@article{PourteauSchererSchornetal.2019, author = {Pourteau, Amaury and Scherer, Erik E. and Schorn, Simon and Bast, Rebecca and Schmidt, Alexander and Ebert, Lisa}, title = {Thermal evolution of an ancient subduction interface revealed by Lu-Hf garnet geochronology, Halilbagi Complex (Anatolia)}, series = {Geoscience Frontiers}, volume = {10}, journal = {Geoscience Frontiers}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1674-9871}, doi = {10.1016/j.gsf.2018.03.004}, pages = {127 -- 148}, year = {2019}, abstract = {The thermal structure of subduction zones exerts a major influence on deep-seated mechanical and chemical processes controlling arc magmatism, seismicity, and global element cycles. Accretionary complexes exposed inland may comprise tectonic blocks with contrasting pressure-temperature (P-T) histories, making it possible to investigate the dynamics and thermal evolution of former subduction interfaces. With this aim, we present new Lu-Hf geochronological results for mafic rocks of the Halilbagi Complex (Anatolia) that evolved along different thermal gradients. Samples include a lawsonite-epidote blueschist, a lawsonite-epidote eclogite, and an epidote eclogite (all with counter-clockwise P-T paths), a prograde lawsonite blueschist with a "hairpin"-type P-T path, and a garnet amphibolite from the overlying sub-ophiolitic metamorphic sole. Equilibrium phase diagrams suggest that the garnet amphibolite formed at similar to 0.6-0.7 GPa and 800-850 degrees C, whereas the prograde lawsonite blueschist records burial from 2.1 GPa and 420 degrees C to 2.6 GPa and 520 degrees C. Well-defined Lu-Hf isochrons were obtained for the epidote eclogite (92.38 +/- 0.22 Ma) and the lawsonite-epidote blueschist (90.19 +/- 0.54 Ma), suggesting rapid garnet growth. The lawsonite-epidote eclogite (87.30 +/- 0.39 Ma) and the prograde lawsonite blueschist (ca. 86 Ma) are younger, whereas the garnet amphibolite (104.5 +/- 3.5 Ma) is older. Our data reveal a consistent trend of progressively decreasing geothermal gradient from granulite-facies conditions at similar to 104 Ma to the epidote-eclogite facies around 92 Ma, and the lawsonite blueschist-facies between 90 Ma and 86 Ma. Three Lu-Hf garnet dates (between 92 Ma and 87 Ma) weighted toward the growth of post-peak rims (as indicated by Lu distribution in garnet) suggest that the HP/LT rocks were exhumed continuously and not episodically. We infer that HP/LT metamorphic rocks within the Halilbagi Complex were subjected to continuous return flow, with "warm" rocks being exhumed during the tectonic burial of "cold" ones. Our results, combined with regional geological constraints, allow us to speculate that subduction started at a transform fault near a mid-oceanic spreading centre. Following its formation, this ancient subduction interface evolved thermally over more than 15 Myr, most likely as a result of heat dissipation rather than crustal underplating. (C) 2018, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.}, language = {en} } @article{FosterHeindelRichozetal.2019, author = {Foster, William J. and Heindel, Katrin and Richoz, Sylvain and Gliwa, Jana and Lehrmann, Daniel J. and Baud, Aymon and Kolar-Jurkovsek, Tea and Aljinovic, Dunja and Jurkovsek, Bogdan and Korn, Dieter and Martindale, Rowan C. and Peckmann, J{\"o}rn}, title = {Suppressed competitive exclusion enabled the proliferation of Permian/Triassic boundary microbialites}, series = {The Depositional Record : the open access journal of the International Association of Sedimentologists}, volume = {6}, journal = {The Depositional Record : the open access journal of the International Association of Sedimentologists}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {2055-4877}, doi = {10.1002/dep2.97}, pages = {62 -- 74}, year = {2019}, abstract = {During the earliest Triassic microbial mats flourished in the photic zones of marginal seas, generating widespread microbialites. It has been suggested that anoxic conditions in shallow marine environments, linked to the end-Permian mass extinction, limited mat-inhibiting metazoans allowing for this microbialite expansion. The presence of a diverse suite of proxies indicating oxygenated shallow sea-water conditions (metazoan fossils, biomarkers and redox proxies) from microbialite successions have, however, challenged the inference of anoxic conditions. Here, the distribution and faunal composition of Griesbachian microbialites from China, Iran, Turkey, Armenia, Slovenia and Hungary are investigated to determine the factors that allowed microbialite-forming microbial mats to flourish following the end-Permian crisis. The results presented here show that Neotethyan microbial buildups record a unique faunal association due to the presence of keratose sponges, while the Palaeotethyan buildups have a higher proportion