@article{SpikesRodriguezSilvaBennettetal.2021, author = {Spikes, Montrai and Rodr{\´i}guez-Silva, Rodet and Bennett, Kerri-Ann and Br{\"a}ger, Stefan and Josaphat, James and Torres-Pineda, Patricia and Ernst, Anja and Havenstein, Katja and Schlupp, Ingo and Tiedemann, Ralph}, title = {A phylogeny of the genus Limia (Teleostei: Poeciliidae) suggests a single-lake radiation nested in a Caribbean-wide allopatric speciation scenario}, series = {BMC Research Notes}, volume = {14}, journal = {BMC Research Notes}, publisher = {BMC Research Notes / Biomed Central}, address = {London}, issn = {1756-0500}, doi = {10.1186/s13104-021-05843-x}, pages = {1 -- 8}, year = {2021}, abstract = {Objective The Caribbean is an important global biodiversity hotspot. Adaptive radiations there lead to many speciation events within a limited period and hence are particularly prominent biodiversity generators. A prime example are freshwater fish of the genus Limia, endemic to the Greater Antilles. Within Hispaniola, nine species have been described from a single isolated site, Lake Mirago{\^a}ne, pointing towards extraordinary sympatric speciation. This study examines the evolutionary history of the Limia species in Lake Mirago{\^a}ne, relative to their congeners throughout the Caribbean. Results For 12 Limia species, we obtained almost complete sequences of the mitochondrial cytochrome b gene, a well-established marker for lower-level taxonomic relationships. We included sequences of six further Limia species from GenBank (total N  = 18 species). Our phylogenies are in concordance with other published phylogenies of Limia. There is strong support that the species found in Lake Mirago{\^a}ne in Haiti are monophyletic, confirming a recent local radiation. Within Lake Mirago{\^a}ne, speciation is likely extremely recent, leading to incomplete lineage sorting in the mtDNA. Future studies using multiple unlinked genetic markers are needed to disentangle the relationships within the Lake Mirago{\^a}ne clade.}, language = {en} } @article{KruegerFoersterTrauthetal.2021, author = {Kr{\"u}ger, Johanna and Foerster, Verena Elisabeth and Trauth, Martin H. and Hofreiter, Michael and Tiedemann, Ralph}, title = {Exploring the Past Biosphere of Chew Bahir/Southern Ethiopia: Cross-Species Hybridization Capture of Ancient Sedimentary DNA from a Deep Drill Core}, series = {Frontiers in Earth Science}, journal = {Frontiers in Earth Science}, publisher = {Frontiers in Earth Science}, address = {Lausanne, Schweiz}, issn = {2296-6463}, doi = {10.3389/feart.2021.683010}, pages = {1 -- 20}, year = {2021}, abstract = {Eastern Africa has been a prime target for scientific drilling because it is rich in key paleoanthropological sites as well as in paleolakes, containing valuable paleoclimatic information on evolutionary time scales. The Hominin Sites and Paleolakes Drilling Project (HSPDP) explores these paleolakes with the aim of reconstructing environmental conditions around critical episodes of hominin evolution. Identification of biological taxa based on their sedimentary ancient DNA (sedaDNA) traces can contribute to understand past ecological and climatological conditions of the living environment of our ancestors. However, sedaDNA recovery from tropical environments is challenging because high temperatures, UV irradiation, and desiccation result in highly degraded DNA. Consequently, most of the DNA fragments in tropical sediments are too short for PCR amplification. We analyzed sedaDNA in the upper 70 m of the composite sediment core of the HSPDP drill site at Chew Bahir for eukaryotic remnants. We first tested shotgun high throughput sequencing which leads to metagenomes dominated by bacterial DNA of the deep biosphere, while only a small fraction was derived from eukaryotic, and thus probably ancient, DNA. Subsequently, we performed cross-species hybridization capture of sedaDNA to enrich ancient DNA (aDNA) from eukaryotic remnants for paleoenvironmental analysis, using established barcoding genes (cox1 and rbcL for animals and plants, respectively) from 199 species that may have had relatives in the past biosphere at Chew Bahir. Metagenomes yielded after hybridization capture are richer in reads with similarity to cox1 and rbcL in comparison to metagenomes without prior hybridization capture. Taxonomic assignments of the reads from these hybridization capture metagenomes also yielded larger fractions of the eukaryotic domain. For reads assigned to cox1, inferred wet periods were associated with high inferred relative abundances of putative limnic organisms (gastropods, green algae), while inferred dry periods showed increased relative abundances for insects. These findings indicate that cross-species hybridization capture can be an effective approach to enhance the information content of sedaDNA in order to explore biosphere changes associated with past environmental conditions, enabling such analyses even under tropical conditions.}, language = {en} } @article{KiemelGurkeParaskevopoulouetal.2022, author = {Kiemel, Katrin and Gurke, Marie and Paraskevopoulou, Sofia and Havenstein, Katja and Weithoff, Guntram and Tiedemann, Ralph}, title = {Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-27137-3}, pages = {14}, year = {2022}, abstract = {Genetic divergence and the frequency of hybridization are central for defining species delimitations, especially among cryptic species where morphological differences are merely absent. Rotifers are known for their high cryptic diversity and therefore are ideal model organisms to investigate such patterns. Here, we used the recently resolved Brachionus calyciflorus species complex to investigate whether previously observed between species differences in thermotolerance and gene expression are also reflected in their genomic footprint. We identified a Heat Shock Protein gene (HSP 40 kDa) which exhibits cross species pronounced sequence variation. This gene exhibits species-specific fixed sites, alleles, and sites putatively under positive selection. These sites are located in protein binding regions involved in chaperoning and may therefore reflect adaptive diversification. By comparing three genetic markers (ITS, COI, HSP 40 kDa), we revealed hybridization events between the cryptic species. The low frequency of introgressive haplotypes/alleles suggest a tight, but not fully impermeable boundary between the cryptic species.}, language = {en} }