@article{FosterHeindelRichozetal.2019, author = {Foster, William J. and Heindel, Katrin and Richoz, Sylvain and Gliwa, Jana and Lehrmann, Daniel J. and Baud, Aymon and Kolar-Jurkovsek, Tea and Aljinovic, Dunja and Jurkovsek, Bogdan and Korn, Dieter and Martindale, Rowan C. and Peckmann, J{\"o}rn}, title = {Suppressed competitive exclusion enabled the proliferation of Permian/Triassic boundary microbialites}, series = {The Depositional Record : the open access journal of the International Association of Sedimentologists}, volume = {6}, journal = {The Depositional Record : the open access journal of the International Association of Sedimentologists}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {2055-4877}, doi = {10.1002/dep2.97}, pages = {62 -- 74}, year = {2019}, abstract = {During the earliest Triassic microbial mats flourished in the photic zones of marginal seas, generating widespread microbialites. It has been suggested that anoxic conditions in shallow marine environments, linked to the end-Permian mass extinction, limited mat-inhibiting metazoans allowing for this microbialite expansion. The presence of a diverse suite of proxies indicating oxygenated shallow sea-water conditions (metazoan fossils, biomarkers and redox proxies) from microbialite successions have, however, challenged the inference of anoxic conditions. Here, the distribution and faunal composition of Griesbachian microbialites from China, Iran, Turkey, Armenia, Slovenia and Hungary are investigated to determine the factors that allowed microbialite-forming microbial mats to flourish following the end-Permian crisis. The results presented here show that Neotethyan microbial buildups record a unique faunal association due to the presence of keratose sponges, while the Palaeotethyan buildups have a higher proportion of molluscs and the foraminifera Earlandia. The distribution of the faunal components within the microbial fabrics suggests that, except for the keratose sponges and some microconchids, most of the metazoans were transported into the microbial framework via wave currents. The presence of both microbialites and metazoan associations were limited to oxygenated settings, suggesting that a factor other than anoxia resulted in a relaxation of ecological constraints following the mass extinction event. It is inferred that the end-Permian mass extinction event decreased the diversity and abundance of metazoans to the point of significantly reducing competition, allowing photosynthesis-based microbial mats to flourish in shallow water settings and resulting in the formation of widespread microbialites.}, language = {en} } @misc{ManzoniCapekPoradaetal.2018, author = {Manzoni, Stefano and Capek, Petr and Porada, Philipp and Thurner, Martin and Winterdahl, Mattias and Beer, Christian and Bruchert, Volker and Frouz, Jan and Herrmann, Anke M. and Lindahl, Bjorn D. and Lyon, Steve W. and Šantrůčkov{\´a}, Hana and Vico, Giulia and Way, Danielle}, title = {Reviews and syntheses}, series = {Biogeosciences}, volume = {15}, journal = {Biogeosciences}, number = {19}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-15-5929-2018}, pages = {5929 -- 5949}, year = {2018}, abstract = {The cycling of carbon (C) between the Earth surface and the atmosphere is controlled by biological and abiotic processes that regulate C storage in biogeochemical compartments and release to the atmosphere. This partitioning is quantified using various forms of C-use efficiency (CUE) - the ratio of C remaining in a system to C entering that system. Biological CUE is the fraction of C taken up allocated to biosynthesis. In soils and sediments, C storage depends also on abiotic processes, so the term C-storage efficiency (CSE) can be used. Here we first review and reconcile CUE and CSE definitions proposed for autotrophic and heterotrophic organisms and communities, food webs, whole ecosystems and watersheds, and soils and sediments using a common mathematical framework. Second, we identify general CUE patterns; for example, the actual CUE increases with improving growth conditions, and apparent CUE decreases with increasing turnover. We then synthesize > 5000CUE estimates showing that CUE decreases with increasing biological and ecological organization - from uni-cellular to multicellular organisms and from individuals to ecosystems. We conclude that CUE is an emergent property of coupled biological-abiotic systems, and it should be regarded as a flexible and scale-dependent index of the capacity of a given system to effectively retain C.}, language = {en} } @article{BielcikAguilarTriguerosLakovicetal.2019, author = {Bielcik, Milos and Aguilar-Trigueros, Carlos A. and Lakovic, Milica and Jeltsch, Florian and Rillig, Matthias C.}, title = {The role of active movement in fungal ecology and community assembly}, series = {Movement Ecology}, volume = {7}, journal = {Movement Ecology}, number = {1}, publisher = {BMC}, address = {London}, issn = {2051-3933}, doi = {10.1186/s40462-019-0180-6}, pages = {12}, year = {2019}, abstract = {Movement ecology aims to provide common terminology and an integrative framework of movement research across all groups of organisms. Yet such work has focused on unitary organisms so far, and thus the important group of filamentous fungi has not been considered in this context. With the exception of spore dispersal, movement in filamentous fungi has not been integrated into the movement ecology field. At the same time, the field of fungal ecology has been advancing research on topics like informed growth, mycelial translocations, or fungal highways using its own terminology and frameworks, overlooking the theoretical developments within movement ecology. We provide a conceptual and terminological framework for interdisciplinary collaboration between these two disciplines, and show how both can benefit from closer links: We show how placing the knowledge from fungal biology and ecology into the framework of movement ecology can inspire both theoretical and empirical developments, eventually leading towards a better understanding of fungal ecology and community assembly. Conversely, by a greater focus on movement specificities of filamentous fungi, movement ecology stands to benefit from the challenge to evolve its concepts and terminology towards even greater universality. We show how our concept can be applied for other modular organisms (such as clonal plants and slime molds), and how this can lead towards comparative studies with the relationship between organismal movement and ecosystems in the focus.}, language = {en} } @article{CostaTomazdeSouzaAyzelHeistermann2020, author = {Costa Tomaz de Souza, Arthur and Ayzel, Georgy and Heistermann, Maik}, title = {Quantifying the location error of precipitation nowcasts}, series = {Advances in meteorology}, volume = {2020}, journal = {Advances in meteorology}, publisher = {Hindawi}, address = {London}, issn = {1687-9309}, doi = {10.1155/2020/8841913}, pages = {12}, year = {2020}, abstract = {In precipitation nowcasting, it is common to track the motion of precipitation in a sequence of weather radar images and to extrapolate this motion into the future. The total error of such a prediction consists of an error in the predicted location of a precipitation feature and an error in the change of precipitation intensity over lead time. So far, verification measures did not allow isolating the extent of location errors, making it difficult to specifically improve nowcast models with regard to location prediction. In this paper, we introduce a framework to directly quantify the location error. To that end, we detect and track scale-invariant precipitation features (corners) in radar images. We then consider these observed tracks as the true reference in order to evaluate the performance (or, inversely, the error) of any model that aims to predict the future location of a precipitation feature. Hence, the location error of a forecast at any lead time Delta t ahead of the forecast time t corresponds to the Euclidean distance between the observed and the predicted feature locations at t + Delta t. Based on this framework, we carried out a benchmarking case study using one year worth of weather radar composites of the German Weather Service. We evaluated the performance of four extrapolation models, two of which are based on the linear extrapolation of corner motion from t - 1 to t (LK-Lin1) and t - 4 to t (LK-Lin4) and the other two are based on the Dense Inverse Search (DIS) method: motion vectors obtained from DIS are used to predict feature locations by linear (DIS-Lin1) and Semi-Lagrangian extrapolation (DIS-Rot1). Of those four models, DIS-Lin1 and LK-Lin4 turned out to be the most skillful with regard to the prediction of feature location, while we also found that the model skill dramatically depends on the sinuosity of the observed tracks. The dataset of 376,125 detected feature tracks in 2016 is openly available to foster the improvement of location prediction in extrapolation-based nowcasting models.}, language = {en} } @article{OguntundeAbiodunLischeidetal.2020, author = {Oguntunde, Philip G. and Abiodun, Babatunde Joseph and Lischeid, Gunnar and Abatan, Abayomi A.}, title = {Droughts projection over the Niger and Volta River basins of West Africa at specific global warming levels}, series = {International Journal of Climatology}, volume = {40}, journal = {International Journal of Climatology}, number = {13}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {12}, year = {2020}, abstract = {This study investigates possible impacts of four global warming levels (GWLs: GWL1.5, GWL2.0, GWL2.5, and GWL3.0) on drought characteristics over Niger River basin (NRB) and Volta River basin (VRB). Two drought indices-Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI)-were employed in characterizing droughts in 20 multi-model simulation outputs from the Coordinated Regional Climate Downscaling Experiment (CORDEX). The performance of the simulation in reproducing basic hydro-climatological features and severe drought characteristics (i.e., magnitude and frequency) in the basins were evaluated. The projected changes in the future drought frequency were quantified and compared under the four GWLs for two climate forcing scenarios (RCP8.5 and RCP4.5). The regional climate model (RCM) ensemble gives a realistic simulation of historical hydro-climatological variables needed to calculate the drought indices. With SPEI, the simulation ensemble projects an increase in the magnitude and frequency of severe droughts over both basins (NRB and VRB) at all GWLs, but the increase, which grows with the GWLs, is higher over NRB than over VRB. More than 75\% of the simulations agree on the projected increase at GWL1.5 and all simulations agree on the increase at higher GWLs. With SPI, the projected changes in severe drought is weaker and the magnitude remains the same at all GWLs, suggesting that SPI projection may underestimate impacts of the GWLs on the intensity and severity of future drought. The results of this study have application in mitigating impact of global warming on future drought risk over the regional water systems.}, language = {en} } @article{MarciszJasseyKosakyanetal.2020, author = {Marcisz, Katarzyna and Jassey, Vincent E. J. and Kosakyan, Anush and Krashevska, Valentyna and Lahr, Daniel J. G. and Lara, Enrique and Lamentowicz, Lukasz and Lamentowicz, Mariusz and Macumber, Andrew and Mazei, Yuri and Mitchell, Edward A. D. and Nasser, Nawaf A. and Patterson, R. Timothy and Roe, Helen M. and Singer, David and Tsyganov, Andrey N. and Fournier, Bertrand}, title = {Testate amoeba functional traits and their use in paleoecology}, series = {Frontiers in Ecology and Evolution}, volume = {8}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2020.575966}, pages = {28}, year = {2020}, abstract = {This review provides a synthesis of current knowledge on the morphological and functional traits of testate amoebae, a polyphyletic group of protists commonly used as proxies of past hydrological changes in paleoecological investigations from peatland, lake sediment and soil archives. A trait-based approach to understanding testate amoebae ecology and paleoecology has gained in popularity in recent years, with research showing that morphological characteristics provide complementary information to the commonly used environmental inferences based on testate amoeba (morpho-)species data. We provide a broad overview of testate amoeba morphological and functional traits and trait-environment relationships in the context of ecology, evolution, genetics, biogeography, and paleoecology. As examples we report upon previous ecological and paleoecological studies that used trait-based approaches, and describe key testate amoebae traits that can be used to improve the interpretation of environmental studies. We also highlight knowledge gaps and speculate on potential future directions for the application of trait-based approaches in testate amoeba research.}, language = {en} } @article{ZingraffHamedHueeskerLuppetal.2020, author = {Zingraff-Hamed, Aude and H{\"u}esker, Frank and Lupp, Gerd and Begg, Chloe and Huang, Josh and Oen, Amy M. P. and Vojinović, Zoran and Kuhlicke, Christian and Pauleit, Stephan}, title = {Stakeholder mapping to co-create nature-based solutions}, series = {Sustainability}, volume = {12}, journal = {Sustainability}, number = {20}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su12208625}, pages = {23}, year = {2020}, abstract = {Nature-based solutions (NBS) are inspired and supported by nature but designed by humans. Historically, governmental stakeholders have aimed to control nature using a top-down approach; more recently, environmental governance has shifted to collaborative planning. Polycentric governance and co-creation procedures, which include a large spectrum of stakeholders, are assumed to be more effective in the management of public goods than traditional approaches. In this context, NBS projects should benefit from strong collaborative governance models, and the European Union is facilitating and encouraging such models. While some theoretical approaches exist, setting-up the NBS co-creation process (namely co-design and co-implementation) currently relies mostly on self-organized stakeholders rather than on strategic decisions. As such, systematic methods to identify relevant stakeholders seem to be crucial to enable higher planning efficiency, reduce bottlenecks and time needed for planning, designing, and implementing NBS. In this context, this contribution is based on the analysis of 16 NBS and 359 stakeholders. Real-life constellations are compared to theoretical typologies, and a systematic stakeholder mapping method to support co-creation is presented. Rather than making one-fit-all statements about the "right" stakeholders, the contribution provides insights for those "in charge" to strategically consider who might be involved at each stage of the NBS project.}, language = {en} } @article{deBritoKuhlickeMarx2020, author = {de Brito, Mariana Madruga and Kuhlicke, Christian and Marx, Andreas}, title = {Near-real-time drought impact assessment}, series = {Environmental research letters}, volume = {15}, journal = {Environmental research letters}, number = {10}, publisher = {IOP Publ.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/aba4ca}, pages = {11}, year = {2020}, abstract = {Contemporary drought impact assessments have been constrained due to data availability, leading to an incomplete representation of impact trends. To address this, we present a novel method for the comprehensive and near-real-time monitoring of drought socio-economic impacts based on media reports. We tested its application using the case of the exceptional 2018/19 German drought. By employing text mining techniques, 4839 impact statements were identified, relating to livestock, agriculture, forestry, fires, recreation, energy and transport sectors. An accuracy of 95.6\% was obtained for their automatic classification. Furthermore, high levels of performance in terms of spatial and temporal precision were found when validating our results against independent data (e.g. soil moisture, average precipitation, population interest in droughts, crop yield and forest fire statistics). The findings highlight the applicability of media data for rapidly and accurately monitoring the propagation of drought consequences over time and space. We anticipate our method to be used as a starting point for an impact-based early warning system.