of molluscs and the foraminifera Earlandia. The distribution of the faunal components within the microbial fabrics suggests that, except for the keratose sponges and some microconchids, most of the metazoans were transported into the microbial framework via wave currents. The presence of both microbialites and metazoan associations were limited to oxygenated settings, suggesting that a factor other than anoxia resulted in a relaxation of ecological constraints following the mass extinction event. It is inferred that the end-Permian mass extinction event decreased the diversity and abundance of metazoans to the point of significantly reducing competition, allowing photosynthesis-based microbial mats to flourish in shallow water settings and resulting in the formation of widespread microbialites.}, language = {en} } @article{WendlerEnenkel2019, author = {Wendler, Petra and Enenkel, Cordula}, title = {Nuclear Transport of Yeast Proteasomes}, series = {Frontiers in molecular biosciences}, volume = {6}, journal = {Frontiers in molecular biosciences}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-889X}, doi = {10.3389/fmolb.2019.00034}, pages = {12}, year = {2019}, abstract = {Proteasomes are key proteases in regulating protein homeostasis. Their holo-enzymes are composed of 40 different subunits which are arranged in a proteolytic core (CP) flanked by one to two regulatory particles (RP). Proteasomal proteolysis is essential for the degradation of proteins which control time-sensitive processes like cell cycle progression and stress response. In dividing yeast and human cells, proteasomes are primarily nuclear suggesting that proteasomal proteolysis is mainly required in the nucleus during cell proliferation. In yeast, which have a closed mitosis, proteasomes are imported into the nucleus as immature precursors via the classical import pathway. During quiescence, the reversible absence of proliferation induced by nutrient depletion or growth factor deprivation, proteasomes move from the nucleus into the cytoplasm. In the cytoplasm of quiescent yeast, proteasomes are dissociated into CP and RP and stored in membrane-less cytoplasmic foci, named proteasome storage granules (PSGs). With the resumption of growth, PSGs clear and mature proteasomes are transported into the nucleus by Blm10, a conserved 240 kDa protein and proteasome-intrinsic import receptor. How proteasomes are exported from the nucleus into the cytoplasm is unknown.}, language = {en} } @article{RosenbaumRaatzWeithoffetal.2019, author = {Rosenbaum, Benjamin and Raatz, Michael and Weithoff, Guntram and Fussmann, Gregor F. and Gaedke, Ursula}, title = {Estimating parameters from multiple time series of population dynamics using bayesian inference}, series = {Frontiers in ecology and evolution}, volume = {6}, journal = {Frontiers in ecology and evolution}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2018.00234}, pages = {14}, year = {2019}, abstract = {Empirical time series of interacting entities, e.g., species abundances, are highly useful to study ecological mechanisms. Mathematical models are valuable tools to further elucidate those mechanisms and underlying processes. However, obtaining an agreement between model predictions and experimental observations remains a demanding task. As models always abstract from reality one parameter often summarizes several properties. Parameter measurements are performed in additional experiments independent of the ones delivering the time series. Transferring these parameter values to different settings may result in incorrect parametrizations. On top of that, the properties of organisms and thus the respective parameter values may vary considerably. These issues limit the use of a priori model parametrizations. In this study, we present a method suited for a direct estimation of model parameters and their variability from experimental time series data. We combine numerical simulations of a continuous-time dynamical population model with Bayesian inference, using a hierarchical framework that allows for variability of individual parameters. The method is applied to a comprehensive set of time series from a laboratory predator-prey system that features both steady states and cyclic population dynamics. Our model predictions are able to reproduce both steady states and cyclic dynamics of the data. Additionally to the direct estimates of the parameter values, the Bayesian approach also provides their uncertainties. We found that fitting cyclic population dynamics, which contain more information on the process rates than steady states, yields more precise parameter estimates. We detected significant variability among parameters of different time series and identified the variation in the maximum growth rate of the prey as a source for the transition from steady states to cyclic dynamics. By lending more flexibility to the model, our approach facilitates parametrizations and shows more easily which patterns in time series can be explained also by simple models. Applying Bayesian inference and dynamical population models in conjunction may help to quantify the profound variability in organismal properties in nature.