@article{MaesPerringVanhellemontetal.2018, author = {Maes, Sybryn L. and Perring, Michael P. and Vanhellemont, Margot and Depauw, Leen and Van den Bulcke, Jan and Brumelis, Guntis and Brunet, Jorg and Decocq, Guillaume and den Ouden, Jan and H{\"a}rdtle, Werner and Hedl, Radim and Heinken, Thilo and Heinrichs, Steffi and Jaroszewicz, Bogdan and Kopeck{\´y}, Martin and Malis, Frantisek and Wulf, Monika and Verheyen, Kris}, title = {Environmental drivers interactively affect individual tree growth across temperate European forests}, series = {Global change biology}, volume = {25}, journal = {Global change biology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.14493}, pages = {201 -- 217}, year = {2018}, abstract = {Forecasting the growth of tree species to future environmental changes requires abetter understanding of its determinants. Tree growth is known to respond to global-change drivers such as climate change or atmospheric deposition, as well as to localland-use drivers such as forest management. Yet, large geographical scale studiesexamining interactive growth responses to multiple global-change drivers are relativelyscarce and rarely consider management effects. Here, we assessed the interactiveeffects of three global-change drivers (temperature, precipitation and nitrogen deposi-tion) on individual tree growth of three study species (Quercus robur/petraea, Fagus syl-vatica and Fraxinus excelsior). We sampled trees along spatial environmental gradientsacross Europe and accounted for the effects of management for Quercus. We collectedincrement cores from 267 trees distributed over 151 plots in 19 forest regions andcharacterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. Wedemonstrate that growth responds interactively to global-change drivers, with species -specific sensitivities to the combined factors. Simultaneously high levels of precipita-tion and deposition benefited Fraxinus, but negatively affected Quercus' growth, high-lighting species-specific interactive tree growth responses to combined drivers. ForFagus, a stronger growth response to higher temperatures was found when precipita-tion was also higher, illustrating the potential negative effects of drought stress underwarming for this species. Furthermore, we show that past forest management canmodulate the effects of changing temperatures on Quercus' growth; individuals in plotswith a coppicing history showed stronger growth responses to higher temperatures.Overall, our findings highlight how tree growth can be interactively determined by glo-bal-change drivers, and how these growth responses might be modulated by past for-est management. By showing future growth changes for scenarios of environmentalchange, we stress the importance of considering multiple drivers, including past man-agement and their interactions, when predicting tree growth.}, language = {en} } @article{TapeJonesArpetal.2018, author = {Tape, Ken D. and Jones, Benjamin M. and Arp, Christopher D. and Nitze, Ingmar and Grosse, Guido}, title = {Tundra be dammed}, series = {Global change biology}, volume = {24}, journal = {Global change biology}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.14332}, pages = {4478 -- 4488}, year = {2018}, abstract = {Increasing air temperatures are changing the arctic tundra biome. Permafrost is thawing, snow duration is decreasing, shrub vegetation is proliferating, and boreal wildlife is encroaching. Here we present evidence of the recent range expansion of North American beaver (Castor canadensis) into the Arctic, and consider how this ecosystem engineer might reshape the landscape, biodiversity, and ecosystem processes. We developed a remote sensing approach that maps formation and disappearance of ponds associated with beaver activity. Since 1999, 56 new beaver pond complexes were identified, indicating that beavers are colonizing a predominantly tundra region (18,293km(2)) of northwest Alaska. It is unclear how improved tundra stream habitat, population rebound following overtrapping for furs, or other factors are contributing to beaver range expansion. We discuss rates and likely routes of tundra beaver colonization, as well as effects on permafrost, stream ice regimes, and freshwater and riparian habitat. Beaver ponds and associated hydrologic changes are thawing permafrost. Pond formation increases winter water temperatures in the pond and downstream, likely creating new and more varied aquatic habitat, but specific biological implications are unknown. Beavers create dynamic wetlands and are agents of disturbance that may enhance ecosystem responses to warming in the Arctic.