}, language = {en} } @article{ZollDiehlSiebert2019, author = {Zoll, Felix and Diehl, Katharina and Siebert, Rosemarie}, title = {Integrating sustainability goals in innovation processes}, series = {Sustainability}, volume = {11}, journal = {Sustainability}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su11143761}, pages = {15}, year = {2019}, abstract = {The innovative dual-purpose chicken approach aims at contributing to the transition towards sustainable poultry production by avoiding the culling of male chickens. To successfully integrate sustainability aspects into innovation, goal congruency among actors and clearly communicating the added value within the actor network and to consumers is needed. The challenge of identifying common sustainability goals calls for decision support tools. The objectives of our research were to investigate whether the tool could assist in improving communication and marketing with respect to sustainability and optimizing the value chain organization. Three actor groups participated in the tool application, in which quantitative and qualitative data were collected. The results showed that there were manifold sustainability goals within the innovation network, but only some goals overlapped, and the perception of their implementation also diverged. While easily marketable goals such as 'animal welfare' were perceived as being largely implemented, economic goals were prioritized less often, and the implementation was perceived as being rather low. By visualizing congruencies and differences in the goals, the tool helped identify fields of action, such as improved information flows and prompted thinking processes. We conclude that the tool is useful for managing complex decision processes with several actors involved.}, language = {en} } @article{HudsonHagedoornBubeck2020, author = {Hudson, Paul and Hagedoorn, Liselotte and Bubeck, Philip}, title = {Potential linkages between social capital, flood risk perceptions, and self-efficacy}, series = {International journal of disaster risk science}, volume = {11}, journal = {International journal of disaster risk science}, number = {3}, publisher = {Springer}, address = {Berlin}, issn = {2095-0055}, doi = {10.1007/s13753-020-00259-w}, pages = {251 -- 262}, year = {2020}, abstract = {A growing focus is being placed on both individuals and communities to adapt to flooding as part of the Sendai Framework for Disaster Risk Reduction 2015-2030. Adaptation to flooding requires sufficient social capital (linkages between members of society), risk perceptions (understanding of risk), and self-efficacy (self-perceived ability to limit disaster impacts) to be effective. However, there is limited understanding of how social capital, risk perceptions, and self-efficacy interact. We seek to explore how social capital interacts with variables known to increase the likelihood of successful adaptation. To study these linkages we analyze survey data of 1010 respondents across two communities in Thua Tien-Hue Province in central Vietnam, using ordered probit models. We find positive correlations between social capital, risk perceptions, and self-efficacy overall. This is a partly contrary finding to what was found in previous studies linking these concepts in Europe, which may be a result from the difference in risk context. The absence of an overall negative exchange between these factors has positive implications for proactive flood risk adaptation.}, language = {en} } @article{ToetzkeCermakNadezhdinaetal.2017, author = {T{\"o}tzke, Christian and Cermak, Jan and Nadezhdina, Nadezhda and Tributsch, Helmut}, title = {Electrochemical in-situ studies of solar mediated oxygen transport and turnover dynamics in a tree trunk of Tilia cordata}, series = {iForest - Biogeosciences and Forestry}, volume = {10}, journal = {iForest - Biogeosciences and Forestry}, number = {2}, publisher = {SISEF - The Italian Society of Silviculture and Forest Ecology}, address = {Potenza}, issn = {1971-7458}, doi = {10.3832/ifor1681-010}, pages = {355 -- 361}, year = {2017}, abstract = {Platinum electrodes were implanted into the xylem of a lime tree (Tilia cordata) stem and solar- induced electrochemical potential differences of up to 120 mV were measured during the vegetative period and up to 30 mV in winter. The time dependent curves were found to be delayed with respect to solar radiation, sap flow activity, temperature and vapor pressure deficit. A general equation for the potential difference was derived and simplified by analyzing the effect of temperature and tensile strength. The potential determining influence of oxygen concentration on the respective location of the platinum electrode was identified as the principal phenomenon measured. A systematic analysis and investigation of the observed periodic oxygen concentration signals promises new information on sap flow, oxygen diffusion through tree tissues and on oxygen consumption related to the energy turnover in tree tissues.}, language = {en} } @article{VogelPatonAich2021, author = {Vogel, Johannes and Paton, Eva Nora and Aich, Valentin}, title = {Seasonal ecosystem vulnerability to climatic anomalies in the Mediterranean}, series = {Biogeosciences}, volume = {18}, journal = {Biogeosciences}, edition = {22}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4189}, doi = {10.5194/bg-18-5903-2021}, pages = {5903 -- 5927}, year = {2021}, abstract = {Mediterranean ecosystems are particularly vulnerable to climate change and the associated increase in climate anomalies. This study investigates extreme ecosystem responses evoked by climatic drivers in the Mediterranean Basin for the time span 1999-2019 with a specific focus on seasonal variations as the seasonal timing of climatic anomalies is considered essential for impact and vulnerability assessment. A bivariate vulnerability analysis is performed for each month of the year to quantify which combinations of the drivers temperature (obtained from ERA5-Land) and soil moisture (obtained from ESA CCI and ERA5-Land) lead to extreme reductions in ecosystem productivity using the fraction of absorbed photosynthetically active radiation (FAPAR; obtained from the Copernicus Global Land Service) as a proxy. The bivariate analysis clearly showed that, in many cases, it is not just one but a combination of both drivers that causes ecosystem vulnerability. The overall pattern shows that Mediterranean ecosystems are prone to three soil moisture regimes during the yearly cycle: they are vulnerable to hot and dry conditions from May to July, to cold and dry conditions from August to October, and to cold conditions from November to April, illustrating the shift from a soil-moisture-limited regime in summer to an energy-limited regime in winter. In late spring, a month with significant vulnerability to hot conditions only often precedes the next stage of vulnerability to both hot and dry conditions, suggesting that high temperatures lead to critically low soil moisture levels with a certain time lag. In the eastern Mediterranean, the period of vulnerability to hot and dry conditions within the year is much longer than in the western Mediterranean. Our results show that it is crucial to account for both spatial and temporal variability to adequately assess ecosystem vulnerability. The seasonal vulnerability approach presented in this study helps to provide detailed insights regarding the specific phenological stage of the year in which ecosystem vulnerability to a certain climatic condition occurs. How to cite. Vogel, J., Paton, E., and Aich, V.: Seasonal ecosystem vulnerability to climatic anomalies in the Mediterranean, Biogeosciences, 18, 5903-5927, https://doi.org/10.5194/bg-18-5903-2021, 2021.}, language = {en} } @article{Buerger2019, author = {B{\"u}rger, Gerd}, title = {A seamless filter for daily to seasonal forecasts, with applications to Iran and Brazil}, series = {Quarterly Journal of the Royal Meteorological Society}, volume = {146}, journal = {Quarterly Journal of the Royal Meteorological Society}, number = {726}, publisher = {WILEY-VCH}, address = {Weinheim}, pages = {14}, year = {2019}, abstract = {A digital filter is introduced which treats the problem of predictability versus time averaging in a continuous, seamless manner. This seamless filter (SF) is characterized by a unique smoothing rule that determines the strength of smoothing in dependence on lead time. The rule needs to be specified beforehand, either by expert knowledge or by user demand. As a result, skill curves are obtained that allow a predictability assessment across a whole range of time-scales, from daily to seasonal, in a uniform manner. The SF is applied to downscaled SEAS5 ensemble forecasts for two focus regions in or near the tropical belt, the river basins of the Karun in Iran and the Sao Francisco in Brazil. Both are characterized by strong seasonality and semi-aridity, so that predictability across various time-scales is in high demand. Among other things, it is found that from the start of the water year (autumn), areal precipitation is predictable with good skill for the Karun basin two and a half months ahead; for the Sao Francisco it is only one month, longer-term prediction skill is just above the critical level.}, language = {en} } @article{HodgkinsRichardsonDommainetal.2018, author = {Hodgkins, Suzanne B. and Richardson, Curtis J. and Dommain, Rene and Wang, Hongjun and Glaser, Paul H. and Verbeke, Brittany and Winkler, B. Rose and Cobb, Alexander R. and Rich, Virginia I. and Missilmani, Malak and Flanagan, Neal and Ho, Mengchi and Hoyt, Alison M. and Harvey, Charles F. and Vining, S. Rose and Hough, Moira A. and Moore, Tim R. and Richard, Pierre J. H. and De la Cruz, Florentino B. and Toufaily, Joumana and Hamdan, Rasha and Cooper, William T. and Chanton, Jeffrey P.}, title = {Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-06050-2}, pages = {13}, year = {2018}, abstract = {Peatlands represent large terrestrial carbon banks. Given that most peat accumulates in boreal regions, where low temperatures and water saturation preserve organic matter, the existence of peat in (sub)tropical regions remains enigmatic. Here we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Near-surface low-latitude peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, creating a reduced oxidation state and resulting recalcitrance. This recalcitrance allows peat to persist in the (sub)tropics despite warm temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable despite temperature increases up to 9 degrees C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.}, language = {en} } @article{GrafMorenodelasHerasRuizetal.2018, author = {Graf, Lukas and Moreno-de-las-Heras, Mariano and Ruiz, Maurici and Calsamiglia, Aleix and Garc{\´i}a-Comendador, Juli{\´a}n and Fortesa, Josep and L{\´o}pez-Taraz{\´o}n, Jos{\´e} A. and Estrany, Joan}, title = {Accuracy assessment of digital terrain model dataset sources for hydrogeomorphological modelling in small mediterranean catchments}, series = {Remote sensing}, volume = {10}, journal = {Remote sensing}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs10122014}, pages = {26}, year = {2018}, abstract = {Digital terrain models (DTMs) are a fundamental source of information in Earth sciences. DTM-based studies, however, can contain remarkable biases if limitations and inaccuracies in these models are disregarded. In this work, four freely available datasets, including Shuttle Radar Topography Mission C-Band Synthetic Aperture Radar (SRTM C-SAR V3 DEM), Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Map (ASTER GDEM V2), and two nationwide airborne light detection and ranging (LiDAR)-derived DTMs (at 5-m and 1-m spatial resolution, respectively) were analysed in three geomorphologically contrasting, small (3-5 km2) catchments located in Mediterranean landscapes under intensive human influence (Mallorca Island, Spain). Vertical accuracy as well as the influence of each dataset's characteristics on hydrological and geomorphological modelling applicability were assessed by using ground-truth data, classic geometric and morphometric parameters, and a recently proposed index of sediment connectivity. Overall vertical accuracy—expressed as the root mean squared error (RMSE) and normalised median deviation (NMAD)—revealed the highest accuracy for the 1-m (RMSE = 1.55 m; NMAD = 0.44 m) and 5-m LiDAR DTMs (RMSE = 1.73 m; NMAD = 0.84 m). Vertical accuracy of the SRTM data was lower (RMSE = 6.98 m; NMAD = 5.27 m), but considerably higher than for the ASTER data (RMSE = 16.10 m; NMAD = 11.23 m). All datasets were affected by systematic distortions. Propagation of these errors and coarse horizontal resolution caused negative impacts on flow routing, stream network, and catchment delineation, and to a lower extent, on the distribution of slope values. These limitations should be carefully considered when applying DTMs for catchment hydrogeomorphological modelling.}, language = {en} } @article{SkinnerCoulthardSchwanghartetal.2018, author = {Skinner, Christopher J. and Coulthard, Tom J. and Schwanghart, Wolfgang and Van De Wiel, Marco J. and Hancock, Greg}, title = {Global sensitivity analysis of parameter uncertainty in landscape evolution models}, series = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, volume = {11}, journal = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, number = {12}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-11-4873-2018}, pages = {4873 -- 4888}, year = {2018}, abstract = {The evaluation and verification of landscape evolution models (LEMs) has long been limited by a lack of suitable observational data and statistical measures which can fully capture the complexity of landscape changes. This lack of data limits the use of objective function based evaluation prolific in other modelling fields, and restricts the application of sensitivity analyses in the models and the consequent assessment of model uncertainties. To overcome this deficiency, a novel model function approach has been developed, with each model function representing an aspect of model behaviour, which allows for the application of sensitivity analyses. The model function approach is used to assess the relative sensitivity of the CAESAR-Lisflood LEM to a set of model parameters by applying the Morris method sensitivity analysis for two contrasting catchments. The test revealed that the model was most sensitive to the choice of the sediment transport formula for both catchments, and that each parameter influenced model behaviours differently, with model functions relating to internal geomorphic changes responding in a different way to those relating to the sediment yields from the catchment outlet. The model functions proved useful for providing a way of evaluating the sensitivity of LEMs in the absence of data and methods for an objective function approach.}, language = {en} } @article{AyzelIzhitskiy2019, author = {Ayzel, Georgy and Izhitskiy, Alexander}, title = {Climate Change Impact Assessment on Freshwater Inflow into the Small Aral Sea}, series = {Water}, volume = {11}, journal = {Water}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w11112377}, pages = {19}, year = {2019}, abstract = {During the last few decades, the rapid separation of the Small Aral Sea from the isolated basin has changed its hydrological and ecological conditions tremendously. In the present study, we developed and validated the hybrid model for the Syr Darya River basin based on a combination of state-of-the-art hydrological and machine learning models. Climate change impact on freshwater inflow into the Small Aral Sea for the projection period 2007-2099 has been quantified based on the developed hybrid model and bias corrected and downscaled meteorological projections simulated by four General Circulation Models (GCM) for each of three Representative Concentration Pathway scenarios (RCP). The developed hybrid model reliably simulates freshwater inflow for the historical period with a Nash-Sutcliffe efficiency of 0.72 and a Kling-Gupta efficiency of 0.77. Results of the climate change impact assessment showed that the freshwater inflow projections produced by different GCMs are misleading by providing contradictory results for the projection period. However, we identified that the relative runoff changes are expected to be more pronounced in the case of more aggressive RCP scenarios. The simulated projections of freshwater inflow provide a basis for further assessment of climate change impacts on hydrological and ecological conditions of the Small Aral Sea in the 21st Century.