}, language = {en} } @article{PerkinsPernaAdrianetal.2019, author = {Perkins, Daniel M. and Perna, Andrea and Adrian, Rita and Cermeno, Pedro and Gaedke, Ursula and Huete-Ortega, Maria and White, Ethan P. and Yvon-Durocher, Gabriel}, title = {Energetic equivalence underpins the size structure of tree and phytoplankton communities}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-08039-3}, pages = {8}, year = {2019}, abstract = {The size structure of autotroph communities - the relative abundance of small vs. large individuals - shapes the functioning of ecosystems. Whether common mechanisms underpin the size structure of unicellular and multicellular autotrophs is, however, unknown. Using a global data compilation, we show that individual body masses in tree and phytoplankton communities follow power-law distributions and that the average exponents of these individual size distributions (ISD) differ. Phytoplankton communities are characterized by an average ISD exponent consistent with three-quarter-power scaling of metabolism with body mass and equivalence in energy use among mass classes. Tree communities deviate from this pattern in a manner consistent with equivalence in energy use among diameter size classes. Our findings suggest that whilst universal metabolic constraints ultimately underlie the emergent size structure of autotroph communities, divergent aspects of body size (volumetric vs. linear dimensions) shape the ecological outcome of metabolic scaling in forest vs. pelagic ecosystems.}, language = {en} } @article{WickertSchildgen2019, author = {Wickert, Andrew D. and Schildgen, Taylor F.}, title = {Long-profile evolution of transport-limited gravel-bed rivers}, series = {Earth surface dynamics}, volume = {7}, journal = {Earth surface dynamics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-7-17-2019}, pages = {17 -- 43}, year = {2019}, abstract = {Alluvial and transport-limited bedrock rivers constitute the majority of fluvial systems on Earth. Their long profiles hold clues to their present state and past evolution. We currently possess first-principles-based governing equations for flow, sediment transport, and channel morphodynamics in these systems, which we lack for detachment-limited bedrock rivers. Here we formally couple these equations for transport-limited gravel-bed river long-profile evolution. The result is a new predictive relationship whose functional form and parameters are grounded in theory and defined through experimental data. From this, we produce a power-law analytical solution and a finite-difference numerical solution to long-profile evolution. Steady-state channel concavity and steepness are diagnostic of external drivers: concavity decreases with increasing uplift rate, and steepness increases with an increasing sediment-to-water supply ratio. Constraining free parameters explains common observations of river form: to match observed channel concavities, gravel-sized sediments must weather and fine - typically rapidly - and valleys typically should widen gradually. To match the empirical square-root width-discharge scaling in equilibrium-width gravel-bed rivers, downstream fining must occur. The ability to assign a cause to such observations is the direct result of a deductive approach to developing equations for landscape evolution.}, language = {en} } @article{LonsdorfKlingelhoeferJensAndreattaetal.2019, author = {Lonsdorf, Tina B. and Klingelh{\"o}fer-Jens, Maren and Andreatta, Marta and Beckers, Tom and Chalkia, Anastasia and Gerlicher, Anna and Jentsch, Valerie L. and Drexler, Shira Meir and Mertens, Gaetan and Richter, Jan and Sjouwerman, Rachel and Wendt, Julia and Merz, Christian J.}, title = {Navigating the garden of forking paths for data exclusions in fear conditioning research}, series = {eLife}, volume = {8}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.52465}, pages = {36}, year = {2019}, abstract = {In this report, we illustrate the considerable impact of researcher degrees of freedom with respect to exclusion of participants in paradigms with a learning element. We illustrate this empirically through case examples from human fear conditioning research, in which the exclusion of 'non-learners' and 'non-responders' is common - despite a lack of consensus on how to define these groups. We illustrate the substantial heterogeneity in exclusion criteria identified in a systematic literature search and highlight the potential problems and pitfalls of different definitions through case examples based on re-analyses of existing data sets. On the basis of these studies, we propose a consensus on evidence-based rather than idiosyncratic criteria, including clear guidelines on reporting details. Taken together, we illustrate how flexibility in data collection and analysis can be avoided, which will benefit the robustness and replicability of research findings and can be expected to be applicable to other fields of research that involve a learning element.