}, language = {en} } @article{KoehlerKoehlerDeckwartetal.2018, author = {Koehler, Friedrich and Koehler, Kerstin and Deckwart, Oliver and Prescher, Sandra and Wegscheider, Karl and Winkler, Sebastian and Vettorazzi, Eik and Polze, Andreas and Stangl, Karl and Hartmann, Oliver and Marx, Almuth and Neuhaus, Petra and Scherf, Michael and Kirwan, Bridget-Anne and Anker, Stefan D.}, title = {Telemedical Interventional Management in Heart Failure II (TIM-HF2), a randomised, controlled trial investigating the impact of telemedicine on unplanned cardiovascular hospitalisations and mortality in heart failure patients}, series = {European Journal of Heart Failure}, volume = {20}, journal = {European Journal of Heart Failure}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {1388-9842}, doi = {10.1002/ejhf.1300}, pages = {1485 -- 1493}, year = {2018}, abstract = {Background Heart failure (HF) is a complex, chronic condition that is associated with debilitating symptoms, all of which necessitate close follow-up by health care providers. Lack of disease monitoring may result in increased mortality and more frequent hospital readmissions for decompensated HF. Remote patient management (RPM) in this patient population may help to detect early signs and symptoms of cardiac decompensation, thus enabling a prompt initiation of the appropriate treatment and care before a manifestation of HF decompensation. Objective The objective of the present article is to describe the design of a new trial investigating the impact of RPM on unplanned cardiovascular hospitalisations and mortality in HF patients. Methods The TIM-HF2 trial is designed as a prospective, randomised, controlled, parallel group, open (with randomisation concealment), multicentre trial with pragmatic elements introduced for data collection. Eligible patients with HF are randomised (1:1) to either RPM + usual care or to usual care only and are followed for 12 months. The primary outcome is the percentage of days lost due to unplanned cardiovascular hospitalisations or all-cause death. The main secondary outcomes are all-cause and cardiovascular mortality. Conclusion The TIM-HF2 trial will provide important prospective data on the potential beneficial effect of telemedical monitoring and RPM on unplanned cardiovascular hospitalisations and mortality in HF patients.}, language = {en} } @article{SchotterLeinengervonderMalsburg2017, author = {Schotter, Elizabeth Roye and Leinenger, Mallorie and von der Malsburg, Titus Raban}, title = {When your mind skips what your eyes fixate}, series = {Psychonomic bulletin \& review : a journal of the Psychonomic Society}, volume = {25}, journal = {Psychonomic bulletin \& review : a journal of the Psychonomic Society}, number = {5}, publisher = {Springer}, address = {New York}, issn = {1069-9384}, doi = {10.3758/s13423-017-1356-y}, pages = {1884 -- 1890}, year = {2017}, abstract = {The phenomenon of forced fixations suggests that readers sometimes fixate a word (due to oculomotor constraints) even though they intended to skip it (due to parafoveal cognitive-linguistic processing). We investigate whether this leads readers to look directly at a word but not pay attention to it. We used a gaze-contingent boundary paradigm to dissociate parafoveal and foveal information (e.g., the word phone changed to scarf once the reader's eyes moved to it) and asked questions about the sentence to determine which one the reader encoded. When the word was skipped or fixated only briefly (i.e., up to 100 ms) readers were more likely to report reading the parafoveal than the fixated word, suggesting that there are cases in which readers look directly at a word but their minds ignore it, leading to the illusion of reading something they did not fixate.