@article{Denecke2020, author = {Denecke, Klaus-Dieter}, title = {Partial clones}, series = {Asian-European journal of mathematics : AEJM}, volume = {13}, journal = {Asian-European journal of mathematics : AEJM}, number = {8}, publisher = {World Scientific}, address = {Singapore}, issn = {1793-5571}, doi = {10.1142/S1793557120501612}, pages = {19}, year = {2020}, abstract = {A set C of operations defined on a nonempty set A is said to be a clone if C is closed under composition of operations and contains all projection mappings. The concept of a clone belongs to the algebraic main concepts and has important applications in Computer Science. A clone can also be regarded as a many-sorted algebra where the sorts are the n-ary operations defined on set A for all natural numbers n >= 1 and the operations are the so-called superposition operations S-m(n) for natural numbers m, n >= 1 and the projection operations as nullary operations. Clones generalize monoids of transformations defined on set A and satisfy three clone axioms. The most important axiom is the superassociative law, a generalization of the associative law. If the superposition operations are partial, i.e. not everywhere defined, instead of the many-sorted clone algebra, one obtains partial many-sorted algebras, the partial clones. Linear terms, linear tree languages or linear formulas form partial clones. In this paper, we give a survey on partial clones and their properties.}, language = {en} } @article{SomogyvariReich2020, author = {Somogyv{\´a}ri, M{\´a}rk and Reich, Sebastian}, title = {Convergence tests for transdimensional Markov chains in geoscience imaging}, series = {Mathematical geosciences : the official journal of the International Association for Mathematical Geosciences}, volume = {52}, journal = {Mathematical geosciences : the official journal of the International Association for Mathematical Geosciences}, number = {5}, publisher = {Springer}, address = {Heidelberg}, issn = {1874-8961}, doi = {10.1007/s11004-019-09811-x}, pages = {651 -- 668}, year = {2020}, abstract = {Classic inversion methods adjust a model with a predefined number of parameters to the observed data. With transdimensional inversion algorithms such as the reversible-jump Markov chain Monte Carlo (rjMCMC), it is possible to vary this number during the inversion and to interpret the observations in a more flexible way. Geoscience imaging applications use this behaviour to automatically adjust model resolution to the inhomogeneities of the investigated system, while keeping the model parameters on an optimal level. The rjMCMC algorithm produces an ensemble as result, a set of model realizations, which together represent the posterior probability distribution of the investigated problem. The realizations are evolved via sequential updates from a randomly chosen initial solution and converge toward the target posterior distribution of the inverse problem. Up to a point in the chain, the realizations may be strongly biased by the initial model, and must be discarded from the final ensemble. With convergence assessment techniques, this point in the chain can be identified. Transdimensional MCMC methods produce ensembles that are not suitable for classic convergence assessment techniques because of the changes in parameter numbers. To overcome this hurdle, three solutions are introduced to convert model realizations to a common dimensionality while maintaining the statistical characteristics of the ensemble. A scalar, a vector and a matrix representation for models is presented, inferred from tomographic subsurface investigations, and three classic convergence assessment techniques are applied on them. It is shown that appropriately chosen scalar conversions of the models could retain similar statistical ensemble properties as geologic projections created by rasterization.}, language = {en} } @article{Ly2020, author = {Ly, Ibrahim}, title = {A Cauchy problem for the Cauchy-Riemann operator}, series = {Afrika Matematika}, volume = {32}, journal = {Afrika Matematika}, number = {1-2}, publisher = {Springer}, address = {Heidelberg}, issn = {1012-9405}, doi = {10.1007/s13370-020-00810-4}, pages = {69 -- 76}, year = {2020}, abstract = {We study the Cauchy problem for a nonlinear elliptic equation with data on a piece S of the boundary surface partial derivative X. By the Cauchy problem is meant any boundary value problem for an unknown function u in a domain X with the property that the data on S, if combined with the differential equations in X, allows one to determine all derivatives of u on S by means of functional equations. In the case of real analytic data of the Cauchy problem, the existence of a local solution near S is guaranteed by the Cauchy-Kovalevskaya theorem. We discuss a variational setting of the Cauchy problem which always possesses a generalized solution.}, language = {en} } @article{MalassTarkhanov2020, author = {Malass, Ihsane and Tarkhanov, Nikolaj Nikolaevič}, title = {A perturbation of the de Rham complex}, series = {Journal of Siberian Federal University : Mathematics \& Physics}, volume = {13}, journal = {Journal of Siberian Federal University : Mathematics \& Physics}, number = {5}, publisher = {Siberian Federal University}, address = {Krasnojarsk}, issn = {1997-1397}, doi = {10.17516/1997-1397-2020-13-5-519-532}, pages = {519 -- 532}, year = {2020}, abstract = {We consider a perturbation of the de Rham complex on a compact manifold with boundary. This perturbation goes beyond the framework of complexes, and so cohomology does not apply to it. On the other hand, its curvature is "small", hence there is a natural way to introduce an Euler characteristic and develop a Lefschetz theory for the perturbation. This work is intended as an attempt to develop a cohomology theory for arbitrary sequences of linear mappings.