}, language = {en} } @article{LonsdorfKlingelhoeferJensAndreattaetal.2019, author = {Lonsdorf, Tina B. and Klingelh{\"o}fer-Jens, Maren and Andreatta, Marta and Beckers, Tom and Chalkia, Anastasia and Gerlicher, Anna Maria Veronika and Jentsch, Valerie L. and Drexler, Shira Meir and Mertens, Gaetan and Richter, Jan and Sjouwerman, Rachel and Wendt, Julia and Merz, Christian J.}, title = {Navigating the garden of forking paths for data exclusions in fear conditioning research}, series = {eLife}, volume = {8}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.52465}, pages = {36}, year = {2019}, language = {en} } @article{GuentherKlaussToroNahuelpanetal.2019, author = {G{\"u}nther, Erika and Klauß, Andr{\´e} and Toro-Nahuelpan, Mauricio and Sch{\"u}ler, Dirk and Hille, Carsten and Faivre, Damien}, title = {The in vivo mechanics of the magnetotactic backbone as revealed by correlative FLIM-FRET and STED microscopy}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-55804-5}, pages = {9}, year = {2019}, abstract = {Protein interaction and protein imaging strongly benefit from the advancements in time-resolved and superresolution fluorescence microscopic techniques. However, the techniques were typically applied separately and ex vivo because of technical challenges and the absence of suitable fluorescent protein pairs. Here, we show correlative in vivo fluorescence lifetime imaging microscopy Forster resonance energy transfer (FLIM-FRET) and stimulated emission depletion (STED) microscopy to unravel protein mechanics and structure in living cells. We use magnetotactic bacteria as a model system where two proteins, MamJ and MamK, are used to assemble magnetic particles called magnetosomes. The filament polymerizes out of MamK and the magnetosomes are connected via the linker MamJ. Our system reveals that bacterial filamentous structures are more fragile than the connection of biomineralized particles to this filament. More importantly, we anticipate the technique to find wide applicability for the study and quantification of biological processes in living cells and at high resolution.}, language = {en} } @article{ThomasCarvalhoHaileetal.2019, author = {Thomas, Jessica E. and Carvalho, Gary R. and Haile, James and Rawlence, Nicolas J. and Martin, Michael D. and Ho, Simon Y. W. and Sigfusson, Arnor P. and Josefsson, Vigfus A. and Frederiksen, Morten and Linnebjerg, Jannie F. and Castruita, Jose A. Samaniego and Niemann, Jonas and Sinding, Mikkel-Holger S. and Sandoval-Velasco, Marcela and Soares, Andre E. R. and Lacy, Robert and Barilaro, Christina and Best, Juila and Brandis, Dirk and Cavallo, Chiara and Elorza, Mikelo and Garrett, Kimball L. and Groot, Maaike and Johansson, Friederike and Lifjeld, Jan T. and Nilson, Goran and Serjeanston, Dale and Sweet, Paul and Fuller, Errol and Hufthammer, Anne Karin and Meldgaard, Morten and Fjeldsa, Jon and Shapiro, Beth and Hofreiter, Michael and Stewart, John R. and Gilbert, M. Thomas P. and Knapp, Michael}, title = {Demographic reconstruction from ancient DNA supports rapid extinction of the great auk}, series = {eLife}, volume = {8}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.47509}, pages = {35}, year = {2019}, abstract = {The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species' geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation.}, language = {en} } @article{BroekerSinelnikovGustavusetal.2019, author = {Br{\"o}ker, Katharine and Sinelnikov, Evgeny and Gustavus, Dirk and Schumacher, Udo and P{\"o}rtner, Ralf and Hoffmeister, Hans and L{\"u}th, Stefan and Dammermann, Werner}, title = {Mass Production of Highly Active NK Cells for Cancer Immunotherapy in a GMP Conform Perfusion Bioreactor}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {7}, journal = {Frontiers in Bioengineering and Biotechnology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-4185}, doi = {10.3389/fbioe.2019.00194}, pages = {17}, year = {2019}, abstract = {NK cells have emerged as promising candidates for cancer immunotherapy, especially due to their ability to fight circulating tumor cells thereby preventing metastases formation. Hence several studies have been performed to generate and expand highly cytotoxic NK cells ex vivo, e.g., by using specific cytokines to upregulate both their proliferation and surface expression of distinct