}, language = {en} } @article{MarrucciZeilingerRibolinietal.2018, author = {Marrucci, Monica and Zeilinger, Gerold and Ribolini, Adriano and Schwanghart, Wolfgang}, title = {Origin of Knickpoints in an Alpine Context Subject to Different Perturbing Factors, Stura Valley, Maritime Alps (North-Western Italy)}, series = {Geosciences}, volume = {8}, journal = {Geosciences}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2076-3263}, doi = {10.3390/geosciences8120443}, pages = {20}, year = {2018}, abstract = {Natural catchments are likely to show the existence of knickpoints in their river networks. The origin and genesis of the knickpoints can be manifold, considering that the present morphology is the result of the interactions of different factors such as tectonic movements, quaternary glaciations, river captures, variable lithology, and base-level changes. We analyzed the longitudinal profiles of the river channels in the Stura di Demonte Valley (Maritime Alps) to identify the knickpoints of such an alpine setting and to characterize their origins. The distribution and the geometry of stream profiles were used to identify the possible causes of the changes in stream gradients and to define zones with genetically linked knickpoints. Knickpoints are key geomorphological features for reconstructing the evolution of fluvial dissected basins, when the different perturbing factors affecting the ideally graded fluvial system have been detected. This study shows that even in a regionally small area, perturbations of river profiles are caused by multiple factors. Thus, attributing (automatically)-extracted knickpoints solely to one factor, can potentially lead to incomplete interpretations of catchment evolution.}, language = {en} } @article{BormanndeBritoCharchousietal.2018, author = {Bormann, Helge and de Brito, Mariana Madruga and Charchousi, Despoina and Chatzistratis, Dimitris and David, Amrei and Grosser, Paula Farina and Kebschull, Jenny and Konis, Alexandros and Koutalakis, Paschalis and Korali, Alkistis and Krauzig, Naomi and Meier, Jessica and Meliadou, Varvara and Meinhardt, Markus and Munnelly, Kieran and Stephan, Christiane and de Vos, Leon Frederik and Dietrich, J{\"o}rg and Tzoraki, Ourania}, title = {Impact of Hydrological Modellers' Decisions and Attitude on the Performance of a Calibrated Conceptual Catchment Model}, series = {Hydrology}, volume = {5}, journal = {Hydrology}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2306-5338}, doi = {10.3390/hydrology5040064}, pages = {13}, year = {2018}, abstract = {In this study, 17 hydrologists with different experience in hydrological modelling applied the same conceptual catchment model (HBV) to a Greek catchment, using identical data and model code. Calibration was performed manually. Subsequently, the modellers were asked for their experience, their calibration strategy, and whether they enjoyed the exercise. The exercise revealed that there is considerable modellers' uncertainty even among the experienced modellers. It seemed to be equally important whether the modellers followed a good calibration strategy, and whether they enjoyed modelling. The exercise confirmed previous studies about the benefit of model ensembles: Different combinations of the simulation results (median, mean) outperformed the individual model simulations, while filtering the simulations even improved the quality of the model ensembles. Modellers' experience, decisions, and attitude, therefore, have an impact on the hydrological model application and should be considered as part of hydrological modelling uncertainty.}, language = {en} } @article{VogelRivoireDeiddaetal.2021, author = {Vogel, Johannes and Rivoire, Pauline and Deidda, Cristina and Rahimi, Leila and Sauter, Christoph A. and Tschumi, Elisabeth and van der Wiel, Karin and Zhang, Tianyi and Zscheischler, Jakob}, title = {Identifying meteorological drivers of extreme impacts}, series = {Earth System Dynamics}, volume = {12}, journal = {Earth System Dynamics}, issn = {2190-4987}, doi = {10.5194/esd-12-151-2021}, pages = {151 -- 172}, year = {2021}, abstract = {Compound weather events may lead to extreme impacts that can affect many aspects of society including agriculture. Identifying the underlying mechanisms that cause extreme impacts, such as crop failure, is of crucial importance to improve their understanding and forecasting. In this study, we investigate whether key meteorological drivers of extreme impacts can be identified using the least absolute shrinkage and selection operator (LASSO) in a model environment, a method that allows for automated variable selection and is able to handle collinearity between variables. As an example of an extreme impact, we investigate crop failure using annual wheat yield as simulated by the Agricultural Production Systems sIMulator (APSIM) crop model driven by 1600 years of daily weather data from a global climate model (EC-Earth) under present-day conditions for the Northern Hemisphere. We then apply LASSO logistic regression to determine which weather conditions during the growing season lead to crop failure. We obtain good model performance in central Europe and the eastern half of the United States, while crop failure years in regions in Asia and the western half of the United States are less accurately predicted. Model performance correlates strongly with annual mean and variability of crop yields; that is, model performance is highest in regions with relatively large annual crop yield mean and variability. Overall, for nearly all grid points, the inclusion of temperature, precipitation and vapour pressure deficit is key to predict crop failure. In addition, meteorological predictors during all seasons are required for a good prediction. These results illustrate the omnipresence of compounding effects of both meteorological drivers and different periods of the growing season for creating crop failure events. Especially vapour pressure deficit and climate extreme indicators such as diurnal temperature range and the number of frost days are selected by the statistical model as relevant predictors for crop failure at most grid points, underlining their overarching relevance. We conclude that the LASSO regression model is a useful tool to automatically detect compound drivers of extreme impacts and could be applied to other weather impacts such as wildfires or floods. As the detected relationships are of purely correlative nature, more detailed analyses are required to establish the causal structure between drivers and impacts.}, language = {en} } @article{PuppeWannerSommer2018, author = {Puppe, Daniel and Wanner, Manfred and Sommer, Michael}, title = {Data on euglyphid testate amoeba densities, corresponding protozoic silicon pools, and selected soil parameters of initial and forested biogeosystems}, series = {Data in brief}, volume = {21}, journal = {Data in brief}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-3409}, doi = {10.1016/j.dib.2018.10.164}, pages = {1697 -- 1703}, year = {2018}, abstract = {The dataset in the present article provides information on protozoic silicon (Si) pools represented by euglyphid testate amoebae (TA) in soils of initial and forested biogeosystems. Protozoic Si pools were calculated from densities of euglyphid TA shells and corresponding Si contents. The article also includes data on potential annual biosilicification rates of euglyphid TA at the examined sites. Furthermore, data on selected soil parameters (e.g., readily-available Si, soil pH) and site characteristics (e.g., soil groups, climate data) can be found. The data might be interesting for researchers focusing on biological processes in Si cycling in general and euglyphid TA and corresponding protozoic Si pools in particular.}, language = {en} } @article{MartinLopezLeisterCruzetal.2019, author = {Martin-Lopez, Berta and Leister, Ines and Cruz, Pedro Lorenzo and Palomo, Ignacio and Gret-Regamey, Adrienne and Harrison, Paula A. and Lavorel, Sandra and Locatelli, Bruno and Luque, Sandra and Walz, Ariane}, title = {Nature's contributions to people in mountains}, series = {PLoS one}, volume = {14}, journal = {PLoS one}, number = {6}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0217847}, pages = {24}, year = {2019}, abstract = {Mountains play a key role in the provision of nature's contributions to people (NCP) worldwide that support societies' quality of life. Simultaneously, mountains are threatened by multiple drivers of change. Due to the complex interlinkages between biodiversity, quality of life and drivers of change, research on NCP in mountains requires interdisciplinary approaches. In this study, we used the conceptual framework of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) and the notion of NCP to determine to what extent previous research on ecosystem services in mountains has explored the different components of the IPBES conceptual framework. We conducted a systematic review of articles on ecosystem services in mountains published up to 2016 using the Web of Science and Scopus databases. Descriptive statistical and network analyses were conducted to explore the level of research on the components of the IPBES framework and their interactions. Our results show that research has gradually become more interdisciplinary by studying higher number of NCP, dimensions of quality of life, and indirect drivers of change. Yet, research focusing on biodiversity, regulating NCP and direct drivers has decreased over time. Furthermore, despite the fact that research on NCP in mountains becoming more policy-oriented over time, mainly in relation to payments for ecosystem services, institutional responses remained underexplored in the reviewed studies. Finally, we discuss the relevant knowledge gaps that should be addressed in future research in order to contribute to IPBES.}, language = {en} } @article{SchoonoverGretRegameyMetzgeretal.2019, author = {Schoonover, Heather A. and Gret-Regamey, Adrienne and Metzger, Marc J. and Ruiz-Frau, Ana and Santos-Reis, Margarida and Scholte, Samantha S. K. and Walz, Ariane and Nicholas, Kimberly A.}, title = {Creating space, aligning motivations, and building trust}, series = {Ecology and society : a journal of integrative science for resilience and sustainability}, volume = {24}, journal = {Ecology and society : a journal of integrative science for resilience and sustainability}, number = {1}, publisher = {Resilience Alliance}, address = {Wolfville}, issn = {1708-3087}, doi = {10.5751/ES-10061-240111}, pages = {13}, year = {2019}, abstract = {Ecosystem services inherently involve people, whose values help define the benefits of nature's services. It is thus important for researchers to involve stakeholders in ecosystem services research. However, a simple and practicable framework to guide such engagement, and in particular to help researchers anticipate and consider key issues and challenges, has not been well explored. Here, we use experience from the 12 case studies in the European Operational Potential of Ecosystem Research Applications (OPERAs) project to propose a stakeholder engagement framework comprising three key elements: creating space, aligning motivations, and building trust. We argue that involving stakeholders in research demands thoughtful reflection from the researchers about what kind of space they want to create, including if and how they want to bring different interests together, how much space they want to allow for critical discussion, and whether there is a role for particular stakeholders to serve as conduits between others. In addition, understanding their own motivations—including values, knowledge, goals, and desired benefits—will help researchers decide when and how to involve stakeholders, identify areas of common ground and potential disagreement, frame the project appropriately, set expectations, and ensure each party is able to see benefits of engaging with each other. Finally, building relationships with stakeholders can be difficult but considering the roles of existing relationships, time, approach, reputation, and belonging can help build mutual trust. Although the three key elements and the paths between them can play out differently depending on the particular research project, we suggest that a research design that considers how to create the space in which researchers and stakeholders will meet, align motivations between researchers and stakeholders, and build mutual trust will help foster productive researcher-stakeholder relationships.}, language = {en} } @article{MusterRileyRothetal.2019, author = {Muster, Sina and Riley, William J. and Roth, Kurt and Langer, Moritz and Aleina, Fabio Cresto and Koven, Charles D. and Lange, Stephan and Bartsch, Annett and Grosse, Guido and Wilson, Cathy J. and Jones, Benjamin M. and Boike, Julia}, title = {Size distributions of arctic waterbodies reveal consistent relations in their statistical moments in space and time}, series = {Frontiers in Earth Science}, volume = {7}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2019.00005}, pages = {15}, year = {2019}, abstract = {Arctic lowlands are characterized by large numbers of small waterbodies, which are known to affect surface energy budgets and the global carbon cycle. Statistical analysis of their size distributions has been hindered by the shortage of observations at sufficiently high spatial resolutions. This situation has now changed with the high-resolution (<5 m) circum-Arctic Permafrost Region Pond and Lake (PeRL) database recently becoming available. We have used this database to make the first consistent, high-resolution estimation of Arctic waterbody size distributions, with surface areas ranging from 0.0001 km(2) (100 m(2)) to 1 km(2). We found that the size distributions varied greatly across the thirty study regions investigated and that there was no single universal size distribution function (including power-law distribution functions) appropriate across all of the study regions. We did, however, find close relationships between the statistical moments (mean, variance, and skewness) of the waterbody size distributions from different study regions. Specifically, we found that the spatial variance increased linearly with mean waterbody size (R-2 = 0.97, p < 2.2e-16) and that the skewness decreased approximately hyperbolically. We have demonstrated that these relationships (1) hold across the 30 Arctic study regions covering a variety of (bio)climatic and permafrost zones, (2) hold over time in two of these study regions for which multi-decadal satellite imagery is available, and (3) can be reproduced by simulating rising water levels in a high-resolution digital elevation model. The consistent spatial and temporal relationships between the statistical moments of the waterbody size distributions underscore the dominance of topographic controls in lowland permafrost areas. These results provide motivation for further analyses of the factors involved in waterbody development and spatial distribution and for investigations into the possibility of using statistical moments to predict future hydrologic dynamics in the Arctic.}, language = {en} } @article{HellwigTattiSartorietal.2018, author = {Hellwig, Niels and Tatti, Dylan and Sartori, Giacomo and Anschlag, Kerstin and Graefe, Ulfert and Egli, Markus and Gobat, Jean-Michel and Broll, Gabriele}, title = {Modeling spatial patterns of humus forms in montane and subalpine forests}, series = {Sustainability}, volume = {11}, journal = {Sustainability}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su11010048}, pages = {15}, year = {2018}, abstract = {Humus forms are a distinctive morphological indicator of soil organic matter decomposition. The spatial distribution of humus forms depends on environmental factors such as topography, climate and vegetation. In montane and subalpine forests, environmental influences show a high spatial heterogeneity, which is reflected by a high spatial variability of humus forms. This study aims at examining spatial patterns of humus forms and their dependence on the spatial scale in a high mountain forest environment (Val di Sole/Val di Rabbi, Trentino, Italian Alps). On the basis of the distributions of environmental covariates across the study area, we described humus forms at the local scale (six sampling sites), slope scale (60 sampling sites) and landscape scale (30 additional sampling sites). The local variability of humus forms was analyzed with regard to the ground cover type. At the slope and landscape scale, spatial patterns of humus forms were modeled applying random forests and ordinary kriging of the model residuals. The results indicate that the occurrence of the humus form classes Mull, Mullmoder, Moder, Amphi and Eroded Moder generally depends on the topographical position. Local-scale patterns are mostly related to micro-topography (local accumulation and erosion sites) and ground cover, whereas slope-scale patterns are mainly connected with slope exposure and elevation. Patterns at the landscape scale show a rather irregular distribution, as spatial models at this scale do not account for local to slope-scale variations of humus forms. Moreover, models at the slope scale perform distinctly better than at the landscape scale. In conclusion, the results of this study highlight that landscape-scale predictions of humus forms should be accompanied by local- and slope-scale studies in order to enhance the general understanding of humus form patterns.