}, language = {en} } @article{AlSaedyTarchanov2020, author = {Al-Saedy, Ammar Jaffar Muhesin and Tarchanov, Nikolaj Nikolaevič}, title = {A degree theory for Lagrangian boundary value problems}, series = {Žurnal Sibirskogo Federalʹnogo Universiteta = Journal of Siberian Federal University; mathematics \& physics}, volume = {13}, journal = {Žurnal Sibirskogo Federalʹnogo Universiteta = Journal of Siberian Federal University; mathematics \& physics}, number = {1}, publisher = {Sibirskij Federalʹnyj Universitet}, address = {Krasnojarsk}, issn = {1997-1397}, doi = {10.17516/1997-1397-2020-13-1-5-25}, pages = {5 -- 25}, year = {2020}, abstract = {We study those nonlinear partial differential equations which appear as Euler-Lagrange equations of variational problems. On defining weak boundary values of solutions to such equations we initiate the theory of Lagrangian boundary value problems in spaces of appropriate smoothness. We also analyse if the concept of mapping degree of current importance applies to Lagrangian problems.}, language = {en} } @incollection{ClavierGuoPaychaetal.2020, author = {Clavier, Pierre J. and Guo, Li and Paycha, Sylvie and Zhang, Bin}, title = {Renormalisation and locality}, series = {Algebraic Combinatorics, Resurgence, Moulds and Applications (CARMA) Volume 2}, booktitle = {Algebraic Combinatorics, Resurgence, Moulds and Applications (CARMA) Volume 2}, publisher = {European Mathematical Society Publishing House}, address = {Z{\"u}rich}, isbn = {978-3-03719-205-4 print}, doi = {10.4171/205}, pages = {85 -- 132}, year = {2020}, language = {en} } @article{ChelkhLyTarkhanov2020, author = {Chelkh, W. and Ly, Ibrahim and Tarkhanov, Nikolai}, title = {A remark on the Laplace transform}, series = {Siberian Mathematical Journal}, volume = {61}, journal = {Siberian Mathematical Journal}, number = {4}, publisher = {Consultants Bureau, Springer}, address = {New York}, issn = {0037-4466}, doi = {10.1134/S0037446620040151}, pages = {755 -- 762}, year = {2020}, abstract = {The study of the Cauchy problem for solutions of the heat equation in a cylindrical domain with data on the lateral surface by the Fourier method raises the problem of calculating the inverse Laplace transform of the entire function cos root z. This problem has no solution in the standard theory of the Laplace transform. We give an explicit formula for the inverse Laplace transform of cos root z using the theory of analytic functionals. This solution suits well to efficiently develop the regularization of solutions to Cauchy problems for parabolic equations with data on noncharacteristic surfaces.}, language = {en} } @article{KellerSchwarz2020, author = {Keller, Matthias and Schwarz, Michael}, title = {Courant's nodal domain theorem for positivity preserving forms}, series = {Journal of spectral theory}, volume = {10}, journal = {Journal of spectral theory}, number = {1}, publisher = {EMS Publishing House}, address = {Z{\"u}rich}, issn = {1664-039X}, doi = {10.4171/JST/292}, pages = {271 -- 309}, year = {2020}, abstract = {We introduce a notion of nodal domains for positivity preserving forms. This notion generalizes the classical ones for Laplacians on domains and on graphs. We prove the Courant nodal domain theorem in this generalized setting using purely analytical methods.}, language = {en} } @article{LyTarkhanov2020, author = {Ly, Ibrahim and Tarkhanov, Nikolaj Nikolaevič}, title = {Asymptotic expansions at nonsymmetric cuspidal points}, series = {Mathematical notes}, volume = {108}, journal = {Mathematical notes}, number = {1-2}, publisher = {Springer Science}, address = {New York}, issn = {0001-4346}, doi = {10.1134/S0001434620070238}, pages = {219 -- 228}, year = {2020}, abstract = {We study the asymptotics of solutions to the Dirichlet problem in a domain X subset of R3 whose boundary contains a singular point O. In a small neighborhood of this point, the domain has the form {z > root x(2) + y(4)}, i.e., the origin is a nonsymmetric conical point at the boundary. So far, the behavior of solutions to elliptic boundary-value problems has not been studied sufficiently in the case of nonsymmetric singular points. This problem was posed by V.A. Kondrat'ev in 2000. We establish a complete asymptotic expansion of solutions near the singular point.}, language = {en} } @article{Clavier2020, author = {Clavier, Pierre J.}, title = {Double shuffle relations for arborified zeta values}, series = {Journal of algebra}, volume = {543}, journal = {Journal of algebra}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-8693}, doi = {10.1016/j.jalgebra.2019.10.015}, pages = {111 -- 155}, year = {2020}, abstract = {Arborified zeta values are defined as iterated series and integrals using the universal properties of rooted trees. This approach allows to study their convergence domain and to relate them to multiple zeta values. Generalisations to rooted trees of the stuffle and shuffle products are defined and studied. It is further shown that arborified zeta values are algebra morphisms for these new products on trees.}, language = {en} } @article{HammPelivanGrottetal.2020, author = {Hamm, Maximilian and Pelivan, Ivanka and Grott, Matthias and de Wiljes, Jana}, title = {Thermophysical modelling and parameter estimation of small solar system bodies via data assimilation}, series = {Monthly notices of the Royal Astronomical Society}, volume = {496}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa1755}, pages = {2776 -- 2785}, year = {2020}, abstract = {Deriving thermophysical properties such as thermal inertia from thermal infrared observations provides useful insights into the structure of the surface material on planetary bodies. The estimation of these properties is usually done by fitting temperature variations calculated by thermophysical models to infrared observations. For multiple free model parameters, traditional methods such as least-squares fitting or Markov chain Monte Carlo methods become computationally too expensive. Consequently, the simultaneous estimation of several thermophysical parameters, together with their corresponding uncertainties and correlations, is often not computationally feasible and the analysis is usually reduced to fitting one or two parameters. Data assimilation (DA) methods have been shown to be robust while sufficiently accurate and computationally affordable even for a large number of parameters. This paper will introduce a standard sequential DA method, the ensemble square root filter, for thermophysical modelling of asteroid surfaces. This method is used to re-analyse infrared observations of the MARA instrument, which measured the diurnal temperature variation of a single boulder on the surface of near-Earth asteroid (162173) Ryugu. The thermal inertia is estimated to be 295 +/- 18 Jm(-2) K-1 s(-1/2), while all five free parameters of the initial analysis are varied and estimated simultaneously. Based on this thermal inertia estimate the thermal conductivity of the boulder is estimated to be between 0.07 and 0.12,Wm(-1) K-1 and the porosity to be between 0.30 and 0.52. For the first time in thermophysical parameter derivation, correlations and uncertainties of all free model parameters are incorporated in the estimation procedure that is more than 5000 times more efficient than a comparable parameter sweep.