@article{RanLoveHeiberetal.2018, author = {Ran, Niva A. and Love, John A. and Heiber, Michael C. and Jiao, Xuechen and Hughes, Michael P. and Karki, Akchheta and Wang, Ming and Brus, Viktor V. and Wang, Hengbin and Neher, Dieter and Ade, Harald and Bazan, Guillermo C. and Thuc-Quyen Nguyen,}, title = {Charge generation and recombination in an organic solar cell with low energetic offsets}, series = {dvanced energy materials}, volume = {8}, journal = {dvanced energy materials}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201701073}, pages = {12}, year = {2018}, abstract = {Organic bulk heterojunction (BHJ) solar cells require energetic offsets between the donor and acceptor to obtain high short-circuit currents (J(SC)) and fill factors (FF). However, it is necessary to reduce the energetic offsets to achieve high open-circuit voltages (V-OC). Recently, reports have highlighted BHJ blends that are pushing at the accepted limits of energetic offsets necessary for high efficiency. Unfortunately, most of these BHJs have modest FF values. How the energetic offset impacts the solar cell characteristics thus remains poorly understood. Here, a comprehensive characterization of the losses in a polymer:fullerene BHJ blend, PIPCP:phenyl-C61-butyric acid methyl ester (PC61BM), that achieves a high V-OC (0.9 V) with very low energy losses (E-loss = 0.52 eV) from the energy of absorbed photons, a respectable J(SC) (13 mA cm(-2)), but a limited FF (54\%) is reported. Despite the low energetic offset, the system does not suffer from field-dependent generation and instead it is characterized by very fast nongeminate recombination and the presence of shallow traps. The charge-carrier losses are attributed to suboptimal morphology due to high miscibility between PIPCP and PC61BM. These results hold promise that given the appropriate morphology, the J(SC), V-OC, and FF can all be improved, even with very low energetic offsets.}, language = {en} } @article{HosseiniRolandKurpiersetal.2019, author = {Hosseini, Seyed Mehrdad and Roland, Steffen and Kurpiers, Jona and Chen, Zhiming and Zhang, Kai and Huang, Fei and Armin, Ardalan and Neher, Dieter and Shoaee, Safa}, title = {Impact of Bimolecular Recombination on the Fill Factor of Fullerene and Nonfullerene-Based Solar Cells}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {123}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.8b11669}, pages = {6823 -- 6830}, year = {2019}, abstract = {Power conversion efficiencies of donor/acceptor organic solar cells utilizing nonfullerene acceptors have now increased beyond the record of their fullerene-based counterparts. There remain many fundamental questions regarding nanomorphology, interfacial states, charge generation and extraction, and losses in these systems. Herein, we present a comparative study of bulk heterojunction solar cells composed of a recently introduced naphthothiadiazole-based polymer (NT812) as the electron donor and two different acceptor molecules, namely, [6,6]-phenyl-C71-butyric acid methyl ester (PCBM)[70] and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (ITIC). A comparison between the photovoltaic performance of these two types of solar cells reveals that the open-circuit voltage (Voc) of the NT812:ITIC-based solar cell is larger, but the fill factor (FF) is lower than that of the NT812:PCBM[70] device. We find the key reason behind this reduced FF in the ITIC-based device to be faster nongeminate recombination relative to the NT812:PCBM[70] system.}, language = {en} } @article{RolandYanZhangetal.2017, author = {Roland, Steffen and Yan, Liang and Zhang, Qianqian and Jiao, Xuechen and Hunt, Adrian and Ghasemi, Masoud and Ade, Harald and You, Wei and Neher, Dieter}, title = {Charge Generation and Mobility-Limited Performance of Bulk Heterojunction Solar Cells with a Higher Adduct Fullerene}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {121}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.7b02288}, pages = {10305 -- 10316}, year = {2017}, abstract = {Alternative electron acceptors are being actively explored in order to advance the development of bulk-heterojunction (BHJ) organic solar cells (OSCs). The indene-C-60 bisadduct (ICBA) has been regarded as a promising candidate, as it provides high open-circuit voltage in BHJ solar cells; however, the photovoltaic performance of such ICBA-based devices is often inferior when compared to cells with the omnipresent PCBM electron acceptor. Here, by pairing the high performance polymer (FTAZ) as the donor with either PCBM or ICBA as the acceptor, we explore the physical mechanism behind the reduced performance of the ICBA-based device. Time delayed collection field (TDCF) experiments reveal reduced, yet field-independent free charge generation in the FTAZ:ICBA system, explaining the overall lower photocurrent in its cells. Through the analysis of the photoluminescence, photogeneration, and electroluminescence, we find that the lower generation efficiency is neither caused by inefficient exciton splitting, nor do we find evidence for significant energy back-transfer from the CT state to singlet excitons. In fact, the increase in open circuit voltage when replacing PCBM by ICBA is entirely caused by the increase in the CT energy, related to the shift in the LUMO energy, while changes in the radiative and nonradiative recombination losses are nearly absent. On the other hand, space charge limited current (SCLC) and bias-assisted charge extraction (BACE) measurements consistently reveal a severely lower electron mobilitiy in the FTAZ:ICBA blend. Studies of the blends with resonant soft X-ray scattering (R-SoXS), grazing incident wide-angle X-ray scattering (GIWAXS), and scanning transmission X-ray microscopy (STXM) reveal very little differences in the mesoscopic morphology but significantly less nanoscale molecular ordering of the fullerene domains in the ICBA based blends, which we propose as the main cause for the lower generation efficiency and smaller electron mobility. Calculations of the JV curves with an analytical model, using measured values, show good agreement with the experimentally determined JV characteristics, proving that these devices suffer from slow carrier extraction, resulting in significant bimolecular recombination losses. Therefore, this study highlights the importance of high charge carrier mobility for newly synthesized acceptor materials, in addition to having suitable energy levels.