}, language = {en} } @article{BarbosadeLiraRabeloCoelhoetal.2019, author = {Barbosa, Luis Romero and de Lira, Nicholas Borges and Rabelo Coelho, Victor Hugo and Bernard Passerat de Silans, Alain Marie and Gadelha, Andre Nobrega and Almeida, Cristiano das Neves}, title = {Stability of Soil Moisture Patterns Retrieved at Different Temporal Resolutions in a Tropical Watershed}, series = {Revista brasileira de ciencias do solo}, volume = {43}, journal = {Revista brasileira de ciencias do solo}, publisher = {Sociedade Brasileira de Ciencia do Solo}, address = {Vicosa}, issn = {0100-0683}, doi = {10.1590/18069657rbcs20180236}, pages = {21}, year = {2019}, abstract = {Above and underground hydrological processes depend on soil moisture (SM) variability, driven by different environmental factors that seldom are well-monitored, leading to a misunderstanding of soil water temporal patterns. This study investigated the stability of the SM temporal dynamics to different monitoring temporal resolutions around the border between two soil types in a tropical watershed. Four locations were instrumented in a small-scale watershed (5.84 km(2)) within the tropical coast of Northeast Brazil, encompassing different soil types (Espodossolo Humiluvico or Carbic Podzol, and Argissolo Vermelho-Amarelo or Haplic Acrisol), land covers (Atlantic Forest, bush vegetation, and grassland) and topographies (flat and moderate slope). The SM was monitored at a temporal resolution of one hour along the 2013-2014 hydrological year and then resampled a resolutions of 6 h, 12 h, 1 day, 2 days, 4 days, 7 days, and 15 days. Descriptive statistics, temporal variability, time-stability ranking, and hierarchical clustering revealed uneven associations among SM time components. The results show that the time-invariant component ruled SM temporal variability over the time-varying parcel, either at high or low temporal resolutions. Time-steps longer than 2 days affected the mean statistical metrics of the SM time-variant parcel. Additionally, SM at downstream and upstream sites behaved differently, suggesting that the temporal mean was regulated by steady soil properties (slope, restrictive layer, and soil texture), whereas their temporal anomalies were driven by climate (rainfall) and hydrogeological (groundwater level) factors. Therefore, it is concluded that around the border between tropical soil types, the distinct behaviour of time-variant and time-invariant components of SM time series reflects different combinations of their soil properties.}, language = {en} } @article{ParkBatallaBirgandetal.2019, author = {Park, Jungsu and Batalla, Ramon J. and Birgand, Francois and Esteves, Michel and Gentile, Francesco and Harrington, Joseph R. and Navratil, Oldrich and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Vericat, Damia}, title = {Influences of Catchment and River Channel Characteristics on the Magnitude and Dynamics of Storage and Re-Suspension of Fine Sediments in River Beds}, series = {Water}, volume = {11}, journal = {Water}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w11050878}, pages = {23}, year = {2019}, abstract = {Fine particles or sediments are one of the important variables that should be considered for the proper management of water quality and aquatic ecosystems. In the present study, the effect of catchment characteristics on the performance of an already developed model for the estimation of fine sediments dynamics between the water column and sediment bed was tested, using 13 catchments distributed worldwide. The model was calibrated to determine two optimal model parameters. The first is the filtration parameter, which represents the filtration of fine sediments through pores of the stream bed during the recession period of a flood event. The second parameter is the bed erosion parameter that represents the active layer, directly related to the re-suspension of fine sediments during a flood event. A dependency of the filtration parameter with the catchment area was observed in catchments smaller than 100 km(2), whereas no particular relationship was observed for larger catchments (>100 km(2)). In contrast, the bed erosion parameter does not show a noticeable dependency with the area or other environmental characteristics. The model estimated the mass of fine sediments released from the sediment bed to the water column during flood events in the 13 catchments within 23\% bias.}, language = {en} } @article{RusakTanentzapKlugetal.2018, author = {Rusak, James A. and Tanentzap, Andrew J. and Klug, Jennifer L. and Rose, Kevin C. and Hendricks, Susan P. and Jennings, Eleanor and Laas, Alo and Pierson, Donald C. and Ryder, Elizabeth and Smyth, Robyn L. and White, D. S. and Winslow, Luke A. and Adrian, Rita and Arvola, Lauri and de Eyto, Elvira and Feuchtmayr, Heidrun and Honti, Mark and Istvanovics, Vera and Jones, Ian D. and McBride, Chris G. and Schmidt, Silke Regina and Seekell, David and Staehr, Peter A. and Guangwei, Zhu}, title = {Wind and trophic status explain within and among-lake variability of algal biomass}, series = {Limnology and oceanography letters / ASLO, Association for the Sciences of Limnology and Oceanography}, volume = {3}, journal = {Limnology and oceanography letters / ASLO, Association for the Sciences of Limnology and Oceanography}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {2378-2242}, doi = {10.1002/lol2.10093}, pages = {409 -- 418}, year = {2018}, abstract = {Phytoplankton biomass and production regulates key aspects of freshwater ecosystems yet its variability and subsequent predictability is poorly understood. We estimated within-lake variation in biomass using high-frequency chlorophyll fluorescence data from 18 globally distributed lakes. We tested how variation in fluorescence at monthly, daily, and hourly scales was related to high-frequency variability of wind, water temperature, and radiation within lakes as well as productivity and physical attributes among lakes. Within lakes, monthly variation dominated, but combined daily and hourly variation were equivalent to that expressed monthly. Among lakes, biomass variability increased with trophic status while, within-lake biomass variation increased with increasing variability in wind speed. Our results highlight the benefits of high-frequency chlorophyll monitoring and suggest that predicted changes associated with climate, as well as ongoing cultural eutrophication, are likely to substantially increase the temporal variability of algal biomass and thus the predictability of the services it provides.}, language = {en} } @article{WebberLischeidSommeretal.2020, author = {Webber, Heidi and Lischeid, Gunnar and Sommer, Michael and Finger, Robert and Nendel, Claas and Gaiser, Thomas and Ewert, Frank}, title = {No perfect storm for crop yield failure in Germany}, series = {Environmental research letters}, volume = {15}, journal = {Environmental research letters}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/aba2a4}, pages = {14}, year = {2020}, abstract = {Large-scale crop yield failures are increasingly associated with food price spikes and food insecurity and are a large source of income risk for farmers. While the evidence linking extreme weather to yield failures is clear, consensus on the broader set of weather drivers and conditions responsible for recent yield failures is lacking. We investigate this for the case of four major crops in Germany over the past 20 years using a combination of machine learning and process-based modelling. Our results confirm that years associated with widespread yield failures across crops were generally associated with severe drought, such as in 2018 and to a lesser extent 2003. However, for years with more localized yield failures and large differences in spatial patterns of yield failures between crops, no single driver or combination of drivers was identified. Relatively large residuals of unexplained variation likely indicate the importance of non-weather related factors, such as management (pest, weed and nutrient management and possible interactions with weather) explaining yield failures. Models to inform adaptation planning at farm, market or policy levels are here suggested to require consideration of cumulative resource capture and use, as well as effects of extreme events, the latter largely missing in process-based models. However, increasingly novel combinations of weather events under climate change may limit the extent to which data driven methods can replace process-based models in risk assessments.}, language = {en} } @article{TesselaarBotzenHaeretal.2020, author = {Tesselaar, Max and Botzen, W. J. Wouter and Haer, Toon and Hudson, Paul and Tiggeloven, Timothy and Aerts, Jeroen C. J. H.}, title = {Regional inequalities in flood insurance affordability and uptake under climate change}, series = {Sustainability}, volume = {12}, journal = {Sustainability}, number = {20}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su12208734}, pages = {30}, year = {2020}, abstract = {Flood insurance coverage can enhance financial resilience of households to changing flood risk caused by climate change. However, income inequalities imply that not all households can afford flood insurance. The uptake of flood insurance in voluntary markets may decline when flood risk increases as a result of climate change. This increase in flood risk may cause substantially higher risk-based insurance premiums, reduce the willingness to purchase flood insurance, and worsen problems with the unaffordability of coverage for low-income households. A socio-economic tipping-point can occur when the functioning of a formal flood insurance system is hampered by diminishing demand for coverage. In this study, we examine whether such a tipping-point can occur in Europe for current flood insurance systems under different trends in future flood risk caused by climate and socio-economic change. This analysis gives insights into regional inequalities concerning the ability to continue to use flood insurance as an instrument to adapt to changing flood risk. For this study, we adapt the "Dynamic Integrated Flood and Insurance" (DIFI) model by integrating new flood risk simulations in the model that enable examining impacts from various scenarios of climate and socio-economic change on flood insurance premiums and consumer demand. Our results show rising unaffordability and declining demand for flood insurance across scenarios towards 2080. Under a high climate change scenario, simulations show the occurrence of a socio-economic tipping-point in several regions, where insurance uptake almost disappears. A tipping-point and related inequalities in the ability to use flood insurance as an adaptation instrument can be mitigated by introducing reforms of flood insurance arrangements.}, language = {en} } @article{PanWangLiuetal.2020, author = {Pan, Xiaohui and Wang, Weishi and Liu, Tie and Huang, Yue and De Maeyer, Philippe and Guo, Chenyu and Ling, Yunan and Akmalov, Shamshodbek}, title = {Quantitative detection and attribution of groundwater level variations in the Amu Darya Delta}, series = {Water}, volume = {12}, journal = {Water}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w12102869}, pages = {20}, year = {2020}, abstract = {In the past few decades, the shrinkage of the Aral Sea is one of the biggest ecological catastrophes caused by human activity. To quantify the joint impact of both human activities and climate change on groundwater, the spatiotemporal groundwater dynamic characteristics in the Amu Darya Delta of the Aral Sea from 1999 to 2017 were analyzed, using the groundwater level, climate conditions, remote sensing data, and irrigation information. Statistics analysis was adopted to analyze the trend of groundwater variation, including intensity, periodicity, spatial structure, while the Pearson correlation analysis and principal component analysis (PCA) were used to quantify the impact of climate change and human activities on the variabilities of the groundwater level. Results reveal that the local groundwater dynamic has varied considerably. From 1999 to 2002, the groundwater level dropped from -189 cm to -350 cm. Until 2017, the groundwater level rose back to -211 cm with fluctuation. Seasonally, the fluctuation period of groundwater level and irrigation water was similar, both were about 18 months. Spatially, the groundwater level kept stable within the irrigation area and bare land but fluctuated drastically around the irrigation area. The Pearson correlation analysis reveals that the dynamic of the groundwater level is closely related to irrigation activity within the irrigation area (Nukus: -0.583), while for the place adjacent to the Aral Sea, the groundwater level is closely related to the Large Aral Sea water level (Muynak: 0.355). The results of PCA showed that the cumulative contribution rate of the first three components exceeds 85\%. The study reveals that human activities have a great impact on groundwater, effective management, and the development of water resources in arid areas is an essential prerequisite for ecological protection.}, language = {en} } @article{Natho2021, author = {Natho, Stephanie}, title = {How Flood Hazard Maps Improve the Understanding of Ecologically Active Floodplains}, series = {Water / Molecular Diversity Preservation International (MDPI)}, volume = {13}, journal = {Water / Molecular Diversity Preservation International (MDPI)}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w13070937}, pages = {17}, year = {2021}, abstract = {Floodplains are threatened ecosystems and are not only ecologically meaningful but also important for humans by creating multiple benefits. Many underlying functions, like nutrient retention, carbon sequestration or water regulation, strongly depend on regular inundation. So far, these are approached on the basis of what are called 'active floodplains'. Active floodplains, defined as statistically inundated once every 100 years, represent less than 10\% of a floodplain's original size. Still, should this remaining area be considered as one homogenous surface in terms of floodplain function, or are there any alternative approaches to quantify ecologically active floodplains? With the European Flood Hazard Maps, the extent of not only medium floods (T-medium) but also frequent floods (T-frequent) needs to be modelled by all member states of the European Union. For large German rivers, both scenarios were compared to quantify the extent, as well as selected indicators for naturalness derived from inundation. It is assumed that the more naturalness there is, the more inundation and the better the functioning. Real inundation was quantified using measured discharges from relevant gauges over the past 20 years. As a result, land uses indicating strong human impacts changed significantly from T-frequent to T-medium floodplains. Furthermore, the extent, water depth and water volume stored in the T-frequent and T-medium floodplains is significantly different. Even T-frequent floodplains experienced inundation for only half of the considered gauges during the past 20 years. This study gives evidence for considering regulation functions on the basis of ecologically active floodplains, meaning in floodplains with more frequent inundation that T-medium floodplains delineate.}, language = {en} } @article{VoitHeistermann2022, author = {Voit, Paul and Heistermann, Maik}, title = {A new index to quantify the extremeness of precipitation across scales}, series = {NHESS - Natural Hazards and Earth System Sciences}, volume = {22}, journal = {NHESS - Natural Hazards and Earth System Sciences}, edition = {8}, publisher = {Copernicus}, address = {Katlenburg-Lindau}, issn = {1684-9981}, doi = {10.5194/nhess-22-2791-2022}, pages = {2791 -- 2805}, year = {2022}, abstract = {Quantifying the extremeness of heavy precipitation allows for the comparison of events. Conventional quantitative indices, however, typically neglect the spatial extent or the duration, while both are important to understand potential impacts. In 2014, the weather extremity index (WEI) was suggested to quantify the extremeness of an event and to identify the spatial and temporal scale at which the event was most extreme. However, the WEI does not account for the fact that one event can be extreme at various spatial and temporal scales. To better understand and detect the compound nature of precipitation events, we suggest complementing the original WEI with a "cross-scale weather extremity index" (xWEI), which integrates extremeness over relevant scales instead of determining its maximum. Based on a set of 101 extreme precipitation events in Germany, we outline and demonstrate the computation of both WEI and xWEI. We find that the choice of the index can lead to considerable differences in the assessment of past events but that the most extreme events are ranked consistently, independently of the index. Even then, the xWEI can reveal cross-scale properties which would otherwise remain hidden. This also applies to the disastrous event from July 2021, which clearly outranks all other analyzed events with regard to both WEI and xWEI. While demonstrating the added value of xWEI, we also identify various methodological challenges along the required computational workflow: these include the parameter estimation for the extreme value distributions, the definition of maximum spatial extent and temporal duration, and the weighting of extremeness at different scales. These challenges, however, also represent opportunities to adjust the retrieval of WEI and xWEI to specific user requirements and application scenarios.