}, language = {en} } @article{LudewigRoos2020, author = {Ludewig, Matthias and Roos, Saskia}, title = {The chiral anomaly of the free fermion in functorial field theory}, series = {Annales Henri Poincar{\´e} : a journal of theoretical and mathematical physics}, volume = {21}, journal = {Annales Henri Poincar{\´e} : a journal of theoretical and mathematical physics}, number = {4}, publisher = {Springer International Publishing AG}, address = {Cham (ZG)}, issn = {1424-0637}, doi = {10.1007/s00023-020-00893-6}, pages = {1191 -- 1233}, year = {2020}, abstract = {When trying to cast the free fermion in the framework of functorial field theory, its chiral anomaly manifests in the fact that it assigns the determinant of the Dirac operator to a top-dimensional closed spin manifold, which is not a number as expected, but an element of a complex line. In functorial field theory language, this means that the theory is twisted, which gives rise to an anomaly theory. In this paper, we give a detailed construction of this anomaly theory, as a functor that sends manifolds to infinite-dimensional Clifford algebras and bordisms to bimodules.}, language = {en} } @misc{PornsawadSungcharoenBoeckmann2020, author = {Pornsawad, Pornsarp and Sungcharoen, Parada and B{\"o}ckmann, Christine}, title = {Convergence rate of the modified Landweber method for solving inverse potential problems}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1034}, issn = {1866-8372}, doi = {10.25932/publishup-47194}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471942}, pages = {24}, year = {2020}, abstract = {In this paper, we present the convergence rate analysis of the modified Landweber method under logarithmic source condition for nonlinear ill-posed problems. The regularization parameter is chosen according to the discrepancy principle. The reconstructions of the shape of an unknown domain for an inverse potential problem by using the modified Landweber method are exhibited.}, language = {en} } @article{Zagrebnov2020, author = {Zagrebnov, Valentin}, title = {Trotter product formula on Hilbert and Banach spaces for operator-norm convergence}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47197}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471971}, pages = {23 -- 34}, year = {2020}, language = {en} } @article{SukiasyanMelkonyan2020, author = {Sukiasyan, Hayk and Melkonyan, Tatev}, title = {Semi-recursive algorithm of piecewise linear approximation of two-dimensional function by the method of worst segment dividing}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47198}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471982}, pages = {35 -- 44}, year = {2020}, language = {en} } @article{BoldrighiniFrigioMaponietal.2020, author = {Boldrighini, Carlo and Frigio, Sandro and Maponi, Pierluigi and Pellegrinotti, Alessandro and Sinai, Yakov G.}, title = {3-D incompressible Navier-Stokes equations: Complex blow-up and related real flows}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47220}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472201}, pages = {185 -- 194}, year = {2020}, language = {en} } @article{FigariTeta2020, author = {Figari, Rodolfo and Teta, Alessandro}, title = {Zero-range hamiltonians for three quantum particles}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47218}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472189}, pages = {175 -- 184}, year = {2020}, language = {en} } @article{Houdebert2020, author = {Houdebert, Pierre}, title = {Numerical study for the phase transition of the area-interaction model}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47217}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472177}, pages = {165 -- 174}, year = {2020}, language = {en} } @article{JansenKunaTsagkarogiannis2020, author = {Jansen, Sabine and Kuna, Tobias and Tsagkarogiannis, Dimitrios}, title = {Virial inversion for inhomogeneous systems}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47211}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472111}, pages = {135 -- 144}, year = {2020}, language = {en} } @article{HrynivWallace2020, author = {Hryniv, Ostap and Wallace, Clare}, title = {Phase separation and sharp large deviations}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47216}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472168}, pages = {155 -- 164}, year = {2020}, language = {en} } @article{JansenKolesnikov2020, author = {Jansen, Sabine and Kolesnikov, Leonid}, title = {Activity expansions for Gibbs correlation functions}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47212}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472121}, pages = {145 -- 154}, year = {2020}, language = {en} } @article{JansenTsagkarogiannis2020, author = {Jansen, Sabine and Tsagkarogiannis, Dimitrios}, title = {Mayer expansion for the Asakura-Oosawa model of colloid theory}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47210}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472109}, pages = {127 -- 134}, year = {2020}, language = {en} } @article{PiatnitskiZhizhina2020, author = {Piatnitski, Andrey and Zhizhina, Elena}, title = {Non-local convolution type parabolic equations with fractional and regular time derivative}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47202}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472024}, pages = {65 -- 67}, year = {2020}, language = {en} } @article{Jursenas2020, author = {Jursenas, Rytis}, title = {The peak model for finite rank