@article{ChengZhangKliemetal.2020, author = {Cheng, Xin and Zhang, Jie and Kliem, Bernhard and T{\"o}r{\"o}k, Tibor and Xing, Chen and Zhou, Zhenjun and Inhester, Bernd and Ding, Mingde}, title = {Initiation and early kinematic evolution of solar eruptions}, series = {The Astrophysical Journal}, volume = {894}, journal = {The Astrophysical Journal}, number = {2}, publisher = {Cambridge Scientific Publishers}, address = {Cambridge}, issn = {1055-6796}, doi = {10.3847/1538-4357/ab886a}, pages = {1 -- 20}, year = {2020}, abstract = {We investigate the initiation and early evolution of 12 solar eruptions, including six active-region hot channel and six quiescent filament eruptions, which were well observed by the Solar Dynamics Observatory, as well as by the Solar Terrestrial Relations Observatory for the latter. The sample includes one failed eruption and 11 coronal mass ejections, with velocities ranging from 493 to 2140 km s(-1). A detailed analysis of the eruption kinematics yields the following main results. (1) The early evolution of all events consists of a slow-rise phase followed by a main-acceleration phase, the height-time profiles of which differ markedly and can be best fit, respectively, by a linear and an exponential function. This indicates that different physical processes dominate in these phases, which is at variance with models that involve a single process. (2) The kinematic evolution of the eruptions tends to be synchronized with the flare light curve in both phases. The synchronization is often but not always close. A delayed onset of the impulsive flare phase is found in the majority of the filament eruptions (five out of six). This delay and its trend to be larger for slower eruptions favor ideal MHD instability models. (3) The average decay index at the onset heights of the main acceleration is close to the threshold of the torus instability for both groups of events (although, it is based on a tentative coronal field model for the hot channels), suggesting that this instability initiates and possibly drives the main acceleration.}, language = {en} } @article{ChenLangeAndjelkovicetal.2020, author = {Chen, Junchao and Lange, Thomas and Andjelkovic, Milos and Simevski, Aleksandar and Krstić, Miloš}, title = {Prediction of solar particle events with SRAM-based soft error rate monitor and supervised machine learning}, series = {Microelectronics reliability}, volume = {114}, journal = {Microelectronics reliability}, publisher = {Elsevier}, address = {Oxford}, issn = {0026-2714}, doi = {10.1016/j.microrel.2020.113799}, pages = {6}, year = {2020}, abstract = {This work introduces an embedded approach for the prediction of Solar Particle Events (SPEs) in space applications by combining the real-time Soft Error Rate (SER) measurement with SRAM-based detector and the offline trained machine learning model. The proposed approach is intended for the self-adaptive fault-tolerant multiprocessing systems employed in space applications. With respect to the state-of-the-art, our solution allows for predicting the SER 1 h in advance and fine-grained hourly tracking of SER variations during SPEs as well as under normal conditions. Therefore, the target system can activate the appropriate mechanisms for radiation hardening before the onset of high radiation levels. Based on the comparison of five different machine learning algorithms trained with the public space flux database, the preliminary results indicate that the best prediction accuracy is achieved with the recurrent neural network (RNN) with long short-term memory (LSTM).}, language = {en} } @article{ChenMuellerPrinzetal.2020, author = {Chen, Cong and M{\"u}ller, Bernd R. and Prinz, Carsten and Stroh, Julia and Feldmann, Ines and Bruno, Giovanni}, title = {The correlation between porosity characteristics and the crystallographic texture in extruded stabilized aluminium titanate for diesel particulate filter applications}, series = {Journal of the European Ceramic Society}, volume = {40}, journal = {Journal of the European Ceramic Society}, number = {4}, publisher = {Elsevier}, address = {Oxford}, issn = {0955-2219}, doi = {10.1016/j.jeurceramsoc.2019.11.076}, pages = {1592 -- 1601}, year = {2020}, abstract = {Porous ceramic diesel particulate filters (DPFs) are extruded products that possess macroscopic anisotropic mechanical and thermal properties. This anisotropy is caused by both morphological features (mostly the orientation of porosity) and crystallographic texture. We systematically studied those two aspects in two aluminum titanate ceramic materials of different porosity using mercury porosimetry, gas adsorption, electron microscopy, X-ray diffraction, and X-ray refraction radiography. We found that a lower porosity content implies a larger isotropy of both the crystal texture and the porosity orientation. We also found that, analogous to cordierite, crystallites do align with their axis of negative thermal expansion along the extrusion direction. However, unlike what found for cordierite, the aluminium titanate crystallite form is such that a more pronounced (0 0 2) texture along the extrusion direction implies porosity aligned perpendicular to it.}, language = {en} } @article{CervantesVillaShpritsAseevetal.2020, author = {Cervantes Villa, Juan Sebastian and Shprits, Yuri and Aseev, Nikita and Allison, Hayley J.