}, language = {en} } @article{NathoTschikofBondarKunzeetal.2020, author = {Natho, Stephanie and Tschikof, Martin and Bondar-Kunze, Elisabeth and Hein, Thomas}, title = {Modeling the effect of enhanced lateral connectivity on nutrient retention capacity in large river floodplains}, series = {Frontiers in Environmental Science}, volume = {8}, journal = {Frontiers in Environmental Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-665X}, doi = {10.3389/fenvs.2020.00074}, pages = {16}, year = {2020}, abstract = {Floodplains have been degraded in Central Europe for centuries, resulting in less dynamic and less diverse ecosystems than in the past. They provide essential ecosystem services like nutrient retention to improve overall water quality and thus fulfill naturally what EU legislation demands, but this service is impaired by reduced connectivity patterns. Along the second-longest river in Europe, the Danube, restoration measures have been carried out and are planned for the near future in the Austrian Danube Floodplain National Park in accordance with navigation purposes. We investigated nutrient retention capacity in seven currently differently connected side arms and the effects of proposed restoration measures using two complementary modeling approaches. We modeled nutrient retention capacity in two scenarios considering different hydrological conditions, as well as the consequences of planned restoration measures for side arm connectivity. With existing monitoring data on hydrology, nitrate, and total phosphorus concentrations for three side arms, we applied a statistical model and compared these results to a semi-empirical retention model. The latter was originally developed for larger scales, based on transferable causalities of retention processes and set up for this floodplain with publicly available data. Both model outcomes are in a comparable range for NO3-N (77-198 kg ha(-1)yr(-1)) and TP (1.4-5.7 kg ha(-1)yr(-1)) retention and agree in calculating higher retention in floodplains, where reconnection allows more frequent inundation events. However, the differences in the model results are significant for specific aspects especially during high flows, where the semi-empirical model complements the statistical model. On the other hand, the statistical model complements the semi-empirical model when taking into account nutrient retention at times of no connection between the remaining water bodies left in the floodplain. Overall, both models show clearly that nutrient retention in the Danube floodplains can be enhanced by restoring lateral hydrological reconnection and, for all planned measures, a positive effect on the overall water quality of the Danube River is expected. Still, a frequently hydrologically connected stretch of national park is insufficient to improve the water quality of the whole Upper Danube, and more functional floodplains are required.}, language = {en} } @misc{Lorenz2022, type = {Master Thesis}, author = {Lorenz, Theo}, title = {Entwicklung eines Konzepts zur Umsetzung des SAMR-Modells im Geographieunterricht}, series = {Potsdamer Geographische Praxis}, journal = {Potsdamer Geographische Praxis}, number = {17}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-540-8}, issn = {2194-1599}, doi = {10.25932/publishup-53846}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-538462}, school = {Universit{\"a}t Potsdam}, pages = {87}, year = {2022}, abstract = {Die Gesellschaft befindet sich l{\"a}ngst in einem digitalen Transformationsprozess. Alle gesellschaftlichen Bereiche ver{\"a}ndern sich. Man spricht von einer Kultur der Digitalit{\"a}t, die den Leitmedienwechsel vom gedruckten Buch hin zum vernetzten digitalen Endger{\"a}t beschreibt. Auch die Institution „Schule" muss sich diesem Wandel {\"o}ffnen. Einen wesentlichen Schritt stellt das Strategiepapier der Kultusministerkonferenz „Bildung in der digitalen Welt" aus dem Jahr 2017 dar. Darin legt sie die wesentlichen Handlungsfelder zu einem digitalen Wandel fest und erweitert den Bildungsauftrag um die „Kompetenzen in der digitalen Welt". Das sog. SAMR-Modell stellt dabei ein geeignetes Umsetzungs- und Reflektionswerkzeug f{\"u}r den Einsatz digitaler Medien dar. Es strukturiert den Einsatz auf vier Stufen. Die beiden unteren Stufen (Substitution und Augmentation) schreiben der Art und Weise, wie die digitalen Medien genutzt werden, eine Ersatz- oder Verbesserungsfunktion des analogen Lernwerkzeuges zu. Ziel des Modells ist es aber, mithilfe hinzugewonnener digitaler M{\"o}glichkeiten, Lernen neu zu gestalten. Da das Modell aus den USA stammt, weist es weder direkten Bez{\"u}ge zum Strategiepapier der Kultusministerkonferenz noch zu den Bildungsstandards der Geographie auf. Diese wissenschaftliche Arbeit stellt diese Bez{\"u}ge her. Ziel ist es, auf der Grundlage des SAMR-Modells ein Handlungskonzept f{\"u}r Geographielehrkr{\"a}fte zu entwickeln. Es zeigt auf, wie sie sowohl fachliche Kompetenzen als auch Kompetenzen in der digitalen Welt systematisch bei den Lernenden f{\"o}rdern k{\"o}nnen.}, language = {de} } @article{WehrhanSommer2021, author = {Wehrhan, Marc and Sommer, Michael}, title = {A parsimonious approach to estimate soil organic carbon applying Unmanned Aerial System (UAS) multispectral imagery and the topographic position index in a heterogeneous soil landscape}, series = {Remote sensing / Molecular Diversity Preservation International (MDPI)}, volume = {13}, journal = {Remote sensing / Molecular Diversity Preservation International (MDPI)}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs13183557}, pages = {20}, year = {2021}, abstract = {Remote sensing plays an increasingly key role in the determination of soil organic carbon (SOC) stored in agriculturally managed topsoils at the regional and field scales. Contemporary Unmanned Aerial Systems (UAS) carrying low-cost and lightweight multispectral sensors provide high spatial resolution imagery (<10 cm). These capabilities allow integrate of UAS-derived soil data and maps into digitalized workflows for sustainable agriculture. However, the common situation of scarce soil data at field scale might be an obstacle for accurate digital soil mapping. In our case study we tested a fixed-wing UAS equipped with visible and near infrared (VIS-NIR) sensors to estimate topsoil SOC distribution at two fields under the constraint of limited sampling points, which were selected by pedological knowledge. They represent all releva nt soil types along an erosion-deposition gradient; hence, the full feature space in terms of topsoils' SOC status. We included the Topographic Position Index (TPI) as a co-variate for SOC prediction. Our study was performed in a soil landscape of hummocky ground moraines, which represent a significant of global arable land. Herein, small scale soil variability is mainly driven by tillage erosion which, in turn, is strongly dependent on topography. Relationships between SOC, TPI and spectral information were tested by Multiple Linear Regression (MLR) using: (i) single field data (local approach) and (ii) data from both fields (pooled approach). The highest prediction performance determined by a leave-one-out-cross-validation (LOOCV) was obtained for the models using the reflectance at 570 nm in conjunction with the TPI as explanatory variables for the local approach (coefficient of determination (R-2) = 0.91; root mean square error (RMSE) = 0.11\% and R-2 = 0.48; RMSE = 0.33, respectively). The local MLR models developed with both reflectance and TPI using values from all points showed high correlations and low prediction errors for SOC content (R-2 = 0.88, RMSE = 0.07\%; R-2 = 0.79, RMSE = 0.06\%, respectively). The comparison with an enlarged dataset consisting of all points from both fields (pooled approach) showed no improvement of the prediction accuracy but yielded decreased prediction errors. Lastly, the local MLR models were applied to the data of the respective other field to evaluate the cross-field prediction ability. The spatial SOC pattern generally remains unaffected on both fields; differences, however, occur concerning the predicted SOC level. Our results indicate a high potential of the combination of UAS-based remote sensing and environmental covariates, such as terrain attributes, for the prediction of topsoil SOC content at the field scale. The temporal flexibility of UAS offer the opportunity to optimize flight conditions including weather and soil surface status (plant cover or residuals, moisture and roughness) which, otherwise, might obscure the relationship between spectral data and SOC content. Pedologically targeted selection of soil samples for model development appears to be the key for an efficient and effective prediction even with a small dataset.}, language = {en} } @article{PatonVogelKlugeetal.2021, author = {Paton, Eva and Vogel, Johannes Joscha and Kluge, Bj{\"o}rn and Nehls, Thomas}, title = {Ausmaß, Trend und Extrema von D{\"u}rren im urbanen Raum}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {65}, journal = {Hydrologie und Wasserbewirtschaftung}, number = {1}, publisher = {Bundesanstalt f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, doi = {10.5675/HyWa_2021.1_1}, pages = {5 -- 16}, year = {2021}, abstract = {Summers are currently perceived to be getting longer, hotter and more extreme - and this impression is reinforced in urban areas by the occurrence of heat island effects in densely built-up areas. To assess the real extent of increasing drought occurrences in German cities, a DWD data set of 31 urban climate stations for the period 1950 to 2019 was analysed using the standardised precipitation index (SPI) with regard to meteorological drought lengths, drought extrema, heat waves and compound events in the form of simultaneously occurring heat waves and drought months. The analysis shows a large degree of heterogeneity within Germany: a severe drought occurred in most cities in 2018, while the year 2018 was among the three years with the longest droughts (since 1950) for only one third of the cities. Some southern and central German cities show a statistically significant increase in drought months per decade since 1950, other cities, mostly in the north and northwest, only show an increase in the past two decades or even no trend at all. The compound analysis of simultaneously occurring heat and drought months shows a strong increase at most stations in the last two decades, whereby the two components are responsible with a very different proportion regionally for the increase in compound events.}, language = {de} } @article{SusmanGuetteWeith2021, author = {Susman, Roni and G{\"u}tte, Annelie Maja and Weith, Thomas}, title = {Drivers of land use conflicts in infrastructural mega projects in coastal areas}, series = {Land : open access journal}, volume = {10}, journal = {Land : open access journal}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-445X}, doi = {10.3390/land10060615}, pages = {24}, year = {2021}, abstract = {Coastal areas are particularly sensitive because they are complex, and related land use conflicts are more intense than those in noncoastal areas. In addition to representing a unique encounter of natural and socioeconomic factors, coastal areas have become paradigms of progressive urbanisation and economic development. Our study of the infrastructural mega project of Patimban Seaport in Indonesia explores the factors driving land use changes and the subsequent land use conflicts emerging from large-scale land transformation in the course of seaport development and mega project governance. We utilised interviews and questionnaires to investigate institutional aspects and conflict drivers. Specifically, we retrace and investigate the mechanisms guiding how mega project governance, land use planning, and actual land use interact. Therefore, we observe and analyse where land use conflicts emerge and the roles that a lack of stakeholder interest involvement and tenure-responsive planning take in this process. Our findings reflect how mismanagement and inadequate planning processes lead to market failure, land abandonment and dereliction and how they overburden local communities with the costs of mega projects. Enforcing a stronger coherence between land use planning, participation and land tenure within the land governance process in coastal land use development at all levels and raising the capacity of stakeholders to interfere with governance and planning processes will reduce conflicts and lead to sustainable coastal development in Indonesia.}, language = {en} } @phdthesis{Burgold2022, author = {Burgold, Julia}, title = {Erfahrung und Reflexion von Obdachlosigkeit}, series = {Potsdamer Geographische Praxis}, journal = {Potsdamer Geographische Praxis}, number = {18}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-541-5}, issn = {2194-1599}, doi = {10.25932/publishup-55393}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553932}, school = {Universit{\"a}t Potsdam}, pages = {342}, year = {2022}, abstract = {Die Arbeit gibt einen Einblick in die Verst{\"a}ndigungspraxen bei Stadtf{\"u}hrungen mit (ehemaligen) Obdachlosen, die in ihrem Selbstverst{\"a}ndnis auf die Herstellung von Verst{\"a}ndnis, Toleranz und Anerkennung f{\"u}r von Obdachlosigkeit betroffene Personen zielen. Zun{\"a}chst wird in den Diskurs des Slumtourismus eingef{\"u}hrt und, angesichts der Vielfalt der damit verbundenen Erscheinungsformen, Slumming als organisierte Begegnung mit sozialer Ungleichheit definiert. Die zentralen Diskurslinien und die darin eingewobenen moralischen Positionen werden nachvollzogen und im Rahmen der eigenommenen wissenssoziologischen Perspektive als Ausdruck einer per se polykontexturalen Praxis re-interpretiert. Slumming erscheint dann als eine organisierte Begegnung von Lebensformen, die sich in einer Weise fremd sind, als dass ein unmittelbares Verstehen unwahrscheinlich erscheint und genau aus diesem Grund auf der Basis von g{\"a}ngigen Interpretationen des Common Sense ausgehandelt werden muss. Vor diesem Hintergrund untersucht die vorliegende Arbeit, wie sich Teilnehmer und Stadtf{\"u}hrer {\"u}ber die Erfahrung der Obdachlosigkeit praktisch verst{\"a}ndigen und welcher Art das hier{\"u}ber erzeugte Verst{\"a}ndnis f{\"u}r die im {\"o}ffentlichen Diskurs mit vielf{\"a}ltigen stigmatisierenden Zuschreibungen versehenen Obdachlosen ist. Dabei interessiert besonders, in Bezug auf welche Aspekte der Erfahrung von Obdachlosigkeit ein gemeinsames Verst{\"a}ndnis m{\"o}glich wird und an welchen Stellen dieses an Grenzen ger{\"a}t. Dazu wurden die Gespr{\"a}chsverl{\"a}ufe auf neun Stadtf{\"u}hrungen mit (ehemaligen) obdachlosen Stadtf{\"u}hrern unterschiedlicher Anbieter im deutschsprachigen Raum verschriftlicht und mit dem Verfahren der Dokumentarischen Methode ausgewertet. Die vergleichende Betrachtung der Verst{\"a}ndigungspraxen er{\"o}ffnet nicht zuletzt eine differenzierte Perspektive auf die in den Prozessen der Verst{\"a}ndigung immer schon eingewobenen Anerkennungspraktiken. Mit Blick auf die moralische Debatte um organisierte Begegnungen mit sozialer Ungleichheit wird dadurch eine ethische Perspektive angeregt, in deren Zentrum Fragen zur Vermittlungsarbeit stehen.}, language = {de} } @phdthesis{Wienecke2021, author = {Wienecke, Maik}, title = {Wohin mit der sozialistischen Pers{\"o}nlichkeit?