supersingular perturbations}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-47209}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472090}, pages = {117 -- 126}, year = {2020}, language = {en} } @article{Mazzonetto2020, author = {Mazzonetto, Sara}, title = {On an approximation of 2-D stochastic Navier-Stokes equations}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47205}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472053}, pages = {87 -- 96}, year = {2020}, language = {en} } @article{PecherskyPirogovYambartsev2020, author = {Pechersky, Eugeny and Pirogov, Sergei and Yambartsev, Anatoly}, title = {Large emissions}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47204}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472049}, pages = {77 -- 86}, year = {2020}, language = {en} } @article{PoghosyanZessin2020, author = {Poghosyan, Suren and Zessin, Hans}, title = {Construction of limiting Gibbs processes and the uniqueness of Gibbs processes}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47201}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472015}, pages = {55 -- 64}, year = {2020}, language = {en} } @article{LykovMalyshev2020, author = {Lykov, Alexander and Malyshev, Vadim}, title = {When bounded chaos becomes unbounded}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47206}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472060}, pages = {97 -- 106}, year = {2020}, language = {en} } @article{KhachatryanNahapetian2020, author = {Khachatryan, Linda and Nahapetian, Boris}, title = {On direct and inverse problems in the description of lattice random fields}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47208}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472083}, pages = {107 -- 116}, year = {2020}, language = {en} } @article{Rafler2020, author = {Rafler, Mathias}, title = {Pinned Gibbs processes}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47200}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472007}, pages = {45 -- 53}, year = {2020}, language = {en} } @article{RœllyZass2020, author = {Rœlly, Sylvie and Zass, Alexander}, title = {Marked Gibbs point processes with unbounded interaction}, series = {Journal of statistical physics}, volume = {179}, journal = {Journal of statistical physics}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0022-4715}, doi = {10.1007/s10955-020-02559-3}, pages = {972 -- 996}, year = {2020}, abstract = {We construct marked Gibbs point processes in R-d under quite general assumptions. Firstly, we allow for interaction functionals that may be unbounded and whose range is not assumed to be uniformly bounded. Indeed, our typical interaction admits an a.s. finite but random range. Secondly, the random marks-attached to the locations in R-d-belong to a general normed space G. They are not bounded, but their law should admit a super-exponential moment. The approach used here relies on the so-called entropy method and large-deviation tools in order to prove tightness of a family of finite-volume Gibbs point processes. An application to infinite-dimensional interacting diffusions is also presented.}, language = {en} } @article{SanchezWichtBaerenzung2020, author = {Sanchez, Sabrina and Wicht, Johannes and B{\"a}renzung, Julien}, title = {Predictions of the geomagnetic secular variation based on the ensemble sequential assimilation of geomagnetic field models by dynamo simulations}, series = {Earth, planets and space}, volume = {72}, journal = {Earth, planets and space}, number = {1}, publisher = {Springer}, address = {New York}, issn = {1880-5981}, doi = {10.1186/s40623-020-01279-y}, pages = {20}, year = {2020}, abstract = {The IGRF offers an important incentive for testing algorithms predicting the Earth's magnetic field changes, known as secular variation (SV), in a 5-year range. Here, we present a SV candidate model for the 13th IGRF that stems from a sequential ensemble data assimilation approach (EnKF). The ensemble consists of a number of parallel-running 3D-dynamo simulations. The assimilated data are geomagnetic field snapshots covering the years 1840 to 2000 from the COV-OBS.x1 model and for 2001 to 2020 from the Kalmag model. A spectral covariance localization method, considering the couplings between spherical harmonics of the same equatorial symmetry and same azimuthal wave number, allows decreasing the ensemble size to about a 100 while maintaining the stability of the assimilation. The quality of 5-year predictions is tested for the past two decades. These tests show that the assimilation scheme is able to reconstruct the overall SV evolution. They also suggest that a better 5-year forecast is obtained keeping the SV constant compared to the dynamically evolving SV. However, the quality of the dynamical forecast steadily improves over the full assimilation window (180 years). We therefore propose the instantaneous SV estimate for 2020 from our assimilation as a candidate model for the IGRF-13. The ensemble approach provides uncertainty estimates, which closely match the residual differences with respect to the IGRF-13. Longer term predictions for the evolution of the main magnetic field features over a 50-year range are also presented. We observe the further decrease of the axial dipole at a mean rate of 8 nT/year as well as a deepening and broadening of the South Atlantic Anomaly. The magnetic dip poles are seen to approach an eccentric dipole configuration.