activating receptors. Apart from an enhanced activity, application of NK cells as immunotherapeutic agent further requires sufficient cell numbers and a high purity. All these parameters depend on a variety of different factors including the starting material, additives like cytokines as well as the culture system. Here we analyzed PBMC-derived NK cells of five anonymized healthy donors expanded under specific conditions in an innovative perfusion bioreactor system with respect to their phenotype, IFN gamma production, and cytotoxicity in vitro. Important features of the meander type bioreactors used here are a directed laminar flow of medium and control of relevant process parameters. Cells are cultivated under "steady state" conditions in perfusion mode. Our data demonstrate that expansion of CD3(+) T cell depleted PBMCs in our standardized system generates massive amounts of highly pure (>85\%) and potent anticancer active NK cells. These cells express a variety of important receptors driving NK cell recruitment, adhesion as well as activation. More specifically, they express the chemokine receptors CXCR3, CXCR4, and CCR7, the adhesion molecules L-selectin, LFA-1, and VLA-4, the activating receptors NKp30, NKp44, NKp46, NKG2D, DNAM1, and CD16 as well as the death ligands TRAIL and Fas-L. Moreover, the generated NK cells show a strong IFN gamma expression upon cultivation with K562 tumor cells and demonstrate a high cytotoxicity toward leukemic as well as solid tumor cell lines in vitro. Altogether, these characteristics promise a high clinical potency of thus produced NK cells awaiting further evaluation.}, language = {en} } @article{LoepfeDussZafeiropoulouetal.2019, author = {L{\"o}pfe, Moira and Duss, Anja and Zafeiropoulou, Katerina-Alexandra and Bjoergvinsdottir, Oddny and Eglin, David and Fortunato, Giuseppino and Klasen, J{\"u}rgen and Ferguson, Stephen J. and W{\"u}rtz-Kozak, Karin and Krupkova, Olga}, title = {Electrospray-Based Microencapsulation of Epigallocatechin 3-Gallate for Local Delivery into the Intervertebral Disc}, series = {Pharmaceutics}, volume = {11}, journal = {Pharmaceutics}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {1999-4923}, doi = {10.3390/pharmaceutics11090435}, pages = {15}, year = {2019}, abstract = {Locally delivered anti-inflammatory compounds can restore the homeostasis of the degenerated intervertebral disc (IVD). With beneficial effects on IVD cells, epigallocatechin 3-gallate (EGCG) is a promising therapeutic candidate. However, EGCG is prone to rapid degradation and/or depletion. Therefore, the purpose of this study was to develop a method for controlled EGCG delivery in the degenerated IVD. Primary IVD cells were isolated from human donors undergoing IVD surgeries. EGCG was encapsulated into microparticles by electrospraying of glutaraldehyde-crosslinked gelatin. The resulting particles were characterized in terms of cytocompatibility and anti-inflammatory activity, and combined with a thermoresponsive carrier to produce an injectable EGCG delivery system. Subsequently, electrospraying was scaled up using the industrial NANOSPIDER (TM) technology. The produced EGCG microparticles reduced the expression of inflammatory (IL-6, IL-8, COX-2) and catabolic (MMP1, MMP3, MMP13) mediators in pro-inflammatory 3D cell cultures. Combining the EGCG microparticles with the carrier showed a trend towards modulating EGCG activity/release. Electrospray upscaling was achieved, leading to particles with homogenous spherical morphologies. In conclusion, electrospray-based encapsulation of EGCG resulted in cytocompatible microparticles that preserved the activity of EGCG and showed the potential to control EGCG release, thus favoring IVD health by downregulating local inflammation. Future studies will focus on further exploring the biological activity of the developed delivery system for potential clinical use.}, language = {en} } @article{MieleGuillRamosJilibertoetal.2019, author = {Miele, Vincent and Guill, Christian and Ramos-Jiliberto, Rodrigo and K{\´e}fi, Sonia}, title = {Non-trophic interactions strengthen the diversity-functioning relationship in an ecological bioenergetic network model}, series = {PLoS Computational Biology : a new community journal}, volume = {15}, journal = {PLoS Computational Biology : a new community journal}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-7358}, doi = {10.1371/journal.pcbi.1007269}, pages = {20}, year = {2019}, abstract = {Ecological communities are undeniably diverse, both in terms of the species that compose them as well as the type of interactions that link species to each other. Despite this long recognition of the coexistence of multiple interaction types in nature, little is known about the consequences of this diversity for community functioning. In the ongoing context of