}, language = {en} } @article{BenduhnTvingstedtPiersimonietal.2017, author = {Benduhn, Johannes and Tvingstedt, Kristofer and Piersimoni, Fortunato and Ullbrich, Sascha and Fan, Yeli and Tropiano, Manuel and McGarry, Kathryn A. and Zeika, Olaf and Riede, Moritz K. and Douglas, Christopher J. and Barlow, Stephen and Marder, Seth R. and Neher, Dieter and Spoltore, Donato and Vandewal, Koen}, title = {Intrinsic non-radiative voltage losses in fullerene-based organic solar cells}, series = {Nature Energy}, volume = {2}, journal = {Nature Energy}, publisher = {Nature Publ. Group}, address = {London}, issn = {2058-7546}, doi = {10.1038/nenergy.2017.53}, pages = {6}, year = {2017}, abstract = {Organic solar cells demonstrate external quantum efficiencies and fill factors approaching those of conventional photovoltaic technologies. However, as compared with the optical gap of the absorber materials, their open-circuit voltage is much lower, largely due to the presence of significant non-radiative recombination. Here, we study a large data set of published and new material combinations and find that non-radiative voltage losses decrease with increasing charge-transfer-state energies. This observation is explained by considering non-radiative charge-transfer-state decay as electron transfer in the Marcus inverted regime, being facilitated by a common skeletal molecular vibrational mode. Our results suggest an intrinsic link between non-radiative voltage losses and electron-vibration coupling, indicating that these losses are unavoidable. Accordingly, the theoretical upper limit for the power conversion efficiency of single-junction organic solar cells would be reduced to about 25.5\% and the optimal optical gap increases to (1.45-1.65) eV, that is, (0.2-0.3) eV higher than for technologies with minimized non-radiative voltage losses.}, language = {en} } @article{HofackerNeher2017, author = {Hofacker, Andreas and Neher, Dieter}, title = {Dispersive and steady-state recombination in organic disordered semiconductors}, series = {Physical review : B, Condensed matter and materials physics}, volume = {96}, journal = {Physical review : B, Condensed matter and materials physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.96.245204}, pages = {11}, year = {2017}, abstract = {Charge carrier recombination in organic disordered semiconductors is strongly influenced by the thermalization of charge carriers in the density of states (DOS). Measurements of recombination dynamics, conducted under transient or steady-state conditions, can easily be misinterpreted when a detailed understanding of the interplay of thermalization and recombination is missing. To enable adequate measurement analysis, we solve the multiple-trapping problem for recombining charge carriers and analyze it in the transient and steady excitation paradigm for different DOS distributions. We show that recombination rates measured after pulsed excitation are inherently time dependent since recombination gradually slows down as carriers relax in the DOS. When measuring the recombination order after pulsed excitation, this leads to an apparent high-order recombination at short times. As times goes on, the recombination order approaches an asymptotic value. For the Gaussian and the exponential DOS distributions, this asymptotic value equals the recombination order of the equilibrated system under steady excitation. For a more general DOS distribution, the recombination order can also depend on the carrier density, under both transient and steady-state conditions. We conclude that transient experiments can provide rich information about recombination in and out of equilibrium and the underlying DOS occupation provided that consistent modeling of the system is performed.}, language = {en} } @article{MechauSaphiannikovaNeher2006, author = {Mechau, Norman and Saphiannikova, Marina and Neher, Dieter}, title = {Molecular tracer diffusion in thin azobenzene polymer layers}, series = {Applied physics letters}, volume = {89}, journal = {Applied physics letters}, number = {25}, publisher = {Elsevier}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.2405853}, pages = {3}, year = {2006}, abstract = {Translational diffusion of fluorescent tracer molecules in azobenzene polymer layers is studied at different temperatures and under illumination using the method of fluorescence recovery after photobleaching. Diffusion is clearly observed in the dark above the glass transition temperature, while homogeneous illumination at 488 nm and 100 mW/cm(2) does not cause any detectable diffusion of the dye molecules within azobenzene layers. This implies that the viscosity of azobenzene layers remains nearly unchanged under illumination with visible light in the absence of internal or external forces. (c) 2006 American Institute of Physics.