}, language = {en} } @article{GarbunoInigoNueskenReich2020, author = {Garbuno-Inigo, Alfredo and N{\"u}sken, Nikolas and Reich, Sebastian}, title = {Affine invariant interacting Langevin dynamics for Bayesian inference}, series = {SIAM journal on applied dynamical systems}, volume = {19}, journal = {SIAM journal on applied dynamical systems}, number = {3}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {1536-0040}, doi = {10.1137/19M1304891}, pages = {1633 -- 1658}, year = {2020}, abstract = {We propose a computational method (with acronym ALDI) for sampling from a given target distribution based on first-order (overdamped) Langevin dynamics which satisfies the property of affine invariance. The central idea of ALDI is to run an ensemble of particles with their empirical covariance serving as a preconditioner for their underlying Langevin dynamics. ALDI does not require taking the inverse or square root of the empirical covariance matrix, which enables application to high-dimensional sampling problems. The theoretical properties of ALDI are studied in terms of nondegeneracy and ergodicity. Furthermore, we study its connections to diffusion on Riemannian manifolds and Wasserstein gradient flows. Bayesian inference serves as a main application area for ALDI. In case of a forward problem with additive Gaussian measurement errors, ALDI allows for a gradient-free approximation in the spirit of the ensemble Kalman filter. A computational comparison between gradient-free and gradient-based ALDI is provided for a PDE constrained Bayesian inverse problem.}, language = {en} } @article{FroylandKoltaiStahn2020, author = {Froyland, Gary and Koltai, Peter and Stahn, Martin}, title = {Computation and optimal perturbation of finite-time coherent sets for aperiodic flows without trajectory integration}, series = {SIAM journal on applied dynamical systems}, volume = {19}, journal = {SIAM journal on applied dynamical systems}, number = {3}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {1536-0040}, doi = {10.1137/19M1261791}, pages = {1659 -- 1700}, year = {2020}, abstract = {Understanding the macroscopic behavior of dynamical systems is an important tool to unravel transport mechanisms in complex flows. A decomposition of the state space into coherent sets is a popular way to reveal this essential macroscopic evolution. To compute coherent sets from an aperiodic time-dependent dynamical system we consider the relevant transfer operators and their infinitesimal generators on an augmented space-time manifold. This space-time generator approach avoids trajectory integration and creates a convenient linearization of the aperiodic evolution. This linearization can be further exploited to create a simple and effective spectral optimization methodology for diminishing or enhancing coherence. We obtain explicit solutions for these optimization problems using Lagrange multipliers and illustrate this technique by increasing and decreasing mixing of spatial regions through small velocity field perturbations.}, language = {en} } @article{Rastogi2020, author = {Rastogi, Abhishake}, title = {Tikhonov regularization with oversmoothing penalty for nonlinear statistical inverse problems}, series = {Communications on Pure and Applied Analysis}, volume = {19}, journal = {Communications on Pure and Applied Analysis}, number = {8}, publisher = {American Institute of Mathematical Sciences}, address = {Springfield}, issn = {1534-0392}, doi = {10.3934/cpaa.2020183}, pages = {4111 -- 4126}, year = {2020}, abstract = {In this paper, we consider the nonlinear ill-posed inverse problem with noisy data in the statistical learning setting. The Tikhonov regularization scheme in Hilbert scales is considered to reconstruct the estimator from the random noisy data. In this statistical learning setting, we derive the rates of convergence for the regularized solution under certain assumptions on the nonlinear forward operator and the prior assumptions. We discuss estimates of the reconstruction error using the approach of reproducing kernel Hilbert spaces.}, language = {en} } @article{ChauhanFriedrichRothenberger2020, author = {Chauhan, Ankit and Friedrich, Tobias and Rothenberger, Ralf}, title = {Greed is good for deterministic scale-free networks}, series = {Algorithmica : an international journal in computer science}, volume = {82}, journal = {Algorithmica : an international journal in computer science}, number = {11}, publisher = {Springer}, address = {New York}, issn = {0178-4617}, doi = {10.1007/s00453-020-00729-z}, pages = {3338 -- 3389}, year = {2020}, abstract = {Large real-world networks typically follow a power-law degree distribution. To study such networks, numerous random graph models have been proposed. However, real-world networks are not drawn at random. Therefore, Brach et al. (27th symposium on discrete algorithms (SODA), pp 1306-1325, 2016) introduced two natural deterministic conditions: (1) a power-law upper bound on the degree distribution (PLB-U) and (2) power-law neighborhoods, that is, the degree distribution of neighbors of each vertex is also upper bounded by a power law (PLB-N). They showed that many real-world networks satisfy both properties and exploit them to design faster algorithms for a number of classical graph problems. We complement their work by showing that some well-studied random graph models exhibit both of the mentioned PLB properties. PLB-U and PLB-N hold with high probability for Chung-Lu Random Graphs and Geometric Inhomogeneous Random Graphs and almost surely for Hyperbolic Random Graphs. As a consequence, all results of Brach et al. also hold with high probability or almost surely for those random graph classes. In the second part we study three classical NP-hard optimization problems on PLB networks. It is known that on general graphs with maximum degree Delta, a greedy algorithm, which chooses nodes in the order of their degree, only achieves a Omega (ln Delta)-approximation forMinimum Vertex Cover and Minimum Dominating Set, and a Omega(Delta)-approximation forMaximum Independent Set. We prove that the PLB-U property with beta>2 suffices for the greedy approach to achieve a constant-factor approximation for all three problems. We also show that these problems are APX-hard even if PLB-U, PLB-N, and an additional power-law lower bound on the degree distribution hold. Hence, a PTAS cannot be expected unless P = NP. Furthermore, we prove that all three problems are in MAX SNP if the PLB-U property holds.