that four Gaussians, each describing particle motion in a given transversal region, are needed to adequately describe the data. Each of these processes by itself evolves with time at a rate slower than that associated with classical Brownian motion due to a predominance of anticorrelated displacements. Long adsorption events lead to ageing, a property observed when the diffusion is intermittently hindered for periods of time with an average duration which is theoretically infinite. This study presents a simple system in which many interesting features of anomalous diffusion can be explored. It exposes the complexity of diffusion in nanoconfinement and highlights the need to develop new understanding.}, language = {en} } @article{FernandezBrunoGarcesetal.2020, author = {Fernandez, Ricardo and Bruno, Giovanni and Garces, Gerardo and Nieto-Luis, H. and Gonzalez-Doncel, Gaspar}, title = {Fractional brownian motion of dislocations during creep deformation of metals}, series = {Materials science \& engineering. A, Structural materials}, volume = {796}, journal = {Materials science \& engineering. A, Structural materials}, publisher = {Elsevier}, address = {Lausanne}, issn = {0921-5093}, doi = {10.1016/j.msea.2020.140013}, pages = {8}, year = {2020}, abstract = {The present work offers an explanation on how the long-range interaction of dislocations influences their movement, and therefore the strain, during creep of metals. It is proposed that collective motion of dislocations can be described as a fractional Brownian motion. This explains the noisy appearance of the creep strain signal as a function of time. Such signal is split into a deterministic and a stochastic part. These terms can be related to two kinds of dislocation motions: individual and collective, respectively. The description is consistent with the fractal nature of strain-induced dislocation structures predicated in previous works. Moreover, it encompasses the evolution of the strain rate during all stages of creep, including the tertiary one. Creep data from Al99.8\% and Al3.85\%Mg tested at different temperatures and stresses are used to validate the proposed ideas: it is found that different creep stages present different diffusion characters, and therefore different dislocation motion character.}, language = {en} } @article{FernandezGonzalezDoncelGarcesetal.2020, author = {Fernandez, Ricardo and Gonzalez-Doncel, Gaspar and Garces, Gerardo and Bruno, Giovanni}, title = {Towards a comprehensive understanding of creep}, series = {Materials science \& engineering. A, Structural materials: properties, microstructure and processing}, volume = {776}, journal = {Materials science \& engineering. A, Structural materials: properties, microstructure and processing}, publisher = {Elsevier}, address = {Lausanne}, issn = {0921-5093}, doi = {10.1016/j.msea.2020.139036}, pages = {7}, year = {2020}, abstract = {We show that the equation proposed by Takeuchi and Argon to explain the creep behavior of Al-Mg solid solution can be used to describe also the creep behavior of pure aluminum. In this frame, it is possible to avoid the use of the classic pre-exponential fitting parameter in the power law equation to predict the minimum creep strain rate. The effect of the fractal arrangement of dislocations, developed at the mesoscale, must be considered to fully explain the experimental data. These ideas allow improving the recently introduced SSTC model, fully describing the primary and secondary creep regimes of aluminum alloys without the need for fitting. Creep data from commercially pure A199.8\% and Al-Mg alloys tested at different temperatures and stresses are used to validate the proposed ideas.}, language = {en} } @article{FulmerGallagherHamannetal.2020, author = {Fulmer, Leah M. and Gallagher, John S. and Hamann, Wolf-Rainer and Oskinova, Lidia M. and Ramachandran, Varsha}, title = {Testing massive star evolution, star-formation history, and feedback at low metallicity}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {633}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201834314}, pages = {9}, year = {2020}, abstract = {Context. The supergiant ionized shell SMC-SGS 1 (DEM 167), which is located in the outer Wing of the Small Magellanic Cloud (SMC), resembles structures that originate from an energetic star-formation event and later stimulate star formation as they expand into the ambient medium. However, stellar populations within and surrounding SMC-SGS 1 tell a different story. Aims. We present a photometric study of the stellar population encompassed by SMC-SGS 1 in order to trace the history of such a large structure and its potential influence on star formation within the low-density, low-metallicity environment of the SMC. Methods. For a stellar population that is physically associated with SMC-SGS 1, we combined near-ultraviolet (NUV) photometry from the Galaxy Evolution Explorer with archival optical (V-band) photometry from the ESO Danish 1.54 m Telescope. Given their colors and luminosities, we estimated stellar ages and masses by matching observed photometry to theoretical stellar isochrone models. Results. We find that the investigated region supports an active, extended star-formation event spanning similar to 25-40 Myr ago, as