}, language = {en} } @article{AlqahtaniBabicsGorenflotetal.2018, author = {Alqahtani, Obaid and Babics, Maxime and Gorenflot, Julien and Savikhin, Victoria and Ferron, Thomas and Balawi, Ahmed H. and Paulke, Andreas and Kan, Zhipeng and Pope, Michael and Clulow, Andrew J. and Wolf, Jannic and Burn, Paul L. and Gentle, Ian R. and Neher, Dieter and Toney, Michael F. and Laquai, Frederic and Beaujuge, Pierre M. and Collins, Brian A.}, title = {Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors}, series = {Advanced energy materials}, volume = {8}, journal = {Advanced energy materials}, number = {19}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201702941}, pages = {16}, year = {2018}, abstract = {The interplay between nanomorphology and efficiency of polymer-fullerene bulk-heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small-molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2-b:4,5-b]dithiophene-pyrido[3,4-b]-pyrazine BDT(PPTh2)(2), namely SM1 and SM2, differing by their side-chains, are examined as a function of solution additive composition. The results show that the additive 1,8-diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM-based BHJ solar cells compared with polymer-fullerene devices. In polymer-based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM-based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes.}, language = {en} } @article{MayerLeverPicconietal.2022, author = {Mayer, Dennis and Lever, Fabiano and Picconi, David and Metje, Jan and Ališauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Ehlert, Christopher and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard J. and Trabattoni, Andrea and Wallner, M{\aa}ns and Saalfrank, Peter and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy}, series = {Nature communications}, volume = {13}, journal = {Nature communications}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-021-27908-y}, pages = {9}, year = {2022}, abstract = {Imaging the charge flow in photoexcited molecules would provide key information on photophysical and photochemical processes. Here the authors demonstrate tracking in real time after photoexcitation the change in charge density at a specific site of 2-thiouracil using time-resolved X-ray photoelectron spectroscopy. The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.}, language = {en} } @article{LiuIgnatovaKimbergetal.2022, author = {Liu, Ji-Cai and Ignatova, Nina and Kimberg, Victor and Krasnov, Pavel and F{\"o}hlisch, Alexander and Simon, Marc and Gel'mukhanov, Faris}, title = {Time-resolved study of recoil-induced rotation by X-ray pump - X-ray probe spectroscopy}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {11}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d1cp05000a}, pages = {6627 -- 6638}, year = {2022}, abstract = {Modern stationary X-ray spectroscopy is unable to resolve rotational structure. In the present paper, we propose to use time-resolved two color X-ray pump-probe spectroscopy with picosecond resolution for real-time monitoring of the rotational dynamics induced by the recoil effect. The proposed technique consists of two steps. The first short pump X-ray pulse ionizes the valence electron, which transfers angular momentum to the molecule. The second time-delayed short probe X-ray pulse resonantly excites a 1s electron to the created valence hole. Due to the recoil-induced angular momentum the molecule rotates and changes the orientation of transition dipole moment of core-excitation with respect to the transition dipole moment of the valence ionization, which results in a temporal modulation of the probe X-ray absorption as a function of the delay time between the pulses. We developed an accurate theory of the X-ray pump-probe spectroscopy of the recoil-induced rotation and study how the energy of the photoelectron and thermal dephasing affect the structure of the time-dependent X-ray absorption using the CO molecule as a case-study. We also discuss the feasibility of experimental observation of our theoretical findings, opening new perspectives in studies of molecular rotational dynamics.}, language = {en} } @article{VoroshninTarasovBokaietal.2022, author = {Voroshnin, Vladimir and Tarasov, Artem V. and Bokai, Kirill A. and Chikina, Alla and Senkovskiy, Boris V. and Ehlen, Niels and Usachov, Dmitry Yu. and Gruneis, Alexander and Krivenkov, Maxim and Sanchez-Barriga, Jaime and Fedorov, Alexander}, title = {Direct spectroscopic evidence of magnetic proximity effect in MoS2 monolayer on graphene/Co}, series = {ACS nano}, volume = {16}, journal = {ACS nano}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.1c10391}, pages = {7448 -- 7456}, year = {2022}, abstract = {A magnetic field modifies optical properties and provides valley splitting in a molybdenum disulfide (MoS2) monolayer. Here we demonstrate a scalable approach to the epitaxial synthesis of MoS2 monolayer on a magnetic graphene/Co system. Using spin- and angle-resolved photoemission spectroscopy we observe a magnetic proximity effect that causes a 20 meV spin-splitting at the (Gamma) over bar point and canting of spins at the (K) over bar point in the valence band toward the in-plane direction of cobalt magnetization. Our density functional theory calculations reveal that the in-plane spin component at (K) over bar is localized on Co atoms in the valence band, while in the conduction band it is localized on the MoS2 layer. The calculations also predict a 16 meV spin-splitting at the (Gamma) over bar point and 8 meV (K) over bar-(K) over bar' valley asymmetry for an out-of-plane magnetization. These findings suggest control over optical transitions in MoS2 via Co magnetization. Our estimations show that the magnetic proximity effect is equivalent to the action of the magnetic field as large as 100 T.}, language = {en} }