}, language = {en} } @article{Graeter2020, author = {Gr{\"a}ter, Joachim}, title = {Free division rings of fractions of crossed products of groups with Conradian left-orders}, series = {Forum mathematicum}, volume = {32}, journal = {Forum mathematicum}, number = {3}, publisher = {De Gruyter}, address = {Berlin}, issn = {0933-7741}, doi = {10.1515/forum-2019-0264}, pages = {739 -- 772}, year = {2020}, abstract = {Let D be a division ring of fractions of a crossed product F[G, eta, alpha], where F is a skew field and G is a group with Conradian left-order <=. For D we introduce the notion of freeness with respect to <= and show that D is free in this sense if and only if D can canonically be embedded into the endomorphism ring of the right F-vector space F((G)) of all formal power series in G over F with respect to <=. From this we obtain that all division rings of fractions of F[G, eta, alpha] which are free with respect to at least one Conradian left-order of G are isomorphic and that they are free with respect to any Conradian left-order of G. Moreover, F[G, eta, alpha] possesses a division ring of fraction which is free in this sense if and only if the rational closure of F[G, eta, alpha] in the endomorphism ring of the corresponding right F-vector space F((G)) is a skew field.}, language = {en} } @article{SchirmerPapenbrockKoumarelasetal.2020, author = {Schirmer, Philipp and Papenbrock, Thorsten and Koumarelas, Ioannis and Naumann, Felix}, title = {Efficient discovery of matching dependencies}, series = {ACM transactions on database systems : TODS}, volume = {45}, journal = {ACM transactions on database systems : TODS}, number = {3}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {0362-5915}, doi = {10.1145/3392778}, pages = {33}, year = {2020}, abstract = {Matching dependencies (MDs) are data profiling results that are often used for data integration, data cleaning, and entity matching. They are a generalization of functional dependencies (FDs) matching similar rather than same elements. As their discovery is very difficult, existing profiling algorithms find either only small subsets of all MDs or their scope is limited to only small datasets. We focus on the efficient discovery of all interesting MDs in real-world datasets. For this purpose, we propose HyMD, a novel MD discovery algorithm that finds all minimal, non-trivial MDs within given similarity boundaries. The algorithm extracts the exact similarity thresholds for the individual MDs from the data instead of using predefined similarity thresholds. For this reason, it is the first approach to solve the MD discovery problem in an exact and truly complete way. If needed, the algorithm can, however, enforce certain properties on the reported MDs, such as disjointness and minimum support, to focus the discovery on such results that are actually required by downstream use cases. HyMD is technically a hybrid approach that combines the two most popular dependency discovery strategies in related work: lattice traversal and inference from record pairs. Despite the additional effort of finding exact similarity thresholds for all MD candidates, the algorithm is still able to efficiently process large datasets, e.g., datasets larger than 3 GB.}, language = {en} } @article{MaoutsaReichOpper2020, author = {Maoutsa, Dimitra and Reich, Sebastian and Opper, Manfred}, title = {Interacting particle solutions of Fokker-Planck equations through gradient-log-density estimation}, series = {Entropy}, volume = {22}, journal = {Entropy}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1099-4300}, doi = {10.3390/e22080802}, pages = {35}, year = {2020}, abstract = {Fokker-Planck equations are extensively employed in various scientific fields as they characterise the behaviour of stochastic systems at the level of probability density functions. Although broadly used, they allow for analytical treatment only in limited settings, and often it is inevitable to resort to numerical solutions. Here, we develop a computational approach for simulating the time evolution of Fokker-Planck solutions in terms of a mean field limit of an interacting particle system. The interactions between particles are determined by the gradient of the logarithm of the particle density, approximated here by a novel statistical estimator. The performance of our method shows promising results, with more accurate and less fluctuating statistics compared to direct stochastic simulations of comparable particle number. Taken together, our framework allows for effortless and reliable particle-based simulations of Fokker-Planck equations in low and moderate dimensions. The proposed gradient-log-density estimator is also of independent interest, for example, in the context of optimal control.}, language = {en} } @article{BandaraBryan2020, author = {Bandara, Lashi and Bryan, Paul}, title = {Heat kernels and regularity for rough metrics on smooth manifolds}, series = {Mathematische Nachrichten}, volume = {293}, journal = {Mathematische Nachrichten}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0025-584X}, doi = {10.1002/mana.201800459}, pages = {2255 -- 2270}, year = {2020}, abstract = {We consider rough metrics on smooth manifolds and corresponding Laplacians induced by such metrics. We demonstrate that globally continuous heat kernels exist and are Holder continuous locally in space and time. This is done via local parabolic Harnack estimates for weak solutions of operators in divergence form with bounded measurable coefficients in weighted Sobolev spaces.}, language = {en} } @article{AzzaliPaycha2020, author = {Azzali, Sara and Paycha, Sylvie}, title = {Spectral zeta-invariants lifted to coverings}, series = {Transactions of the American Mathematical Society}, volume = {373}, journal = {Transactions of the American Mathematical Society}, number = {9}, publisher = {American Mathematical Society}, address = {Providence, RI}, issn = {0002-9947}, doi = {10.1090/tran/8067}, pages = {6185 -- 6226}, year = {2020}, abstract = {The canonical trace and the Wodzicki residue on classical pseudo-differential operators on a closed manifold are characterised by their locality and shown to be preserved under lifting to the universal covering as a result of their local feature. As a consequence, we lift a class of spectral zeta-invariants using lifted defect formulae which express discrepancies of zeta-regularised traces in terms of Wodzicki residues. We derive Atiyah's L-2-index theorem as an instance of the Z(2)-graded generalisation of the canonical lift of spectral zeta-invariants and we show that certain lifted spectral zeta-invariants for geometric operators are integrals of Pontryagin and Chern forms.