}, series = {Potsdamer Geographische Praxis}, journal = {Potsdamer Geographische Praxis}, number = {16}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-518-7}, issn = {2194-1599}, doi = {10.25932/publishup-51591}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515911}, school = {Universit{\"a}t Potsdam}, pages = {254}, year = {2021}, abstract = {Das Schulfach Geographie war in der DDR eines der F{\"a}cher, das sehr stark mit politischen Themen im Sinne des Marxismus-Leninismus best{\"u}ckt war. Ein anderer Aspekt sind die sozialistischen Erziehungsziele, die in der Schulbildung der DDR hoch im Kurs standen. Im Fokus stand diesbez{\"u}glich die Erziehung der Kinder zu sozialistischen Pers{\"o}nlichkeiten. Die Arbeit versucht einen klaren Blick auf diesen Umstand zu werfen, um zu erfahren, was da von den Lehrkr{\"a}ften gefordert wurde und wie es in der Schule umzusetzen war. Durch den Fall der Mauer war nat{\"u}rlich auch eine Umstrukturierung des Bildungssystems im Osten unausweichlich. Hier will die Arbeit Einblicke geben, wie die Geographielehrkr{\"a}fte diese Transformation mitgetragen und umgesetzt haben. Welche Wesensz{\"u}ge aus der Sozialisierung in der DDR haben sich bei der Gestaltung des Unterrichtes und dessen Ausrichtung auf die neuen Erziehungsziele erhalten? Hierzu wurden Geographielehrkr{\"a}fte befragt, die sowohl in der DDR als auch im geeinten Deutschland unterrichtet haben. Die Fragen bezogen sich in erster Linie auf die Art und Weise des Unterrichtens vor, w{\"a}hrend und nach der Wende und der daraus entstandenen Systemtransformation. Die Befragungen kommen zu dem Ergebnis, dass sich der Geographieunterricht in der DDR thematisch von dem in der BRD nicht sonderlich unterschied. Von daher bedurfte es keiner umfangreichen inhaltlichen Ver{\"a}nderung des Geographieunterrichts. Schon zu DDR-Zeiten wurden durch die Lehrkr{\"a}fte offenbar eigenm{\"a}chtig ideologiefreie physisch-geographische Themen oft ausgedehnt, um die Ideologie des Faches zu reduzieren. So fiel den meisten eine Anpassung ihres Unterrichts an das westdeutsche System relativ leicht. Die humanistisch gepr{\"a}gte Werteerziehung des DDR-Bildungssystems wurde unter Ausklammerung des sozialistischen Aspektes ebenso fortgef{\"u}hrt, da es auch hier viele Parallelen zum westdeutschen System gegeben hat. Deutlich wird eine Charakterisierung des Faches als Naturwissenschaft von Seiten der ostdeutschen Lehrkr{\"a}fte, obwohl das Fach an den Schulen den Gesellschaftswissenschaften zugeordnet wird und auch in der DDR eine starke wirtschaftsgeographische Ausrichtung hatte. Von der Verantwortung sozialistische Pers{\"o}nlichkeiten zu erziehen, wurden die Lehrkr{\"a}fte mit dem Ende der DDR entbunden und die in dieser Arbeit aufgef{\"u}hrten Interviewausz{\"u}ge lassen keinen Zweifel daran, dass es dem Großteil der Befragten darum nicht leidtat, sie sich aber bis heute an der Werteorientierung aus DDR-Zeiten orientieren.}, language = {de} } @article{FischerKorupVehetal.2021, author = {Fischer, Melanie and Korup, Oliver and Veh, Georg and Walz, Ariane}, title = {Controls of outbursts of moraine-dammed lakes in the greater Himalayan region}, series = {The Cryosphere}, volume = {15}, journal = {The Cryosphere}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-15-4145-2021}, pages = {19}, year = {2021}, abstract = {Glacial lakes in the Hindu Kush-Karakoram-Himalayas-Nyainqentanglha (HKKHN) region have grown rapidly in number and area in past decades, and some dozens have drained in catastrophic glacial lake outburst floods (GLOFs). Estimating regional susceptibility of glacial lakes has largely relied on qualitative assessments by experts, thus motivating a more systematic and quantitative appraisal. Before the backdrop of current climate-change projections and the potential of elevation-dependent warming, an objective and regionally consistent assessment is urgently needed. We use an inventory of 3390 moraine-dammed lakes and their documented outburst history in the past four decades to test whether elevation, lake area and its rate of change, glacier-mass balance, and monsoonality are useful inputs to a probabilistic classification model. We implement these candidate predictors in four Bayesian multi-level logistic regression models to estimate the posterior susceptibility to GLOFs. We find that mostly larger lakes have been more prone to GLOFs in the past four decades regardless of the elevation band in which they occurred. We also find that including the regional average glacier-mass balance improves the model classification. In contrast, changes in lake area and monsoonality play ambiguous roles. Our study provides first quantitative evidence that GLOF susceptibility in the HKKHN scales with lake area, though less so with its dynamics. Our probabilistic prognoses offer improvement compared to a random classification based on average GLOF frequency. Yet they also reveal some major uncertainties that have remained largely unquantified previously and that challenge the applicability of single models. Ensembles of multiple models could be a viable alternative for more accurately classifying the susceptibility of moraine-dammed lakes to GLOFs.}, language = {en} } @article{FischerBrettinRoessneretal.2022, author = {Fischer, Melanie and Brettin, Jana and Roessner, Sigrid and Walz, Ariane and Fort, Monique and Korup, Oliver}, title = {Rare flood scenarios for a rapidly growing high-mountain city: Pokhara, Nepal}, series = {Natural Hazards and Earth System Sciences}, volume = {22}, journal = {Natural Hazards and Earth System Sciences}, edition = {9}, publisher = {Copernicus Publications}, address = {Katlenburg-Lindau}, issn = {1684-9981}, doi = {10.5194/nhess-22-3105-2022}, pages = {3105 -- 3123}, year = {2022}, abstract = {Pokhara (ca. 850 m a.s.l.), Nepal's second-largest city, lies at the foot of the Higher Himalayas and has more than tripled its population in the past 3 decades. Construction materials are in high demand in rapidly expanding built-up areas, and several informal settlements cater to unregulated sand and gravel mining in the Pokhara Valley's main river, the Seti Khola. This river is fed by the Sabche glacier below Annapurna III (7555 m a.s.l.), some 35 km upstream of the city, and traverses one of the steepest topographic gradients in the Himalayas. In May 2012 a sudden flood caused >70 fatalities and intense damage along this river and rekindled concerns about flood risk management. We estimate the flow dynamics and inundation depths of flood scenarios using the hydrodynamic model HEC-RAS (Hydrologic Engineering Center's River Analysis System). We simulate the potential impacts of peak discharges from 1000 to 10 000 m3 s-1 on land cover based on high-resolution Maxar satellite imagery and OpenStreetMap data (buildings and road network). We also trace the dynamics of two informal settlements near Kaseri and Yamdi with high potential flood impact from RapidEye, PlanetScope, and Google Earth imagery of the past 2 decades. Our hydrodynamic simulations highlight several sites of potential hydraulic ponding that would largely affect these informal settlements and sites of sand and gravel mining. These built-up areas grew between 3- and 20-fold, thus likely raising local flood exposure well beyond changes in flood hazard. Besides these drastic local changes, about 1 \% of Pokhara's built-up urban area and essential rural road network is in the highest-hazard zones highlighted by our flood simulations. Our results stress the need to adapt early-warning strategies for locally differing hydrological and geomorphic conditions in this rapidly growing urban watershed.}, language = {en} } @article{MacdonaldOteroButler2021, author = {Macdonald, Elena and Otero, Noelia and Butler, Tim}, title = {A comparison of long-term trends in observations and emission inventories of NOx}, series = {Atmospheric chemistry and physics / European Geosciences Union}, volume = {21}, journal = {Atmospheric chemistry and physics / European Geosciences Union}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1680-7316}, doi = {10.5194/acp-21-4007-2021}, pages = {4007 -- 4023}, year = {2021}, abstract = {Air pollution is a pressing issue that is associated with adverse effects on human health, ecosystems, and climate. Despite many years of effort to improve air quality, nitrogen dioxide (NO2) limit values are still regularly exceeded in Europe, particularly in cities and along streets. This study explores how concentrations of nitrogen oxides (NOx = NO + NO2) in European urban areas have changed over the last decades and how this relates to changes in emissions. To do so, the incremental approach was used, comparing urban increments (i.e. urban background minus rural concentrations) to total emissions, and roadside increments (i.e. urban roadside concentrations minus urban background concentrations) to traffic emissions. In total, nine European cities were assessed. The study revealed that potentially confounding factors like the impact of urban pollution at rural monitoring sites through atmospheric transport are generally negligible for NOx. The approach proves therefore particularly useful for this pollutant. The estimated urban increments all showed downward trends, and for the majority of the cities the trends aligned well with the total emissions. However, it was found that factors like a very densely populated surrounding or local emission sources in the rural area such as shipping traffic on inland waterways restrict the application of the approach for some cities. The roadside increments showed an overall very diverse picture in their absolute values and trends and also in their relation to traffic emissions. This variability and the discrepancies between roadside increments and emissions could be attributed to a combination of local influencing factors at the street level and different aspects introducing inaccuracies to the trends of the emis-sion inventories used, including deficient emission factors. Applying the incremental approach was evaluated as useful for long-term pan-European studies, but at the same time it was found to be restricted to certain regions and cities due to data availability issues. The results also highlight that using emission inventories for the prediction of future health impacts and compliance with limit values needs to consider the distinct variability in the concentrations not only across but also within cities.}, language = {en} } @article{LehrLischeid2020, author = {Lehr, Christian and Lischeid, Gunnar}, title = {Efficient screening of groundwater head monitoring data for anthropogenic effects and measurement errors}, series = {Hydrology and Earth System Sciences}, volume = {24}, journal = {Hydrology and Earth System Sciences}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-24-501-2020}, pages = {501 -- 513}, year = {2020}, abstract = {Groundwater levels are monitored by environmental agencies to support the sustainable use of groundwater resources. For this purpose continuous and spatially comprehensive monitoring in high spatial and temporal resolution is desired. This leads to large datasets that have to be checked for quality and analysed to distinguish local anthropogenic influences from natural variability of the groundwater level dynamics at each well. Both technical problems with the measurements as well as local anthropogenic influences can lead to local anomalies in the hydrographs. We suggest a fast and efficient screening method for the identification of well-specific peculiarities in hydrographs of groundwater head monitoring networks. The only information required is a set of time series of groundwater heads all measured at the same instants of time. For each well of the monitoring network a reference hydrograph is calculated, describing expected "normal" behaviour at the respective well as is typical for the monitored region. The reference hydrograph is calculated by multiple linear regression of the observed hydrograph with the "stable" principal components (PCs) of a principal component analysis of all groundwater head series of the network as predictor variables. The stable PCs are those PCs which were found in a random subsampling procedure to be rather insensitive to the specific selection of the analysed observation wells, i.e. complete series, and to the specific selection of measurement dates. Hence they can be considered to be representative for the monitored region in the respective period. The residuals of the reference hydrograph describe local deviations from the normal behaviour. Peculiarities in the residuals allow the data to be checked for measurement errors and the wells with a possible anthropogenic influence to be identified. The approach was tested with 141 groundwater head time series from the state authority groundwater monitoring network in northeastern Germany covering the period from 1993 to 2013 at an approximately weekly frequency of measurement.}, language = {en} } @article{IrrgangLantuitGordonetal.2019, author = {Irrgang, Anna Maria and Lantuit, Hugues and Gordon, Richard R. and Piskor, Ashley and Manson, Gavin K.}, title = {Impacts of past and future coastal changes on the Yukon coast - threats for cultural sites, infrastructure, and travel routes}, series = {Arctic Science}, volume = {5}, journal = {Arctic Science}, number = {2}, publisher = {Canadian Science Publishing}, address = {Ottawa}, issn = {2368-7460}, doi = {10.1139/as-2017-0041}, pages = {107 -- 126}, year = {2019}, abstract = {Yukon's Beaufort coast, Canada, is a highly dynamic landscape. Cultural sites, infrastructure, and travel routes used by the local population are particularly vulnerable to coastal erosion. To assess threats to these phenomena, rates of shoreline change for a 210 km length of the coast were analyzed and combined with socioeconomic and cultural information. Rates of shoreline change were derived from aerial and satellite imagery from the 1950s, 1970s, 1990s, and 2011. Using these data, conservative (S1) and dynamic (S2) shoreline projections were constructed to predict shoreline positions for the year 2100. The locations of cultural features in the archives of a Parks Canada database, the Yukon Archaeological Program, and as reported in other literature were combined with projected shoreline position changes. Between 2011 and 2100, approximately 850 ha (S1) and 2660 ha (S2) may erode, resulting in a loss of 45\% (S1) to 61\% (S2) of all cultural features by 2100. The last large, actively used camp area and two nearshore landing strips will likely be threatened by future coastal processes. Future coastal erosion and sedimentation processes are expected to increasingly threaten cultural sites and influence travelling and living along the Yukon coast.}, language = {en} } @article{CortiCioniFranceschinietal.2019, author = {Corti, Giacomo and Cioni, Raffaello and Franceschini, Zara and Sani, Federico and Scaillet, Stephane and Molin, Paola and Isola, Ilaria and Mazzarini, Francesco and Brune, Sascha and Keir, Derek and Erbello Doelesso, Asfaw and Muluneh, Ameha and Illsley-Kemp, Finnigan and Glerum, Anne}, title = {Aborted propagation of the Ethiopian rift caused by linkage with the Kenyan rift}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-09335-2}, pages = {11}, year = {2019}, abstract = {Continental rift systems form by propagation of isolated rift segments that interact, and eventually evolve into continuous zones of deformation. This process impacts many aspects of rifting including rift morphology at breakup, and eventual ocean-ridge segmentation. Yet, rift segment growth and interaction remain enigmatic. Here we present geological data from the poorly documented Ririba rift (South Ethiopia) that reveals how two major sectors of the East African rift, the Kenyan and Ethiopian rifts, interact. We show that the Ririba rift formed from the southward propagation of the Ethiopian rift during the Pliocene but this propagation was short-lived and aborted close to the Pliocene-Pleistocene boundary. Seismicity data support the abandonment of laterally offset, overlapping tips of the Ethiopian and Kenyan rifts. Integration with new numerical models indicates that rift abandonment resulted from progressive focusing of the tectonic and magmatic activity into an oblique, throughgoing rift zone of near pure extension directly connecting the rift sectors.}, language = {en} } @article{ZimmermannStoofLeichsenringKruseetal.2020, author = {Zimmermann, Heike Hildegard and Stoof-Leichsenring, Kathleen Rosemarie and Kruse, Stefan and M{\"u}ller, Juliane and Stein, Ruediger and Tiedemann, Ralf and Herzschuh, Ulrike}, title = {Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30 000 years}, series = {Ocean Science}, volume = {16}, journal = {Ocean Science}, number = {5}, publisher = {Springer}, address = {Tokyo}, pages = {16}, year = {2020}, abstract = {The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, and thus microfossil records are scarce, rarely exceed the Holocene, and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2 resulted in 95.7 \% of our sequences being assigned to diatoms across 18 different families, with 38.6 \% of them being resolved to species and 25.8 \% to genus level. Independent replicates show a high similarity of PCR products, especially in the oldest samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late Holocene samples. Taxonomic composition is dominated by cold-water and sea-ice-associated diatoms and suggests several reorganisations - after the Last Glacial Maximum, after the Younger Dryas, and after the Early and after the Mid-Holocene. Different sequences assigned to, amongst others, Chaetoceros socialis indicate the detectability of intra-specific diversity using sedaDNA. We detect no clear pattern between our diatom sedaDNA record and the previously published IP25 record of this core, although proportions of pennate diatoms increase with higher IP25 concentrations and proportions of Nitzschia cf. frigida exceeding 2 \% of the assemblage point towards past sea-ice presence.