@phdthesis{Wolff2020, author = {Wolff, Christian Michael}, title = {Identification and reduction of losses in perovskite solar cells}, doi = {10.25932/publishup-47930}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-479301}, school = {Universit{\"a}t Potsdam}, pages = {x, 158}, year = {2020}, abstract = {Perovskite solar cells have become one of the most studied systems in the quest for new, cheap and efficient solar cell materials. Within a decade device efficiencies have risen to >25\% in single-junction and >29\% in tandem devices on top of silicon. This rapid improvement was in many ways fortunate, as e. g. the energy levels of commonly used halide perovskites are compatible with already existing materials from other photovoltaic technologies such as dye-sensitized or organic solar cells. Despite this rapid success, fundamental working principles must be understood to allow concerted further improvements. This thesis focuses on a comprehensive understanding of recombination processes in functioning devices. First the impact the energy level alignment between the perovskite and the electron transport layer based on fullerenes is investigated. This controversial topic is comprehensively addressed and recombination is mitigated through reducing the energy difference between the perovskite conduction band minimum and the LUMO of the fullerene. Additionally, an insulating blocking layer is introduced, which is even more effective in reducing this recombination, without compromising carrier collection and thus efficiency. With the rapid efficiency development (certified efficiencies have broken through the 20\% ceiling) and thousands of researchers working on perovskite-based optoelectronic devices, reliable protocols on how to reach these efficiencies are lacking. Having established robust methods for >20\% devices, while keeping track of possible pitfalls, a detailed description of the fabrication of perovskite solar cells at the highest efficiency level (>20\%) is provided. The fabrication of low-temperature p-i-n structured devices is described, commenting on important factors such as practical experience, processing atmosphere \& temperature, material purity and solution age. Analogous to reliable fabrication methods, a method to identify recombination losses is needed to further improve efficiencies. Thus, absolute photoluminescence is identified as a direct way to quantify the Quasi-Fermi level splitting of the perovskite absorber (1.21eV) and interfacial recombination losses the transport layers impose, reducing the latter to ~1.1eV. Implementing very thin interlayers at both the p- and n-interface (PFN-P2 and LiF, respectively), these losses are suppressed, enabling a VOC of up to 1.17eV. Optimizing the device dimensions and the bandgap, 20\% devices with 1cm2 active area are demonstrated. Another important consideration is the solar cells' stability if subjected to field-relevant stressors during operation. In particular these are heat, light, bias or a combination thereof. Perovskite layers - especially those incorporating organic cations - have been shown to degrade if subjected to these stressors. Keeping in mind that several interlayers have been successfully used to mitigate recombination losses, a family of perfluorinated self-assembled monolayers (X-PFCn, where X denotes I/Br and n = 7-12) are introduced as interlayers at the n-interface. Indeed, they reduce interfacial recombination losses enabling device efficiencies up to 21.3\%. Even more importantly they improve the stability of the devices. The solar cells with IPFC10 are stable over 3000h stored in the ambient and withstand a harsh 250h of MPP at 85◦C without appreciable efficiency losses. To advance further and improve device efficiencies, a sound understanding of the photophysics of a device is imperative. Many experimental observations in recent years have however drawn an inconclusive picture, often suffering from technical of physical impediments, disguising e. g. capacitive discharge as recombination dynamics. To circumvent these obstacles, fully operational, highly efficient perovskites solar cells are investigated by a combination of multiple optical and optoelectronic probes, allowing to draw a conclusive picture of the recombination dynamics in operation. Supported by drift-diffusion simulations, the device recombination dynamics can be fully described by a combination of first-, second- and third-order recombination and JV curves as well as luminescence efficiencies over multiple illumination intensities are well described within the model. On this basis steady state carrier densities, effective recombination constants, densities-of-states and effective masses are calculated, putting the devices at the brink of the radiative regime. Moreover, a comprehensive review of recombination in state-of-the-art devices is given, highlighting the importance of interfaces in nonradiative recombination. Different strategies to assess these are discussed, before emphasizing successful strategies to reduce interfacial recombination and pointing towards the necessary steps to further improve device efficiency and stability. Overall, the main findings represent an advancement in understanding loss mechanisms in highly efficient solar cells. Different reliable optoelectronic techniques are used and interfacial losses are found to be of grave importance for both efficiency and stability. Addressing the interfaces, several interlayers are introduced, which mitigate recombination losses and degradation.}, language = {en} } @article{SandbergKurpiersStolterfohtetal.2020, author = {Sandberg, Oskar J. and Kurpiers, Jona and Stolterfoht, Martin and Neher, Dieter and Meredith, Paul and Shoaee, Safa and Armin, Ardalan}, title = {On the question of the need for a built-in potential in Perovskite solar cells}, series = {Advanced materials interfaces}, volume = {7}, journal = {Advanced materials interfaces}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202000041}, pages = {8}, year = {2020}, abstract = {Perovskite semiconductors as the active materials in efficient solar cells exhibit free carrier diffusion lengths on the order of microns at low illumination fluxes and many hundreds of nanometers under 1 sun conditions. These lengthscales are significantly larger than typical junction thicknesses, and thus the carrier transport and charge collection should be expected to be diffusion controlled. A consensus along these lines is emerging in the field. However, the question as to whether the built-in potential plays any role is still of matter of some conjecture. This important question using phase-sensitive photocurrent measurements and theoretical device simulations based upon the drift-diffusion framework is addressed. In particular, the role of the built-in electric field and charge-selective transport layers in state-of-the-art p-i-n perovskite solar cells comparing experimental findings and simulation predictions is probed. It is found that while charge collection in the junction does not require a drift field per se, a built-in potential is still needed to avoid the formation of reverse electric fields inside the active layer, and to ensure efficient extraction through the charge transport layers.}, language = {en} } @misc{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {7}, issn = {1866-8372}, doi = {10.25932/publishup-52566}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525668}, pages = {12}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} } @article{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {7}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {10}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} }