}, title = {Quantifying the effects of EMIC wave scattering and magnetopause shadowing in the outer electron radiation belt by means of data assimilation}, series = {Journal of geophysical research : Space physics}, volume = {125}, journal = {Journal of geophysical research : Space physics}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2020JA028208}, pages = {23}, year = {2020}, abstract = {In this study we investigate two distinct loss mechanisms responsible for the rapid dropouts of radiation belt electrons by assimilating data from Van Allen Probes A and B and Geostationary Operational Environmental Satellites (GOES) 13 and 15 into a 3-D diffusion model. In particular, we examine the respective contribution of electromagnetic ion cyclotron (EMIC) wave scattering and magnetopause shadowing for values of the first adiabatic invariant mu ranging from 300 to 3,000 MeV G(-1). We inspect the innovation vector and perform a statistical analysis to quantitatively assess the effect of both processes as a function of various geomagnetic indices, solar wind parameters, and radial distance from the Earth. Our results are in agreement with previous studies that demonstrated the energy dependence of these two mechanisms. We show that EMIC wave scattering tends to dominate loss at lower L shells, and it may amount to between 10\%/hr and 30\%/hr of the maximum value of phase space density (PSD) over all L shells for fixed first and second adiabatic invariants. On the other hand, magnetopause shadowing is found to deplete electrons across all energies, mostly at higher L shells, resulting in loss from 50\%/hr to 70\%/hr of the maximum PSD. Nevertheless, during times of enhanced geomagnetic activity, both processes can operate beyond such location and encompass the entire outer radiation belt.}, language = {en} } @article{CapałaPadashChechkinetal.2020, author = {Capała, Karol and Padash, Amin and Chechkin, Aleksei V. and Shokri, Babak and Metzler, Ralf and Dybiec, Bartłomiej}, title = {Levy noise-driven escape from arctangent potential wells}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {30}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {12}, publisher = {American Institute of Physics}, address = {Woodbury, NY}, issn = {1054-1500}, doi = {10.1063/5.0021795}, pages = {15}, year = {2020}, abstract = {The escape from a potential well is an archetypal problem in the study of stochastic dynamical systems, representing real-world situations from chemical reactions to leaving an established home range in movement ecology. Concurrently, Levy noise is a well-established approach to model systems characterized by statistical outliers and diverging higher order moments, ranging from gene expression control to the movement patterns of animals and humans. Here, we study the problem of Levy noise-driven escape from an almost rectangular, arctangent potential well restricted by two absorbing boundaries, mostly under the action of the Cauchy noise. We unveil analogies of the observed transient dynamics to the general properties of stationary states of Levy processes in single-well potentials. The first-escape dynamics is shown to exhibit exponential tails. We examine the dependence of the escape on the shape parameters, steepness, and height of the arctangent potential. Finally, we explore in detail the behavior of the probability densities of the first-escape time and the last-hitting point.}, language = {en} } @article{CaetanoCarvalhoMetzleretal.2020, author = {Caetano, Daniel L. Z. and Carvalho, Sidney Jurado de and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Critical adsorption of multiple polyelectrolytes onto a nanosphere}, series = {Interface : journal of the Royal Society}, volume = {17}, journal = {Interface : journal of the Royal Society}, number = {167}, publisher = {Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2020.0199}, pages = {10}, year = {2020}, abstract = {Employing extensive Monte Carlo computer simulations, we investigate in detail the properties of multichain adsorption of charged flexible polyelectrolytes (PEs) onto oppositely charged spherical nanoparticles (SNPs). We quantify the conditions of critical adsorption-the phase-separation curve between the adsorbed and desorbed states of the PEs-as a function of the SNP surface-charge density and the concentration of added salt. We study the degree of fluctuations of the PE-SNP electrostatic binding energy, which we use to quantify the emergence of the phase subtransitions, including a series of partially adsorbed PE configurations. We demonstrate how the phase-separation adsorption-desorption boundary shifts and splits into multiple subtransitions at low-salt conditions, thereby generalizing and extending the results for critical adsorption of a single PE onto the SNP. The current findings are relevant for finite concentrations of PEs around the attracting SNP, such as the conditions for PE adsorption onto globular proteins carrying opposite electric charges.