well as continued star formation into the present. Using a standard initial mass function, we infer a lower bound on the stellar mass from this period of similar to 3 x 10(4) M-circle dot, corresponding to a star-formation intensity of similar to 6 x 10(-3) M-circle dot kpc(-2) yr(-1). Conclusions. The spatial and temporal distributions of young stars encompassed by SMC-SGS 1 imply a slow, consistent progression of star formation over millions of years. Ongoing star formation, both along the edge and interior to SMC-SGS 1, suggests a combined stimulated and stochastic mode of star formation within the SMC Wing. We note that a slow expansion of the shell within this low-density environment may preserve molecular clouds within the volume of the shell, leaving them to form stars even after nearby stellar feedback expels local gas and dust.}, language = {en} } @article{FumaniNematiMahdavifar2020, author = {Fumani, F. Khastehdel and Nemati, Somayyeh and Mahdavifar, Saeed}, title = {Quantum critical lines in the ground state phase diagram of spin-1/2 frustrated transverse-field ising chains}, series = {Annalen der Physik}, volume = {533}, journal = {Annalen der Physik}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0003-3804}, doi = {10.1002/andp.202000384}, pages = {8}, year = {2020}, abstract = {This paper focuses on the ground state phase diagram of a 1D spin-1/2 quantum Ising model with competing first and second nearest neighbour interactions known as the axial next nearest neighbour Ising model in the presence of a transverse magnetic field. Here, using quantum correlations, both numerically and analytically, some evidence is provided to clarify the identification of the ground state phase diagram. Local quantum correlations play a crucial role in detecting the critical lines either revealed or hidden by symmetry-breaking. A non-symmetry-breaking disorder transition line can be identified by the first derivative of both entanglement of formation and quantum discord between nearest neighbour spins. In addition, the quantum correlations between the second neighbour spins can also be used to reveal Kosterlitz-Thouless phase transition when their interaction strength grows and becomes closer to the first nearest neighbour one. The results obtained using the Jordan-Wigner transformation confirm the accuracy of the numerical case.}, language = {en} } @article{GarbeAlbrechtLevermannetal.2020, author = {Garbe, Julius and Albrecht, Torsten and Levermann, Anders and Donges, Jonathan and Winkelmann, Ricarda}, title = {The hysteresis of the Antarctic Ice Sheet}, series = {Nature : the international weekly journal of science}, volume = {585}, journal = {Nature : the international weekly journal of science}, number = {7826}, publisher = {Macmillan Publishers Limited}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/s41586-020-2727-5}, pages = {538 -- 544}, year = {2020}, abstract = {More than half of Earth's freshwater resources are held by the Antarctic Ice Sheet, which thus represents by far the largest potential source for global sea-level rise under future warming conditions(1). Its long-term stability determines the fate of our coastal cities and cultural heritage. Feedbacks between ice, atmosphere, ocean, and the solid Earth give rise to potential nonlinearities in its response to temperature changes. So far, we are lacking a comprehensive stability analysis of the Antarctic Ice Sheet for different amounts of global warming. Here we show that the Antarctic Ice Sheet exhibits a multitude of temperature thresholds beyond which ice loss is irreversible. Consistent with palaeodata(2)we find, using the Parallel Ice Sheet Model(3-5), that at global warming levels around 2 degrees Celsius above pre-industrial levels, West Antarctica is committed to long-term partial collapse owing to the marine ice-sheet instability. Between 6 and 9 degrees of warming above pre-industrial levels, the loss of more than 70 per cent of the present-day ice volume is triggered, mainly caused by the surface elevation feedback. At more than 10 degrees of warming above pre-industrial levels, Antarctica is committed to become virtually ice-free. The ice sheet's temperature sensitivity is 1.3 metres of sea-level equivalent per degree of warming up to 2 degrees above pre-industrial levels, almost doubling to 2.4 metres per degree of warming between 2 and 6 degrees and increasing to about 10 metres per degree of warming between 6 and 9 degrees. Each of these thresholds gives rise to hysteresis behaviour: that is, the currently observed ice-sheet configuration is not regained even if temperatures are reversed to present-day levels. In particular, the West Antarctic Ice Sheet does not regrow to its modern extent until temperatures are at least one degree Celsius lower than pre-industrial levels. Our results show that if the Paris Agreement is not met, Antarctica's long-term sea-level contribution will dramatically increase and exceed that of all other sources.
Modelling shows that the Antarctic Ice Sheet exhibits multiple temperature thresholds beyond which ice loss would become irreversible, and once melted, the ice sheet can regain its previous mass only if the climate cools well below pre-industrial temperatures.}, language = {en} }