}, language = {en} } @article{BlanchardMuecke2020, author = {Blanchard, Gilles and M{\"u}cke, Nicole}, title = {Kernel regression, minimax rates and effective dimensionality}, series = {Analysis and applications}, volume = {18}, journal = {Analysis and applications}, number = {4}, publisher = {World Scientific}, address = {New Jersey}, issn = {0219-5305}, doi = {10.1142/S0219530519500258}, pages = {683 -- 696}, year = {2020}, abstract = {We investigate if kernel regularization methods can achieve minimax convergence rates over a source condition regularity assumption for the target function. These questions have been considered in past literature, but only under specific assumptions about the decay, typically polynomial, of the spectrum of the the kernel mapping covariance operator. In the perspective of distribution-free results, we investigate this issue under much weaker assumption on the eigenvalue decay, allowing for more complex behavior that can reflect different structure of the data at different scales.}, language = {en} } @article{PereraBoeckmann2020, author = {Perera, Upeksha and B{\"o}ckmann, Christine}, title = {Solutions of Sturm-Liouville problems}, series = {Mathematics}, volume = {8}, journal = {Mathematics}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2227-7390}, doi = {10.3390/math8112074}, pages = {14}, year = {2020}, abstract = {This paper further improves the Lie group method with Magnus expansion proposed in a previous paper by the authors, to solve some types of direct singular Sturm-Liouville problems. Next, a concrete implementation to the inverse Sturm-Liouville problem algorithm proposed by Barcilon (1974) is provided. Furthermore, computational feasibility and applicability of this algorithm to solve inverse Sturm-Liouville problems of higher order (for n=2,4) are verified successfully. It is observed that the method is successful even in the presence of significant noise, provided that the assumptions of the algorithm are satisfied. In conclusion, this work provides a method that can be adapted successfully for solving a direct (regular/singular) or inverse Sturm-Liouville problem (SLP) of an arbitrary order with arbitrary boundary conditions.}, language = {en} } @article{MariucciRaySzabo2020, author = {Mariucci, Ester and Ray, Kolyan and Szabo, Botond}, title = {A Bayesian nonparametric approach to log-concave density estimation}, series = {Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability}, volume = {26}, journal = {Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability}, number = {2}, publisher = {International Statistical Institute}, address = {The Hague}, issn = {1350-7265}, doi = {10.3150/19-BEJ1139}, pages = {1070 -- 1097}, year = {2020}, abstract = {The estimation of a log-concave density on R is a canonical problem in the area of shape-constrained nonparametric inference. We present a Bayesian nonparametric approach to this problem based on an exponentiated Dirichlet process mixture prior and show that the posterior distribution converges to the log-concave truth at the (near-) minimax rate in Hellinger distance. Our proof proceeds by establishing a general contraction result based on the log-concave maximum likelihood estimator that prevents the need for further metric entropy calculations. We further present computationally more feasible approximations and both an empirical and hierarchical Bayes approach. All priors are illustrated numerically via simulations.}, language = {en} } @article{SchoppaSiegVogeletal.2020, author = {Schoppa, Lukas and Sieg, Tobias and Vogel, Kristin and Z{\"o}ller, Gert and Kreibich, Heidi}, title = {Probabilistic flood loss models for companies}, series = {Water resources research}, volume = {56}, journal = {Water resources research}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2020WR027649}, pages = {19}, year = {2020}, abstract = {Flood loss modeling is a central component of flood risk analysis. Conventionally, this involves univariable and deterministic stage-damage functions. Recent advancements in the field promote the use of multivariable and probabilistic loss models, which consider variables beyond inundation depth and account for prediction uncertainty. Although companies contribute significantly to total loss figures, novel modeling approaches for companies are lacking. Scarce data and the heterogeneity among companies impede the development of company flood loss models. We present three multivariable flood loss models for companies from the manufacturing, commercial, financial, and service sector that intrinsically quantify prediction uncertainty. Based on object-level loss data (n = 1,306), we comparatively evaluate the predictive capacity of Bayesian networks, Bayesian regression, and random forest in relation to deterministic and probabilistic stage-damage functions, serving as benchmarks. The company loss data stem from four postevent surveys in Germany between 2002 and 2013 and include information on flood intensity, company characteristics, emergency response, private precaution, and resulting loss to building, equipment, and goods and stock. We find that the multivariable probabilistic models successfully identify and reproduce essential relationships of flood damage processes in the data. The assessment of model skill focuses on the precision of the probabilistic predictions and reveals that the candidate models outperform the stage-damage functions, while differences among the proposed models are negligible. Although the combination of multivariable and probabilistic loss estimation improves predictive accuracy over the entire data set, wide predictive distributions stress the necessity for the quantification of uncertainty.