}, language = {en} } @misc{CaesarRahmstorfFeulner2020, author = {Caesar, Levke and Rahmstorf, Stefan and Feulner, Georg}, title = {On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-51238}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512382}, pages = {9}, year = {2020}, abstract = {According to established understanding, deep-water formation in the North Atlantic and Southern Ocean keeps the deep ocean cold, counter-acting the downward mixing of heat from the warmer surface waters in the bulk of the world ocean. Therefore, periods of strong Atlantic meridional overturning circulation (AMOC) are expected to coincide with cooling of the deep ocean and warming of the surface waters. It has recently been proposed that this relation may have reversed due to global warming, and that during the past decades a strong AMOC coincides with warming of the deep ocean and relative cooling of the surface, by transporting increasingly warmer waters downward. Here we present multiple lines of evidence, including a statistical evaluation of the observed global mean temperature, ocean heat content, and different AMOC proxies, that lead to the opposite conclusion: even during the current ongoing global temperature rise a strong AMOC warms the surface. The observed weakening of the AMOC has therefore delayed global surface warming rather than enhancing it. Social Media Abstract: The overturning circulation in the Atlantic Ocean has weakened in response to global warming, as predicted by climate models. Since it plays an important role in transporting heat, nutrients and carbon, a slowdown will affect global climate processes and the global mean temperature. Scientists have questioned whether this slowdown has worked to cool or warm global surface temperatures. This study analyses the overturning strength and global mean temperature evolution of the past decades and shows that a slowdown acts to reduce the global mean temperature. This is because a slower overturning means less water sinks into the deep ocean in the subpolar North Atlantic. As the surface waters are cold there, the sinking normally cools the deep ocean and thereby indirectly warms the surface, thus less sinking implies less surface warming and has a cooling effect. For the foreseeable future, this means that the slowing of the overturning will likely continue to slightly reduce the effect of the general warming due to increasing greenhouse gas concentrations.}, language = {en} } @article{CaesarRahmstorfFeulner2020, author = {Caesar, Levke and Rahmstorf, Stefan and Feulner, Georg}, title = {On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming}, series = {Environmental research letters}, volume = {15}, journal = {Environmental research letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ab63e3}, pages = {7}, year = {2020}, abstract = {According to established understanding, deep-water formation in the North Atlantic and Southern Ocean keeps the deep ocean cold, counter-acting the downward mixing of heat from the warmer surface waters in the bulk of the world ocean. Therefore, periods of strong Atlantic meridional overturning circulation (AMOC) are expected to coincide with cooling of the deep ocean and warming of the surface waters. It has recently been proposed that this relation may have reversed due to global warming, and that during the past decades a strong AMOC coincides with warming of the deep ocean and relative cooling of the surface, by transporting increasingly warmer waters downward. Here we present multiple lines of evidence, including a statistical evaluation of the observed global mean temperature, ocean heat content, and different AMOC proxies, that lead to the opposite conclusion: even during the current ongoing global temperature rise a strong AMOC warms the surface. The observed weakening of the AMOC has therefore delayed global surface warming rather than enhancing it. Social Media Abstract: The overturning circulation in the Atlantic Ocean has weakened in response to global warming, as predicted by climate models. Since it plays an important role in transporting heat, nutrients and carbon, a slowdown will affect global climate processes and the global mean temperature. Scientists have questioned whether this slowdown has worked to cool or warm global surface temperatures. This study analyses the overturning strength and global mean temperature evolution of the past decades and shows that a slowdown acts to reduce the global mean temperature. This is because a slower overturning means less water sinks into the deep ocean in the subpolar North Atlantic. As the surface waters are cold there, the sinking normally cools the deep ocean and thereby indirectly warms the surface, thus less sinking implies less surface warming and has a cooling effect. For the foreseeable future, this means that the slowing of the overturning will likely continue to slightly reduce the effect of the general warming due to increasing greenhouse gas concentrations.