}, language = {en} } @article{ZhangGuoChen2020, author = {Zhang, Yan-qiu and Guo, Zeng-hui and Chen, Dai-zhao}, title = {Porosity distribution in cyclic dolomites of the Lower Qiulitag Group (Upper Cambrian) in northwestern Tarim Basin, China}, series = {China geology}, volume = {3}, journal = {China geology}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2096-5192}, pages = {425 -- 444}, year = {2020}, abstract = {Increasing interests in hydrocarbon resources at depths have drawn greater attentions to the deeply-buried carbonate reservoirs in the Tarim Basin in China. In this study, the cyclic dolomite rocks of Upper Cambrian Lower Qiulitag Group from four outcrop sections in northwestern Tarim Basin were selected to investigate and evaluate the petrophysical properties in relation to depositional facies and cyclicity. The Lower Qiulitag Group includes ten lithofacies, which were deposited in intermediate to shallow subtidal, restricted shallow subtidal, intertidal, and supratidal environments on a carbonate ramp system. These lithofacies are vertically stacked into repeated shallowing-upward, meter-scale cycles which are further grouped into six third-order depositional sequences (Sq1 to Sq6). There are variable types of pore spaces in the Lower Qiulitag Group dolomite rocks, including interparticle, intraparticle, and fenestral pores of primary origin, inter crystal, and vuggy pores of late diagenetic modification. The porosity in the dolomites is generally facies-selective as that the microbially-originated thrombolites and stromatolites generally yield a relatively high porosity. In contrast, the high-energy ooidal grainstones generally have very low porosity. In this case, the microbialite-based peritidal cycles and peritidal cycle-dominated highstand (or regressive) successions have relatively high volumes of pore spaces, although highly fluctuating (or vertical inhomogeneous). Accordingly, the grainstone-based subtidal cycles and subtidal cycle-dominated transgressive successions generally yield extremely low porosity. This scenario indicates that porosity development and preservation in the thick dolomite successions are primarily controlled by depositional facies which were influenced by sea-level fluctuations of different orders and later diagenetic overprinting.}, language = {en} } @article{DobkowitzWalzBaronietal.2020, author = {Dobkowitz, Sophia and Walz, Ariane and Baroni, Gabriele and P{\´e}rez-Marin, Aldrin M.}, title = {Cross-Scale Vulnerability Assessment for Smallholder Farming}, series = {Sustainability}, volume = {12}, journal = {Sustainability}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su12093787}, pages = {24}, year = {2020}, abstract = {Climate change heavily impacts smallholder farming worldwide. Cross-scale vulnerability assessment has a high potential to identify nested measures for reducing vulnerability of smallholder farmers. Despite their high practical value, there are currently only limited examples of cross-scale assessments. The presented study aims at assessing the vulnerability of smallholder farmers in the Northeast of Brazil across three scales: regional, farm and field scale. In doing so, it builds on existing vulnerability indices and compares results between indices at the same scale and across scales. In total, six independent indices are tested, two at each scale. The calculated indices include social, economic and ecological indicators, based on municipal statistics, meteorological data, farm interviews and soil analyses. Subsequently, indices and overlapping indicators are normalized for intra- and cross-scale comparison. The results show considerable differences between indices across and within scales. They indicate different activities to reduce vulnerability of smallholder farmers. Major shortcomings arise from the conceptual differences between the indices. We therefore recommend the development of hierarchical indices, which are adapted to local conditions and contain more overlapping indicators for a better understanding of the nested vulnerabilities of smallholder farmers.}, language = {en} } @article{SiegThieken2022, author = {Sieg, Tobias and Thieken, Annegret}, title = {Improving flood impact estimations}, series = {Environmental research letters}, volume = {17}, journal = {Environmental research letters}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac6d6c}, pages = {16}, year = {2022}, abstract = {A reliable estimation of flood impacts enables meaningful flood risk management and rapid assessments of flood impacts shortly after a flood. The flood in 2021 in Central Europe and the analysis of its impacts revealed that these estimations are still inadequate. Therefore, we investigate the influence of different data sets and methods aiming to improve flood impact estimates. We estimated economic flood impacts to private households and companies for a flood event in 2013 in Germany using (a) two different flood maps, (b) two approaches to map exposed objects based on OpenStreetMap and the Basic European Asset Map, (c) two different approaches to estimate asset values, and (d) tree-based models and Stage-Damage-Functions to describe the vulnerability. At the macro scale, water masks lead to reasonable impact estimations. At the micro and meso-scale, the identification of affected objects by means of water masks is insufficient leading to unreliable estimations. The choice of exposure data sets is most influential on the estimations. We find that reliable impact estimations are feasible with reported numbers of flood-affected objects from the municipalities. We conclude that more effort should be put in the investigation of different exposure data sets and the estimation of asset values. Furthermore, we recommend the establishment of a reporting system in the municipalities for a fast identification of flood-affected objects shortly after an event.}, language = {en} } @article{DeusdaraLealSamprognaMohorCuartasetal.2022, author = {Deusdar{\´a}-Leal, Karinne and Samprogna Mohor, Guilherme and Cuartas, Luz Adriana and Seluchi, Marcelo E. and Marengo, Jose A. and Zhang, Rong and Broedel, Elisangela and Amore, Diogo de Jesus and Alval{\´a}, Regina C. S. and Cunha, Ana Paula M. A. and Gon{\c{c}}alves, Jos{\´e} A. C.}, title = {Trends and climate elasticity of streamflow in south-eastern Brazil basins}, series = {Water}, volume = {14}, journal = {Water}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w14142245}, pages = {25}, year = {2022}, abstract = {Trends in streamflow, rainfall and potential evapotranspiration (PET) time series, from 1970 to 2017, were assessed for five important hydrological basins in Southeastern Brazil. The concept of elasticity was also used to assess the streamflow sensitivity to changes in climate variables, for annual data and 5-, 10- and 20-year moving averages. Significant negative trends in streamflow and rainfall and significant increasing trend in PET were detected. For annual analysis, elasticity revealed that 1\% decrease in rainfall resulted in 1.21-2.19\% decrease in streamflow, while 1\% increase in PET induced different reductions percentages in streamflow, ranging from 2.45\% to 9.67\%. When both PET and rainfall were computed to calculate the elasticity, results were positive for some basins. Elasticity analysis considering 20-year moving averages revealed that impacts on the streamflow were cumulative: 1\% decrease in rainfall resulted in 1.83-4.75\% decrease in streamflow, while 1\% increase in PET induced 3.47-28.3\% decrease in streamflow. This different temporal response may be associated with the hydrological memory of the basins. Streamflow appears to be more sensitive in less rainy basins. This study provides useful information to support strategic government decisions, especially when the security of water resources and drought mitigation are considered in face of climate change.}, language = {en} } @article{RainerSeppeyHammeretal.2021, author = {Rainer, Edda M. and Seppey, Christophe Victor William and Hammer, Caroline and Svenning, Mette M. and Tveit, Alexander Tosdal}, title = {The influence of above-ground herbivory on the response of Arctic soil methanotrophs to increasing CH4 concentrations and temperatures}, series = {Microorganisms : open access journal}, volume = {9}, journal = {Microorganisms : open access journal}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2076-2607}, doi = {10.3390/microorganisms9102080}, pages = {20}, year = {2021}, abstract = {Rising temperatures in the Arctic affect soil microorganisms, herbivores, and peatland vegetation, thus directly and indirectly influencing microbial CH4 production. It is not currently known how methanotrophs in Arctic peat respond to combined changes in temperature, CH4 concentration, and vegetation. We studied methanotroph responses to temperature and CH4 concentration in peat exposed to herbivory and protected by exclosures. The methanotroph activity was assessed by CH4 oxidation rate measurements using peat soil microcosms and a pure culture of Methylobacter tundripaludum SV96, qPCR, and sequencing of pmoA transcripts. Elevated CH4 concentrations led to higher CH4 oxidation rates both in grazed and exclosed peat soils, but the strongest response was observed in grazed peat soils. Furthermore, the relative transcriptional activities of different methanotroph community members were affected by the CH4 concentrations. While transcriptional responses to low CH4 concentrations were more prevalent in grazed peat soils, responses to high CH4 concentrations were more prevalent in exclosed peat soils. We observed no significant methanotroph responses to increasing temperatures. We conclude that methanotroph communities in these peat soils respond to changes in the CH4 concentration depending on their previous exposure to grazing. This "conditioning " influences which strains will thrive and, therefore, determines the function of the methanotroph community.}, language = {en} } @article{ThiekenMohorKreibichetal.2022, author = {Thieken, Annegret and Mohor, Guilherme Samprogna and Kreibich, Heidi and M{\"u}ller, Meike}, title = {Compound inland flood events}, series = {Natural hazards and earth system sciences : NHESS}, volume = {22}, journal = {Natural hazards and earth system sciences : NHESS}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-22-165-2022}, pages = {165 -- 185}, year = {2022}, abstract = {Several severe flood events hit Germany in recent years, with events in 2013 and 2016 being the most destructive ones, although dynamics and flood processes were very different. While the 2013 event was a slowly rising widespread fluvial flood accompanied by some severe dike breaches, the events in 2016 were fast-onset pluvial floods, which resulted in surface water flooding in some places due to limited capacities of the drainage systems and in destructive flash floods with high sediment loads and clogging in others, particularly in small steep catchments. Hence, different pathways, i.e. different routes that the water takes to reach (and potentially damage) receptors, in our case private households, can be identified in both events. They can thus be regarded as spatially compound flood events or compound inland floods. This paper analyses how differently affected residents coped with these different flood types (fluvial and pluvial) and their impacts while accounting for the different pathways (river flood, dike breach, surface water flooding and flash flood) within the compound events. The analyses are based on two data sets with 1652 (for the 2013 flood) and 601 (for the 2016 flood) affected residents who were surveyed around 9 months after each flood, revealing little socio-economic differences - except for income - between the two samples. The four pathways showed significant differences with regard to their hydraulic and financial impacts, recovery, warning processes, and coping and adaptive behaviour. There are just small differences with regard to perceived self-efficacy and responsibility, offering entry points for tailored risk communication and support to improve property-level adaptation.}, language = {en} } @article{MadrugadeBritoOttoKuhlicke2021, author = {Madruga de Brito, Mariana and Otto, Danny and Kuhlicke, Christian}, title = {Tracking topics and frames regarding sustainability transformations during the onset of the COVID-19 crisis}, series = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, volume = {13}, journal = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su131911095}, pages = {19}, year = {2021}, abstract = {Many researchers and politicians believe that the COVID-19 crisis may have opened a "window of opportunity " to spur sustainability transformations. Still, evidence for such a dynamic is currently lacking. Here, we propose the linkage of "big data " and "thick data " methods for monitoring debates on transformation processes by following the COVID-19 discourse on ecological sustainability in Germany. We analysed variations in the topics discussed by applying text mining techniques to a corpus with 84,500 newspaper articles published during the first COVID-19 wave. This allowed us to attain a unique and previously inaccessible "bird's eye view " of how these topics evolved. To deepen our understanding of prominent frames, a qualitative content analysis was undertaken. Furthermore, we investigated public awareness by analysing online search behaviour. The findings show an underrepresentation of sustainability topics in the German news during the early stages of the crisis. Similarly, public awareness regarding climate change was found to be reduced. Nevertheless, by examining the newspaper data in detail, we found that the pandemic is often seen as a chance for sustainability transformations-but not without a set of challenges. Our mixed-methods approach enabled us to bridge knowledge gaps between qualitative and quantitative research by "thickening " and providing context to data-driven analyses. By monitoring whether or not the current crisis is seen as a chance for sustainability transformations, we provide insights for environmental policy in times of crisis.}, language = {en} } @misc{HussBookhagenHuggeletal.2017, author = {Huss, Matthias and Bookhagen, Bodo and Huggel, C. and Jacobsen, Dean and Bradley, Raymond S. and Clague, J. J. and Vuille, Mathias and Buytaert, Wouter and Cayan, D. R. and Greenwood, G. and Mark, B. G. and Milner, A. M. and Weingartner, Rolf and Winder, M.}, title = {Toward mountains without permanent snow and ice}, series = {Earths future}, volume = {5}, journal = {Earths future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2016EF000514}, pages = {418 -- 435}, year = {2017}, abstract = {The cryosphere in mountain regions is rapidly declining, a trend that is expected to accelerate over the next several decades due to anthropogenic climate change. A cascade of effects will result, extending from mountains to lowlands with associated impacts on human livelihood, economy, and ecosystems. With rising air temperatures and increased radiative forcing, glaciers will become smaller and, in some cases, disappear, the area of frozen ground will diminish, the ratio of snow to rainfall will decrease, and the timing and magnitude of both maximum and minimum streamflow will change. These changes will affect erosion rates, sediment, and nutrient flux, and the biogeochemistry of rivers and proglacial lakes, all of which influence water quality, aquatic habitat, and biotic communities. Changes in the length of the growing season will allow low-elevation plants and animals to expand their ranges upward. Slope failures due to thawing alpine permafrost, and outburst floods from glacier-and moraine-dammed lakes will threaten downstream populations.Societies even well beyond the mountains depend on meltwater from glaciers and snow for drinking water supplies, irrigation, mining, hydropower, agriculture, and recreation. Here, we review and, where possible, quantify the impacts of anticipated climate change on the alpine cryosphere, hydrosphere, and biosphere, and consider the implications for adaptation to a future of mountains without permanent snow and ice.