}, language = {en} } @article{GonzalezManriqueKuckeinColladosetal.2018, author = {Gonzalez Manrique, Sergio Javier and Kuckein, Christoph and Collados, M. and Denker, Carsten and Solanki, S. K. and Gomory, P. and Verma, Meetu and Balthasar, H. and Lagg, A. and Diercke, Andrea}, title = {Temporal evolution of arch filaments as seen in He I 10 830 angstrom}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {617}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201832684}, pages = {11}, year = {2018}, abstract = {Aims. We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. Methods. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) in the He I 10 830 angstrom spectral range. The He I triplet profiles were fitted with analytic functions to infer line-of-sight (LOS) velocities to follow plasma motions within the AFS. Results. We tracked the temporal evolution of an individual arch filament over its entire lifetime, as seen in the He I 10 830 angstrom triplet. The arch filament expanded in height and extended in length from 13 ' to 21 '. The lifetime of this arch filament is about 30 min. About 11 min after the arch filament is seen in He I, the loop top starts to rise with an average Doppler velocity of 6 km s(-1). Only two minutes later, plasma drains down with supersonic velocities towards the footpoints reaching a peak velocity of up to 40 km s(-1) in the chromosphere. The temporal evolution of He I 10 830 angstrom profiles near the leading pore showed almost ubiquitous dual red components of the He I triplet, indicating strong downflows, along with material nearly at rest within the same resolution element during the whole observing time.}, language = {en} } @article{NavarroRetamalBremerIngolfssonetal.2018, author = {Navarro-Retamal, Carlos and Bremer, Anne and Ingolfsson, Helgi I. and Alzate-Morales, Jans and Caballero, Julio and Thalhammer, Anja and Gonzalez, Wendy and Hincha, Dirk K.}, title = {Folding and Lipid Composition Determine Membrane Interaction of the Disordered Protein COR15A}, series = {Biophysical journal}, volume = {115}, journal = {Biophysical journal}, number = {6}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2018.08.014}, pages = {968 -- 980}, year = {2018}, abstract = {Plants from temperate climates, such as the model plant Arabidopsis thaliana, are challenged with seasonal low temperatures that lead to increased freezing tolerance in fall in a process termed cold acclimation. Among other adaptations, this involves the accumulation of cold-regulated (COR) proteins, such as the intrinsically disordered chloroplast-localized protein COR15A. Together with its close homolog COR15B, it stabilizes chloroplast membranes during freezing. COR15A folds into amphipathic alpha-helices in the presence of high concentrations of low-molecular-mass crowders or upon dehydration. Under these conditions, the (partially) folded protein binds peripherally to membranes. In our study, we have used coarse-grained molecular dynamics simulations to elucidate the details of COR15A-membrane binding and its effects on membrane structure and dynamics. Simulation results indicate that at least partial folding of COR15A and the presence of highly unsaturated galactolipids in the membranes are necessary for efficient membrane binding. The bound protein is stabilized on the membrane by interactions of charged and polar amino acids with galactolipid headgroups and by interactions of hydrophobic amino acids with the upper part of the fatty acyl chains. Experimentally, the presence of liposomes made from a mixture of lipids mimicking chloroplast membranes induces additional folding in COR15A under conditions of partial dehydration, in agreement with the simulation results.}, language = {en} } @article{FeddersMuenznerWeberetal.2021, author = {Fedders, Ronja and Muenzner, Matthias and Weber, Pamela and Sommerfeld, Manuela and Knauer, Miriam and Kedziora, Sarah and Kast, Naomi and Heidenreich, Steffi and Raila, Jens and Weger, Stefan and Henze, Andrea and Schupp, Michael}, title = {Liver-secreted RBP4 does not impair glucose homeostasis in mice}, series = {The journal of biological chemistry}, volume = {293}, journal = {The journal of biological chemistry}, number = {39}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {1083-351X}, doi = {10.1074/jbc.RA118.004294}, pages = {15269 -- 15276}, year = {2021}, abstract = {Retinol-binding protein 4 (RBP4) is the major transport protein for retinol in blood. Recent evidence from genetic mouse models shows that circulating RBP4 derives exclusively from hepatocytes. Because RBP4 is elevated in obesity and associates with the