@article{MarschallSkorovZakharovetal.2020, author = {Marschall, Raphael and Skorov, Yuri and Zakharov, Vladimir and Rezac, Ladislav and Gerig, Selina-Barbara and Christou, Chariton and Dadzie, S. Kokou and Migliorini, Alessandra and Rinaldi, Giovanna and Agarwal, Jessica and Vincent, Jean-Baptiste and Kappel, David}, title = {Cometary comae-surface links the physics of gas and dust from the surface to a spacecraft}, series = {Space science reviews}, volume = {216}, journal = {Space science reviews}, number = {8}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-020-00744-0}, pages = {53}, year = {2020}, abstract = {A comet is a highly dynamic object, undergoing a permanent state of change. These changes have to be carefully classified and considered according to their intrinsic temporal and spatial scales. The Rosetta mission has, through its contiguous in-situ and remote sensing coverage of comet 67P/Churyumov-Gerasimenko (hereafter 67P) over the time span of August 2014 to September 2016, monitored the emergence, culmination, and winding down of the gas and dust comae. This provided an unprecedented data set and has spurred a large effort to connect in-situ and remote sensing measurements to the surface. In this review, we address our current understanding of cometary activity and the challenges involved when linking comae data to the surface. We give the current state of research by describing what we know about the physical processes involved from the surface to a few tens of kilometres above it with respect to the gas and dust emission from cometary nuclei. Further, we describe how complex multidimensional cometary gas and dust models have developed from the Halley encounter of 1986 to today. This includes the study of inhomogeneous outgassing and determination of the gas and dust production rates. Additionally, the different approaches used and results obtained to link coma data to the surface will be discussed. We discuss forward and inversion models and we describe the limitations of the respective approaches. The current literature suggests that there does not seem to be a single uniform process behind cometary activity. Rather, activity seems to be the consequence of a variety of erosion processes, including the sublimation of both water ice and more volatile material, but possibly also more exotic processes such as fracture and cliff erosion under thermal and mechanical stress, sub-surface heat storage, and a complex interplay of these processes. Seasons and the nucleus shape are key factors for the distribution and temporal evolution of activity and imply that the heliocentric evolution of activity can be highly individual for every comet, and generalisations can be misleading.}, language = {en} } @misc{Metzler2020, author = {Metzler, Ralf}, title = {Superstatistics and non-Gaussian diffusion}, series = {The European physical journal special topics}, volume = {229}, journal = {The European physical journal special topics}, number = {5}, publisher = {Springer}, address = {Heidelberg}, issn = {1951-6355}, doi = {10.1140/epjst/e2020-900210-x}, pages = {711 -- 728}, year = {2020}, abstract = {Brownian motion and viscoelastic anomalous diffusion in homogeneous environments are intrinsically Gaussian processes. In a growing number of systems, however, non-Gaussian displacement distributions of these processes are being reported. The physical cause of the non-Gaussianity is typically seen in different forms of disorder. These include, for instance, imperfect "ensembles" of tracer particles, the presence of local variations of the tracer mobility in heteroegenous environments, or cases in which the speed or persistence of moving nematodes or cells are distributed. From a theoretical point of view stochastic descriptions based on distributed ("superstatistical") transport coefficients as well as time-dependent generalisations based on stochastic transport parameters with built-in finite correlation time are invoked. After a brief review of the history of Brownian motion and the famed Gaussian displacement distribution, we here provide a brief introduction to the phenomenon of non-Gaussianity and the stochastic modelling in terms of superstatistical and diffusing-diffusivity approaches.}, language = {en} } @article{Omelʹchenko2020, author = {Omelʹchenko, Oleh E.}, title = {Nonstationary coherence-incoherence patterns in nonlocally coupled heterogeneous phase oscillators}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {30}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.5145259}, pages = {8}, year = {2020}, abstract = {We consider a large ring of nonlocally coupled phase oscillators and show that apart from stationary chimera states, this system also supports nonstationary coherence-incoherence patterns (CIPs). For identical oscillators, these CIPs behave as breathing chimera states and are found in a relatively small parameter region only. It turns out that the stability region of these states enlarges dramatically if a certain amount of spatially uniform heterogeneity (e.g., Lorentzian distribution of natural frequencies) is introduced in the system. In this case, nonstationary CIPs can be studied as stable quasiperiodic solutions of a corresponding mean-field equation, formally describing the infinite system limit. Carrying out direct numerical simulations of the mean-field equation, we find different types of nonstationary CIPs with pulsing and/or alternating chimera-like behavior. Moreover, we reveal a complex bifurcation scenario underlying the transformation of these CIPs into each other. These theoretical predictions are confirmed by numerical simulations of the original coupled oscillator system.}, language = {en} } @article{JayVazdaCruzEckertetal.2020, author = {Jay, Raphael M. and Vaz da Cruz, Vinicius and Eckert, Sebastian and Fondell, Mattis and Mitzner, Rolf and F{\"o}hlisch, Alexander}, title = {Probing solute-solvent interactions of transition metal complexes using L-edge absorption spectroscopy}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {124}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {27}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.0c00638}, pages = {5636 -- 5645}, year = {2020}, abstract = {In order to tailor solution-phase chemical reactions involving transition metal complexes, it is critical to understand how their valence electronic charge distributions are affected by the solution environment. Here, solute-solvent interactions of a solvatochromic mixed-ligand iron complex were investigated using X-ray absorption spectroscopy at the transition metal L-2,L-3-edge. Due to the selectivity of the corresponding core excitations to the iron 3d orbitals, the method grants direct access to the valence electronic structure around the iron center and its response to interactions with the solvent environment. A linear increase of the total L-2,L-3-edge absorption cross section as a function of the solvent Lewis acidity is revealed. The effect is caused by relative changes in different metal-ligand-bonding channels, which preserve local charge densities while increasing the density of unoccupied states around the iron center. These conclusions are corroborated by a combination of molecular dynamics and spectrum simulations based on time-dependent density functional theory. The simulations reproduce the spectral trends observed in the X-ray but also optical absorption experiments. Our results underscore the importance of solute-solvent interactions when aiming for an accurate description of the valence electronic structure of solvated transition metal complexes and demonstrate how L-2,L-3-edge absorption spectroscopy can aid in understanding the impact of the solution environment on intramolecular covalency and the electronic charge distribution.}, language = {en} }