}, language = {en} } @article{CabalarFandinoLierler2020, author = {Cabalar, Pedro and Fandi{\~n}o, Jorge and Lierler, Yuliya}, title = {Modular Answer Set Programming as a formal specification language}, series = {Theory and practice of logic programming}, volume = {20}, journal = {Theory and practice of logic programming}, number = {5}, publisher = {Cambridge University Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068420000265}, pages = {767 -- 782}, year = {2020}, abstract = {In this paper, we study the problem of formal verification for Answer Set Programming (ASP), namely, obtaining aformal proofshowing that the answer sets of a given (non-ground) logic programPcorrectly correspond to the solutions to the problem encoded byP, regardless of the problem instance. To this aim, we use a formal specification language based on ASP modules, so that each module can be proved to capture some informal aspect of the problem in an isolated way. This specification language relies on a novel definition of (possibly nested, first order)program modulesthat may incorporate local hidden atoms at different levels. Then,verifyingthe logic programPamounts to prove some kind of equivalence betweenPand its modular specification.}, language = {en} } @phdthesis{Brose2020, author = {Brose, Robert}, title = {From dawn till dusk}, doi = {10.25932/publishup-47086}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470865}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 146}, year = {2020}, abstract = {Supernova remnants are believed to be the source of cosmic rays with energies up to 10^15 eV that are produced within our Galaxy. The acceleration mechanism associated with the collision-less shocks in supernova remnants - diffusive shock acceleration - predicts a spectral index of the accelerated non-thermal particles of s = 2. However, measurements of non-thermal emission in radio, X-rays and gamma-rays reveal significant deviations of the particles spectral index from the canonical value of s = 2. The youngest Galactic supernova remnant G1.9+0.3 is an interesting target for next-generation gamma-ray observatories. So far, the remnant is only detected in the radio and the X-ray bands, but its young age of ≈100 yrs and inferred shock speed of ≈ 14, 000 km/s could make it an efficient particle accelerator. I performed spherical symmetric 1D simulations with the RATPaC code, in which I simultaneously solved the transport equation for cosmic rays, the transport equation for magnetic turbulence, and the hydro-dynamical equations for the gas flow. Separately computed distributions of the particles accelerated at the forward and the reverse shock were then used to calculate the spectra of synchrotron, inverse Compton, and Pion-decay radiation from the source. The emission from G1.9+0.3 can be self-consistently explained within the test-particle limit. I find that the X-ray flux is dominated by emission from the forward shock while most of the radio emission originates near the reverse shock, which makes G1.9+0.3 the first remnant with non-thermal radiation detected from the reverse shock. The flux of very-high-energy gamma-ray emission from G1.9+0.3 is expected to be close to the sensitivity threshold of the Cherenkov Telescope Array. The limited time available to grow large-scale turbulence limits the maximum energy of particles to values below 100 TeV, hence G1.9+0.3 is not a PeVatron. Although there are many models for the acceleration of cosmic rays in Supernova remnants, the escape of cosmic rays from these sources is yet understudied. I use our time-dependent acceleration code RATPaC to study the acceleration of cosmic rays and their escape in post-adiabatic Supernova remnants and calculate the subsequent gamma-ray emission from inverse-Compton scattering and Pion decay. My simulations span 100,000 years, thus covering the free-expansion, the Sedov-Taylor, and the beginning of the post-adiabatic phase of the remnant's evolution. At later stages of the evolution cosmic rays over a wide range of energy can reside outside of the remnant, creating spectra that are softer than predicted by standard diffusive shock acceleration and feature breaks in the 10 - 100 GeV-range. The total spectrum of cosmic rays released into the interstellar medium has a spectral index of s ≈ 2.4 above roughly 10 GeV which is close to that required by Galactic propagation models. I further find the gamma-ray luminosity to peak around an age of 4,000 years for inverse-Compton-dominated high-energy emission. Remnants expanding in low-density media emit generally more inverse-Compton radiation matching the fact that the brightest known supernova remnants - RCW86, Vela Jr, HESSJ1721-347 and RXJ1713.7-3946 - are all expanding in low density environments. The importance of feedback from the cosmic-rays on the hydrodynamical evolution of the remnants is debated as a possibility to obtain soft cosmic-ray spectra at low energies. I performed spherically symmetric 1-D simulations with a modified version of the RATPaC code, in which I simultaneously solve the transport equation for cosmic rays and the hydrodynamical equations, including the back-reaction of the cosmic-ray pressure on the flow profiles. Besides the known modification of the flow profiles and the consequently curved cosmic-ray spectra, steady-state models for non-linear diffusive shock acceleration overpredict the total compression ratio that can be reached with cosmic-ray feedback, as there is limited time for building these modifications. Further, I find modifications to the downstream flow structure that change the evolutionary behavior of the remnant and trigger a cosmic-ray-induced instability close to the contact discontinuity, if and when the cosmic-ray pressure becomes dominant there.}, language = {en} }