global change and increasing species extinction rates, it seems crucial to improve our understanding of the drivers of the relationship between species diversity and ecosystem functioning. Here, using a multispecies dynamical model of ecological communities including various interaction types (e.g. competition for space, predator interference, recruitment facilitation in addition to feeding), we studied the role of the presence and the intensity of these interactions for species diversity, community functioning (biomass and production) and the relationship between diversity and functioning. Taken jointly, the diverse interactions have significant effects on species diversity, whose amplitude and sign depend on the type of interactions involved and their relative abundance. They however consistently increase the slope of the relationship between diversity and functioning, suggesting that species losses might have stronger effects on community functioning than expected when ignoring the diversity of interaction types and focusing on feeding interactions only.}, language = {en} } @article{RieckGeigerMunkertetal.2019, author = {Rieck, Christoph Paul Kurt and Geiger, Daniel and Munkert, Jennifer and Messerschmidt, Katrin and Petersen, Jan and Strasser, Juliane and Meitinger, Nadine and Kreis, Wolfgang}, title = {Biosynthetic approach to combine the first steps of cardenolide formation in Saccharomyces cerevisiae}, series = {Microbiologyopen}, volume = {8}, journal = {Microbiologyopen}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-8827}, doi = {10.1002/mbo3.925}, pages = {11}, year = {2019}, abstract = {A yeast expression plasmid was constructed containing a cardenolide biosynthetic module, referred to as CARD II, using the AssemblX toolkit, which enables the assembly of large DNA constructs. The genes cloned into the vector were (a) a Δ5-3β-hydroxysteroid dehydrogenase gene from Digitalis lanata, (b) a steroid Δ5-isomerase gene from Comamonas testosteronii, (c) a mutated steroid-5β-reductase gene from Arabidopsis thaliana, and (d) a steroid 21-hydroxylase gene from Mus musculus. A second plasmid bearing an ADR/ADX fusion gene from Bos taurus was also constructed. A Saccharomyces cerevisiae strain bearing these two plasmids was generated. This strain, termed "CARD II yeast", was capable of producing 5β-pregnane-3β,21-diol-20-one, a central intermediate in 5β-cardenolide biosynthesis, starting from pregnenolone which was added to the culture medium. Using this approach, five consecutive steps in cardenolide biosynthesis were realized in baker's yeast.}, language = {en} } @article{ShcherbakovZhuangZoelleretal.2019, author = {Shcherbakov, Robert and Zhuang, Jiancang and Z{\"o}ller, Gert and Ogata, Yosihiko}, title = {Forecasting the magnitude of the largest expected earthquake}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-11958-4}, pages = {11}, year = {2019}, abstract = {The majority of earthquakes occur unexpectedly and can trigger subsequent sequences of events that can culminate in more powerful earthquakes. This self-exciting nature of seismicity generates complex clustering of earthquakes in space and time. Therefore, the problem of constraining the magnitude of the largest expected earthquake during a future time interval is of critical importance in mitigating earthquake hazard. We address this problem by developing a methodology to compute the probabilities for such extreme earthquakes to be above certain magnitudes. We combine the Bayesian methods with the extreme value theory and assume that the occurrence of earthquakes can be described by the Epidemic Type Aftershock Sequence process. We analyze in detail the application of this methodology to the 2016 Kumamoto, Japan, earthquake sequence. We are able to estimate retrospectively the probabilities of having large subsequent earthquakes during several stages of the evolution of this sequence.}, language = {en} } @article{SchiroColangeliMueller2019, author = {Schiro, Gabriele and Colangeli, Pierluigi and M{\"u}ller, Marina E. H.}, title = {A Metabarcoding Analysis of the Mycobiome of Wheat Ears Across a Topographically Heterogeneous Field}, series = {Frontiers in microbiology}, volume = {10}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.02095}, pages = {12}, year = {2019}, language = {en} } @article{BielcikAguilarTriguerosLakovicetal.2019, author = {Bielcik, Milos and Aguilar-Trigueros, Carlos A. and Lakovic, Milica and Jeltsch, Florian and Rillig, Matthias C.