}, language = {en} } @misc{Fabian2020, type = {Master Thesis}, author = {Fabian, Melina}, title = {Grundvorstellungen bei Zahlbereichserweiterungen}, doi = {10.25932/publishup-56593}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565930}, school = {Universit{\"a}t Potsdam}, pages = {95}, year = {2020}, abstract = {Die Erweiterung des nat{\"u}rlichen Zahlbereichs um die positiven Bruchzahlen und die negativen ganzen Zahlen geht f{\"u}r Sch{\"u}lerinnen und Sch{\"u}ler mit großen gedanklichen H{\"u}rden und einem Umbruch bis dahin aufgebauter Grundvorstellungen einher. Diese Masterarbeit tr{\"a}gt wesentliche Ver{\"a}nderungen auf der Vorstellungs- und Darstellungsebene f{\"u}r beide Zahlbereiche zusammen und setzt sich mit den kognitiven Herausforderungen f{\"u}r Lernende auseinander. Auf der Grundlage einer Diskussion traditioneller sowie alternativer Lehrg{\"a}nge der Zahlbereichserweiterung wird eine Unterrichtskonzeption f{\"u}r den Mathematikunterricht entwickelt, die eine parallele Einf{\"u}hrung der Bruchzahlen und der negativen Zahlen vorschl{\"a}gt. Die Empfehlungen der Unterrichtkonzeption erstrecken sich {\"u}ber den Zeitraum von der ersten bis zur siebten Klassenstufe, was der behutsamen Weiterentwicklung und Modifikation des Zahlbegriffs viel Zeit einr{\"a}umt, und enthalten auch didaktische {\"U}berlegungen sowie konkrete Hinweise zu m{\"o}glichen Aufgabenformaten.}, language = {de} } @article{GueneysuKeller2020, author = {G{\"u}neysu, Batu and Keller, Matthias}, title = {Feynman path integrals for magnetic Schr{\"o}dinger operators on infinite weighted graphs}, series = {Journal d'analyse math{\´e}matique}, volume = {141}, journal = {Journal d'analyse math{\´e}matique}, number = {2}, publisher = {The Magnes Press, the Hebrew Univ.}, address = {Jerusalem}, issn = {0021-7670}, doi = {10.1007/s11854-020-0110-y}, pages = {751 -- 770}, year = {2020}, abstract = {We prove a Feynman path integral formula for the unitary group exp(-itL(nu,theta)), t >= 0, associated with a discrete magnetic Schrodinger operator L-nu,L-theta on a large class of weighted infinite graphs. As a consequence, we get a new Kato-Simon estimate vertical bar exp(- itL(nu,theta))(x,y)vertical bar <= exp( -tL(-deg,0))(x,y), which controls the unitary group uniformly in the potentials in terms of a Schrodinger semigroup, where the potential deg is the weighted degree function of the graph.}, language = {en} } @article{HermannHumbert2020, author = {Hermann, Andreas and Humbert, Emmanuel}, title = {Mass functions of a compact manifold}, series = {Journal of geometry and physics : JGP}, volume = {154}, journal = {Journal of geometry and physics : JGP}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0393-0440}, doi = {10.1016/j.geomphys.2020.103650}, pages = {14}, year = {2020}, abstract = {Let M be a compact manifold of dimension n. In this paper, we introduce the Mass Function a >= 0 bar right arrow X-+(M)(a) (resp. a >= 0 bar right arrow X--(M)(a)) which is defined as the supremum (resp. infimum) of the masses of all metrics on M whose Yamabe constant is larger than a and which are flat on a ball of radius 1 and centered at a point p is an element of M. Here, the mass of a metric flat around p is the constant term in the expansion of the Green function of the conformal Laplacian at p. We show that these functions are well defined and have many properties which allow to obtain applications to the Yamabe invariant (i.e. the supremum of Yamabe constants over the set of all metrics on M).}, language = {en} } @article{MauerbergerSchannerKorteetal.2020, author = {Mauerberger, Stefan and Schanner, Maximilian Arthus and Korte, Monika and Holschneider, Matthias}, title = {Correlation based snapshot models of the archeomagnetic field}, series = {Geophysical journal international}, volume = {223}, journal = {Geophysical journal international}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggaa336}, pages = {648 -- 665}, year = {2020}, abstract = {For the time stationary global geomagnetic field, a new modelling concept is presented. A Bayesian non-parametric approach provides realistic location dependent uncertainty estimates. Modelling related variabilities are dealt with systematically by making little subjective apriori assumptions. Rather than parametrizing the model by Gauss coefficients, a functional analytic approach is applied. The geomagnetic potential is assumed a Gaussian process to describe a distribution over functions. Apriori correlations are given by an explicit kernel function with non-informative dipole contribution. A refined modelling strategy is proposed that accommodates non-linearities of archeomagnetic observables: First, a rough field estimate is obtained considering only sites that provide full field vector records. Subsequently, this estimate supports the linearization that incorporates the remaining incomplete records. The comparison of results for the archeomagnetic field over the past 1000 yr is in general agreement with previous models while improved model uncertainty estimates are provided.}, language = {en} } @article{BeckusBellissardDeNittis2020, author = {Beckus, Siegfried and Bellissard, Jean and De Nittis, Giuseppe}, title = {Spectral continuity for aperiodic quantum systems}, series = {Journal of mathematical physics}, volume = {61}, journal = {Journal of mathematical physics}, number = {12}, publisher = {American Institute of Physics}, address = {Melville, NY}, issn = {0022-2488}, doi = {10.1063/5.0011488}, pages = {19}, year = {2020}, abstract = {This work provides a necessary and sufficient condition for a symbolic dynamical system to admit a sequence of periodic approximations in the Hausdorff topology. The key result proved and applied here uses graphs that are called De Bruijn graphs, Rauzy graphs, or Anderson-Putnam complex, depending on the community. Combining this with a previous result, the present work justifies rigorously the accuracy and reliability of algorithmic methods used to compute numerically the spectra of a large class of self-adjoint operators. The so-called Hamiltonians describe the effective dynamic of a quantum particle in aperiodic media. No restrictions on the structure of these operators other than general regularity assumptions are imposed. In particular, nearest-neighbor correlation is not necessary. Examples for the Fibonacci and the Golay-Rudin-Shapiro sequences are explicitly provided illustrating this discussion. While the first sequence has been thoroughly studied by physicists and mathematicians alike, a shroud of mystery still surrounds the latter when it comes to spectral properties. In light of this, the present paper gives a new result here that might help uncovering a solution.}, language = {en} }