development of glucose intolerance and insulin resistance, we tested whether a liver-specific overexpression of RBP4 in mice impairs glucose homeostasis. We used adeno-associated viruses (AAV) that contain a highly liver-specific promoter to drive expression of murine RBP4 in livers of adult mice. The resulting increase in serum RBP4 levels in these mice was comparable with elevated levels that were reported in obesity. Surprisingly, we found that increasing circulating RBP4 had no effect on glucose homeostasis. Also during a high-fat diet challenge, elevated levels of RBP4 in the circulation failed to aggravate the worsening of systemic parameters of glucose and energy homeostasis. These findings show that liver-secreted RBP4 does not impair glucose homeostasis. We conclude that a modest increase of its circulating levels in mice, as observed in the obese, insulin-resistant state, is unlikely to be a causative factor for impaired glucose homeostasis.}, language = {en} } @article{GerstenbergLindholm2019, author = {Gerstenberg, Annette and Lindholm, Camilla}, title = {Language and aging research}, series = {Linguistics vanguard}, volume = {5}, journal = {Linguistics vanguard}, number = {s2}, publisher = {De Gruyter}, address = {Berlin}, issn = {2199-174X}, doi = {10.1515/lingvan-2019-0025}, pages = {6}, year = {2019}, abstract = {Our introduction to the special collection gives an overview of the research projects which were originally presented at the third CLARe network conference. We group the research under four cross-sectional topics that unite the different contributions: the data used in the research, the theoretical frameworks, the languages and varieties which are represented and the situational contexts which are examined. These projects represent the current state of research in this field and allows the reader to orient themselves within this diverse field but also leaves many questions open and provides impetus for future lines of research. The interaction and collaboration between diverse disciplines is the central aspect which unites all contributions to the special collection.}, language = {en} } @article{FitziMarcucci2017, author = {Fitzi, Gregor and Marcucci, Nicola}, title = {Durkheim in Germany}, series = {Journal of Classical Sociology}, volume = {17}, journal = {Journal of Classical Sociology}, number = {4}, publisher = {Sage Publ.}, address = {London}, issn = {1468-795X}, doi = {10.1177/1468795X17735991}, pages = {271 -- 275}, year = {2017}, language = {en} } @article{WolfGuehr2019, author = {Wolf, Thomas and G{\"u}hr, Markus}, title = {Photochemical pathways in nucleobases measured with an X-ray FEL}, series = {Philosophical Transactions of the Royal Society of London, Series A : Mathematical, Physical and Engineering Sciences}, volume = {377}, journal = {Philosophical Transactions of the Royal Society of London, Series A : Mathematical, Physical and Engineering Sciences}, number = {2145}, publisher = {Royal Society}, address = {London}, issn = {1364-503X}, doi = {10.1098/rsta.2017.0473}, pages = {12}, year = {2019}, abstract = {The conversion of light energy into other molecular energetic degrees of freedom is often dominated by ultrafast, non-adiabatic processes. Femtosecond spectroscopy with optical pulses has helped in shaping our understanding of crucial processes in molecular energy-conversion. The advent of new, ultrashort and bright X-ray free electron laser sources opens the possibility to use X-ray-typical element and site sensitivity for ultrafast molecular research. We present two types of spectroscopy, ultrafast Auger and ultrafast X-ray absorption spectroscopy, and discuss their sensitivity to molecular processes. While Auger spectroscopy is able to monitor bond distance changes in the vicinity of an X-ray created core hole, near-edge absorption spectroscopy can deliver high-fidelity information on non-adiabatic transitions involving lone-pair orbitals. We demonstrate these features on the example of the UV-excited nucleobase thymine, investigated at the oxygen K-edge. We find a C-O bond elongation in the Auger data in addition to pi pi*/n pi* non-adiabatic transition in X-ray near-edge absorption. We compare the results from both methods and draw a conclusive scenario of non-adiabatic molecular relaxation after UV excitation.}, language = {en} }