}, title = {The role of active movement in fungal ecology and community assembly}, series = {Movement Ecology}, volume = {7}, journal = {Movement Ecology}, number = {1}, publisher = {BMC}, address = {London}, issn = {2051-3933}, doi = {10.1186/s40462-019-0180-6}, pages = {12}, year = {2019}, abstract = {Movement ecology aims to provide common terminology and an integrative framework of movement research across all groups of organisms. Yet such work has focused on unitary organisms so far, and thus the important group of filamentous fungi has not been considered in this context. With the exception of spore dispersal, movement in filamentous fungi has not been integrated into the movement ecology field. At the same time, the field of fungal ecology has been advancing research on topics like informed growth, mycelial translocations, or fungal highways using its own terminology and frameworks, overlooking the theoretical developments within movement ecology. We provide a conceptual and terminological framework for interdisciplinary collaboration between these two disciplines, and show how both can benefit from closer links: We show how placing the knowledge from fungal biology and ecology into the framework of movement ecology can inspire both theoretical and empirical developments, eventually leading towards a better understanding of fungal ecology and community assembly. Conversely, by a greater focus on movement specificities of filamentous fungi, movement ecology stands to benefit from the challenge to evolve its concepts and terminology towards even greater universality. We show how our concept can be applied for other modular organisms (such as clonal plants and slime molds), and how this can lead towards comparative studies with the relationship between organismal movement and ecosystems in the focus.}, language = {en} } @article{Rosso2019, author = {Rosso, Enrico}, title = {Ein „Zusammengehen ohne Zusammenkommen". Der Entstehungsprozess des intellektuellen Netzwerkes um die Zeitschrift Die Kreatur}, series = {Naharaim}, volume = {13}, journal = {Naharaim}, number = {1-2}, publisher = {De Gruyter}, address = {Berlin}, issn = {1862-9148}, doi = {10.1515/naha-2019-0006}, pages = {73 -- 97}, year = {2019}, abstract = {Eine Gruppe, gar eine innerlich verbundene Gemeinschaft, k{\"o}nnen Intellektuelle im Normalfall nur bilden, soweit sie von gleichem Denken und Wollen bewegt werden […]. Wo dagegen die von den Intellektuellen vertretenen Ansichten weit divergieren, da kann es nur unter sehr kritischen Umst{\"a}nden geschehen, daß die verschieden gearteten (sozialen, politischen, rechtlichen, kulturellen, religi{\"o}sen) Standpunkte und Anliegen - auf Zeit - sich zusammenfinden […]. Das polemische Element, das kritischen Intellektuellen ja wesensm{\"a}ßig zu eigen ist, bringt am ehesten eine gemeinsame Front zwischen ihnen zustande.}, language = {de} } @article{Schwarz2019, author = {Schwarz, Anja}, title = {Melancholia}, series = {Cultural studies review}, volume = {25}, journal = {Cultural studies review}, number = {2}, publisher = {Melbourne Univ. Press}, address = {Sydney}, issn = {1837-8692}, doi = {10.5130/csr.v25i2.6918}, pages = {259 -- 261}, year = {2019}, language = {en} } @article{ZiesemerHuettelBalderjahn2019, author = {Ziesemer, Florence and H{\"u}ttel, Alexandra and Balderjahn, Ingo}, title = {Anti-Consumption}, series = {Sustainability}, volume = {11}, journal = {Sustainability}, number = {23}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su11236663}, pages = {16}, year = {2019}, abstract = {Transcending the conventional debate around efficiency in sustainable consumption, anti-consumption patterns leading to decreased levels of material consumption have been gaining importance. Change agents are crucial for the promotion of such patterns, so there may be lessons for governance interventions that can be learnt from the every-day experiences of those who actively implement and promote sustainability in the field of anti-consumption. Eighteen social innovation pioneers, who engage in and diffuse practices of voluntary simplicity and collaborative consumption as sustainable options of anti-consumption share their knowledge and personal insights in expert interviews for this research. Our qualitative content analysis reveals drivers, barriers, and governance strategies to strengthen anti-consumption patterns, which are negotiated between the market, the state, and civil society. Recommendations derived from the interviews concern entrepreneurship, municipal infrastructures in support of local grassroots projects, regulative policy measures, more positive communication to strengthen the visibility of initiatives and emphasize individual benefits, establishing a sense of community, anti-consumer activism, and education. We argue for complementary action between top-down strategies, bottom-up initiatives, corporate activities, and consumer behavior. The results are valuable to researchers, activists, marketers, and policymakers who seek to enhance their understanding of materially reduced consumption patterns based on the real-life experiences of active pioneers in the field.}, language = {en} }