@article{CarvalhoBartoliFerrietal.2019, author = {Carvalho, Bruna B. and Bartoli, Omar and Ferri, Fabio and Cesare, Bernardo and Ferrero, Silvio and Remusat, Laurent and Capizzi, Luca Samuele and Poli, Stefano}, title = {Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy)}, series = {Journal of metamorphic geology}, volume = {37}, journal = {Journal of metamorphic geology}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0263-4929}, doi = {10.1111/jmg.12463}, pages = {951 -- 975}, year = {2019}, abstract = {We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 mu m and are regularly distributed in the core of the garnet. Microstructural and micro-Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N-2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K-feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0-3.4 wt\%), contain 860-1700 ppm CO2 and reach the highest H2O contents (6.5-10 wt\%). In the transition zone melts have intermediate H2O (4.8-8.5 wt\%), CO2 (457-1534 ppm) and maficity (FeO + MgO = 2.3-3.9 wt\%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2-4.7 wt\%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4-8.3 wt\%) to the other two zones. Our results represent the first clear evidence for carbonic fluid-present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid-melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+-bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon-contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid-present melting of the deep continental crust represents, together with hydrate-breakdown melting reactions, an important process in the origin of crustal anatectic granitoids.}, language = {en} } @article{ThomasWebsterRhedeetal.2006, author = {Thomas, Rainer and Webster, J. D. and Rhede, Dieter and Seifert, W. and Rickers, Karen and F{\"o}rster, Hans-J{\"u}rgen and Heinrich, Wilhelm and Davidson, P.}, title = {The transition from peraluminous to peralkaline granitic melts: Evidence from melt inclusions and accessory minerals}, series = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, volume = {91}, journal = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, number = {1-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0024-4937}, doi = {10.1016/j.lithos.2006.03.013}, pages = {137 -- 149}, year = {2006}, abstract = {Fractional crystallization of peraluminous F- and H(2)O-rich granite magmas progressively enriches the remaining melt with volatiles. We show that, at saturation, the melt may separate into two immiscible conjugate melt fractions, one of the fractions shows increasing peraluminosity and the other increasing peralkalinity. These melt fractions also fractionate the incompatible elements to significantly different degrees. Coexisting melt fractions have differing chemical and physical properties and, due to their high density and viscosity contrasts, they will tend to separate readily from each other. Once separated, each melt fraction evolves independently in response to changing T/P/X conditions and further immiscibility events may occur, each generating its own conjugate pair of melt fractions. The strongly peralkaline melt fractions in particular are very reactive and commonly react until equilibrium is attained. Consequently, the peralkaline melt fraction is commonly preserved only in the isolated melt and mineral inclusions. We demonstrate that the differences between melt fractions that can be seen most clearly in differing melt inclusion compositions are also visible in the composition of the resulting ore-forming and accessory minerals, and are visible on scales from a few micrometers to hundreds of meters.}, language = {en} } @misc{BorghiniFerreroO'Brienetal.2019, author = {Borghini, Alessia and Ferrero, Silvio and O'Brien, Patrick J. and Laurent, Oscar and G{\"u}nter, Christina and Ziemann, Martin Andreas}, title = {Cryptic metasomatic agent measured in situ in Variscan mantle rocks}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {976}, issn = {1866-8372}, doi = {10.25932/publishup-47459}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474592}, pages = {207 -- 234}, year = {2019}, abstract = {Garnet of eclogite (formerly termed garnet clinopyroxenite) hosted in lenses of orogenic garnet peridotite from the Granulitgebirge, NW Bohemian Massif, contains unique inclusions of granitic melt, now either glassy or crystallized. Analysed glasses and re-homogenized inclusions are hydrous, peraluminous, and enriched in highly incompatible elements characteristic of the continental crust such as Cs, Li, B, Pb, Rb, Th, and U. The original melt thus represents a pristine, chemically evolved metasomatic agent, which infiltrated the mantle via deep continental subduction during the Variscan orogeny. The bulk chemical composition of the studied eclogites is similar to that of Fe-rich basalt and the enrichment in LILE and U suggest a subduction-related component. All these geochemical features confirm metasomatism. In comparison with many other garnet+clinopyroxene-bearing lenses in peridotites of the Bohemian Massif, the studied samples from Rubinberg and Klatschm{\"u}hle are more akin to eclogite than pyroxenites, as reflected in high jadeite content in clinopyroxene, relatively low Mg, Cr, and Ni but relatively high Ti. However, trace elements of both bulk rock and individual mineral phases show also important differences making these samples rather unique. Metasomatism involving a melt requiring a trace element pattern very similar to the composition reported here has been suggested for the source region of rocks of the so-called durbachite suite, that is, ultrapotassic melanosyenites, which are found throughout the high-grade Variscan basement. Moreover, the Th, U, Pb, Nb, Ta, and Ti patterns of these newly studied melt inclusions (MI) strongly resemble those observed for peridotite and its enclosed pyroxenite from the T-7 borehole (Star{\´e}, Česk{\´e} Středhoři Mountains) in N Bohemia. This suggests that a similar kind of crustal-derived melt also occurred here. This study of granitic MI in eclogites from peridotites has provided the first direct characterization of a preserved metasomatic melt, possibly responsible for the metasomatism of several parts of the mantle in the Variscides.}, language = {en} }