}, language = {en} } @article{LangeBuerkner2021, author = {Lange, Bastian and B{\"u}rkner, Hans-Joachim}, title = {Ambiguous avant-gardes and their geographies}, series = {Die Erde : journal of the Geographical Society of Berlin ; Zeitschrift der Gesellschaft f{\"u}r Erdkunde zu Berlin}, volume = {152}, journal = {Die Erde : journal of the Geographical Society of Berlin ; Zeitschrift der Gesellschaft f{\"u}r Erdkunde zu Berlin}, number = {4}, publisher = {Gesellschaft f{\"u}r Erdkunde}, address = {Berlin}, issn = {0013-9998}, doi = {10.12854/erde-2021-566}, pages = {273 -- 287}, year = {2021}, abstract = {In the following article, the focus is on the transformative potentials created by so-called persistence avant-gardes and prevention innovators. The text extends Bluhdorn's guiding concept of narratives of hope (Bluhdorn 2017; Bluhdorn and Butzlaff 2019) by considering those groups that are marginalized within debates on socio-ecological transformation. With a closer look at the narratives of prevention and blockade that these actors engage, the ambiguous nature of postgrowth avant-gardes is carved out. Their discursive, argumentative, and effective inhibition of transitory policies is interpreted as a pro-active potential, rather than a mere obstacle to socio-ecological transformation. Adding a geographical perspective, the paper pleads for a more precise theoretical penetration of the ambivalent figure of avantgardes when analyzing processes of local and regional postgrowth.}, language = {en} } @article{ScherlerSchwanghart2020, author = {Scherler, Dirk and Schwanghart, Wolfgang}, title = {Drainage divide networks - part 1: Identification and ordering in digital elevation models}, series = {Earth surface dynamics : ESURF}, volume = {8}, journal = {Earth surface dynamics : ESURF}, number = {2}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-8-245-2020}, pages = {245 -- 259}, year = {2020}, abstract = {We propose a novel way to measure and analyze networks of drainage divides from digital elevation models. We developed an algorithm that extracts drainage divides based on the drainage basin boundaries defined by a stream network. In contrast to streams, there is no straightforward approach to order and classify divides, although it is intuitive that some divides are more important than others. A meaningful way of ordering divides is the average distance one would have to travel down on either side of a divide to reach a common stream location. However, because measuring these distances is computationally expensive and prone to edge effects, we instead sort divide segments based on their tree-like network structure, starting from endpoints at river confluences. The sorted nature of the network allows for assigning distances to points along the divides, which can be shown to scale with the average distance downslope to the common stream location. Furthermore, because divide segments tend to have characteristic lengths, an ordering scheme in which divide orders increase by 1 at junctions mimics these distances. We applied our new algorithm to the Big Tujunga catchment in the San Gabriel Mountains of southern California and studied the morphology of the drainage divide network. Our results show that topographic metrics, like the downstream flow distance to a stream and hillslope relief, attain characteristic values that depend on the drainage area threshold used to derive the stream network. Portions along the divide network that have lower than average relief or are closer than average to streams are often distinctly asymmetric in shape, suggesting that these divides are unstable. Our new and automated approach thus helps to objectively extract and analyze divide networks from digital elevation models.}, language = {en} } @article{WehrhanPuppeKaczoreketal.2021, author = {Wehrhan, Marc and Puppe, Daniel and Kaczorek, Danuta and Sommer, Michael}, title = {Spatial patterns of aboveground phytogenic Si stocks in a grass-dominated catchment}, series = {Biogeosciences : BG}, volume = {18}, journal = {Biogeosciences : BG}, number = {18}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-18-5163-2021}, pages = {5163 -- 5183}, year = {2021}, abstract = {Various studies have been performed to quantify silicon (Si) stocks in plant biomass and related Si fluxes in terrestrial biogeosystems. Most studies are deliberately designed on the plot scale to ensure low heterogeneity in soils and plant composition, hence similar environmental conditions. Due to the immanent spatial soil variability, the transferability of results to larger areas, such as catchments, is therefore limited. However, the emergence of new technical features and increasing knowledge on details in Si cycling lead to a more complex picture at landscape and catchment scales. Dynamic and static soil properties change along the soil continuum and might influence not only the species composition of natural vegetation but also its biomass distribution and related Si stocks. Maximum likelihood (ML) classification was applied to multispectral imagery captured by an unmanned aerial system (UAS) aiming at the identification of land cover classes (LCCs). Subsequently, the normalized difference vegetation index (NDVI) and ground-based measurements of biomass were used to quantify aboveground Si stocks in two Si-accumulating plants (Calamagrostis epige-jos and Phragmites australis) in a heterogeneous catchment and related corresponding spatial patterns of these stocks to soil properties. We found aboveground Si stocks of C. epige-jos and P. australis to be surprisingly high (maxima of Si stocks reach values up to 98 g Sim(-2)), i.e. comparable to or markedly exceeding reported values for the Si storage in aboveground vegetation of various terrestrial ecosystems. We further found spatial patterns of plant aboveground Si stocks to reflect spatial heterogeneities in soil properties. From our results, we concluded that (i) aboveground biomass of plants seems to be the main factor of corresponding phytogenic Si stock quantities, and (ii) a detection of biomass heterogeneities via UAS-based remote sensing represents a promising tool for the quantification of lifelike phytogenic Si pools at landscape scales.}, language = {en} } @phdthesis{Serwene2023, author = {Serwene, Pola}, title = {Geographie verstehen durch Zweisprachigkeit}, series = {Potsdamer Geographische Praxis}, journal = {Potsdamer Geographische Praxis}, number = {19}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-557-6}, issn = {2194-1599}, doi = {10.25932/publishup-57848}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-578486}, school = {Universit{\"a}t Potsdam}, pages = {360}, year = {2023}, abstract = {Bilingualer Unterricht gilt als das Erfolgsmodell f{\"u}r den schulischen Fremdsprachenerwerb in Deutschland und die Beherrschung einer Fremdsprache in Wort und Schrift ist eine entscheidende berufsqualifizierende Kompetenz in unserer globalisierten Welt. Insbesondere die Verzahnung fachlicher und sprachlicher Inhalte im Kontext Bilingualen Unterrichts scheint gewinnbringend f{\"u}r den Fremdspracherwerb zu sein. Dabei ist die Diskrepanz zwischen den zumeist noch geringen fremdsprachlichen F{\"a}higkeiten der Lernenden und den fachlichen Anspr{\"u}chen des Geographieunterrichts eine große Herausforderung f{\"u}r fachliches Lernen im bilingualen Sachfachunterricht. Es stellt sich die Frage, wie der Bilinguale Unterricht gestaltet sein muss, um einerseits geographische Themen fachlich komplex behandeln zu k{\"o}nnen und andererseits die Lernenden fremdsprachlich nicht zu {\"u}berfordern. Im Rahmen einer Design-Based-Research-Studie im bilingualen Geographieunterricht wurde untersucht, wie fachliches Lernen im bilingualen Geographieunterricht durch den Einsatz beider beteiligter Sprachen (Englisch/Deutsch) gef{\"o}rdert werden kann. Auf Grundlage eines theoretisch fundierten Kenntnisstands zum Bilingualen Unterricht und zum Lernen mit Fachkonzepten im Geographieunterricht wurde eine Lernumgebung konzipiert, im Unterricht erprobt und weiterentwickelt, in der Strategien des Sprachwechsels zum Einsatz kommen. Die Ergebnisse der Studie sind kontextbezogene Theorien einer zweisprachigen Didaktik f{\"u}r den bilingualen Geographieunterricht und Erkenntnisse zum Lernen mit Fachkonzepten im Geographieunterricht am Beispiel des geographischen Konzepts Wandel. Produkt der Studie ist eine unterrichtstaugliche Lernumgebung zum Thema Wandlungsprozesse an ausgew{\"a}hlten Orten f{\"u}r den bilingualen Geographieunterricht mit didaktischem Konzept, Unterrichtsmaterialien und -medien.}, language = {de} } @article{HerreroThorntonMasonD'Crozetal.2020, author = {Herrero, Mario and Thornton, Philip K. and Mason-D'Croz, Daniel and Palmer, Jeda and Bodirsky, Benjamin Leon and Pradhan, Prajal and Barrett, Christopher B. and Benton, Tim G. and Hall, Andrew and Pikaar, Ilje and Bogard, Jessica R. and Bonnett, Graham D. and Bryan, Brett A. and Campbell, Bruce M. and Christensen, Svend and Clark, Michael and Fanzo, Jessica and Godde, Cecile M. and Jarvis, Andy and Loboguerrero, Ana Maria and Mathys, Alexander and McIntyre, C. Lynne and Naylor, Rosamond L. and Nelson, Rebecca and Obersteiner, Michael and Parodi, Alejandro and Popp, Alexander and Ricketts, Katie and Smith, Pete and Valin, Hugo and Vermeulen, Sonja J. and Vervoort, Joost and van Wijk, Mark and van Zanten, Hannah H. E. and West, Paul C. and Wood, Stephen A. and Rockstr{\"o}m, Johan}, title = {Articulating the effect of food systems innovation on the Sustainable Development Goals}, series = {The lancet Planetary health}, volume = {5}, journal = {The lancet Planetary health}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {2542-5196}, doi = {10.1016/S2542-5196(20)30277-1}, pages = {E50 -- E62}, year = {2020}, abstract = {Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level.}, language = {en} } @article{Rockstroem2022, author = {Rockstr{\"o}m, Johan}, title = {Speeding up state-of-the-art assessments on global sustainability}, series = {Global sustainability}, volume = {5}, journal = {Global sustainability}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {2059-4798}, doi = {10.1017/sus.2022.1}, pages = {2}, year = {2022}, language = {en} } @article{FournierSteinerBrochetetal.2022, author = {Fournier, Bertrand and Steiner, Magdalena and Brochet, Xavier and Degrune, Florine and Mammeri, Jibril and Carvalho, Diogo Leite and Siliceo, Sara Leal and Bacher, Sven and Pe{\~n}a-Reyes, Carlos Andr{\´e}s and Heger, Thierry Jean}, title = {Toward the use of protists as bioindicators of multiple stresses in agricultural soils}, series = {Ecological indicators : integrating monitoring, assessment and management}, volume = {139}, journal = {Ecological indicators : integrating monitoring, assessment and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1470-160X}, doi = {10.1016/j.ecolind.2022.108955}, pages = {8}, year = {2022}, abstract = {Management of agricultural soil quality requires fast and cost-efficient methods to identify multiple stressors that can affect soil organisms and associated ecological processes. Here, we propose to use soil protists which have a great yet poorly explored potential for bioindication. They are ubiquitous, highly diverse, and respond to various stresses to agricultural soils caused by frequent management or environmental changes. We test an approach that combines metabarcoding data and machine learning algorithms to identify potential stressors of soil protist community composition and diversity. We measured 17 key variables that reflect various potential stresses on soil protists across 132 plots in 28 Swiss vineyards over 2 years. We identified the taxa showing strong responses to the selected soil variables (potential bioindicator taxa) and tested for their predictive power. Changes in protist taxa occurrence and, to a lesser extent, diversity metrics exhibited great predictive power for the considered soil variables. Soil copper concentration, moisture, pH, and basal respiration were the best predicted soil variables, suggesting that protists are particularly responsive to stresses caused by these variables. The most responsive taxa were found within the clades Rhizaria and Alveolata. Our results also reveal that a majority of the potential bioindicators identified in this study can be used across years, in different regions and across different grape varieties. Altogether, soil protist metabarcoding data combined with machine learning can help identifying specific abiotic stresses on microbial communities caused by agricultural management. Such an approach provides complementary information to existing soil monitoring tools that can help manage the impact of agricultural practices on soil biodiversity and quality.}, language = {en} } @article{SoergelKrieglerBodirskyetal.2021, author = {Soergel, Bjoern and Kriegler, Elmar and Bodirsky, Benjamin Leon and Bauer, Nico and Leimbach, Marian and Popp, Alexander}, title = {Combining ambitious climate policies with efforts to eradicate poverty}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-021-22315-9}, pages = {12}, year = {2021}, abstract = {Climate change threatens to undermine efforts to eradicate extreme poverty. However, climate policies could impose a financial burden on the global poor through increased energy and food prices. Here, we project poverty rates until 2050 and assess how they are influenced by mitigation policies consistent with the 1.5 degrees C target. A continuation of historical trends will leave 350 million people globally in extreme poverty by 2030. Without progressive redistribution, climate policies would push an additional 50 million people into poverty. However, redistributing the national carbon pricing revenues domestically as an equal-per-capita climate dividend compensates this policy side effect, even leading to a small net reduction of the global poverty headcount (-6 million). An additional international climate finance scheme enables a substantial poverty reduction globally and also in Sub-Saharan Africa. Combining national redistribution with international climate finance thus provides an important entry point to climate policy in developing countries. Ambitious climate policies can negatively impact the global poor by affecting income, food and energy prices. Here, the authors quantify this effect, and show that it can be compensated by national redistribution of the carbon pricing revenues in combination with international climate finance.}, language = {en} } @article{SchallerScherwietesGerberetal.2021, author = {Schaller, J{\"o}rg and Scherwietes, Eric and Gerber, Lukas and Vaidya, Shrijana and Kaczorek, Danuta and Pausch, Johanna and Barkusky, Dietmar and Sommer, Michael and Hoffmann, Mathias}, title = {Silica fertilization improved wheat performance and increased phosphorus concentrations during drought at the field scale}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {[London]}, issn = {2045-2322}, doi = {10.1038/s41598-021-00464-7}, pages = {12}, year = {2021}, abstract = {Drought and the availability of mineable phosphorus minerals used for fertilization are two of the important issues agriculture is facing in the future. High phosphorus availability in soils is necessary to maintain high agricultural yields. Drought is one of the major threats for terrestrial ecosystem performance and crop production in future. Among the measures proposed to cope with the upcoming challenges of intensifying drought stress and to decrease the need for phosphorus fertilizer application is the fertilization with silica (Si). Here we tested the importance of soil Si fertilization on wheat phosphorus concentration as well as wheat performance during drought at the field scale. Our data clearly showed a higher soil moisture for the Si fertilized plots. This higher soil moisture contributes to a better plant performance in terms of higher photosynthetic activity and later senescence as well as faster stomata responses ensuring higher productivity during drought periods. The plant phosphorus concentration was also higher in Si fertilized compared to control plots. Overall, Si fertilization or management of the soil Si pools seem to be a promising tool to maintain crop production under predicted longer and more serve droughts in the future and reduces phosphorus fertilizer requirements.}, language = {en} } @article{KocPetrowThieken2020, author = {Ko{\c{c}}, Gamze and Petrow, Theresia and Thieken, Annegret}, title = {Analysis of the Most Severe Flood Events in Turkey (1960-2014)}, series = {Water}, volume = {12}, journal = {Water}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w12061562}, pages = {32}, year = {2020}, abstract = {The most severe flood events in Turkey were determined for the period 1960-2014 by considering the number of fatalities, the number of affected people, and the total economic losses as indicators. The potential triggering mechanisms (i.e., atmospheric circulations and precipitation amounts) and aggravating pathways (i.e., topographic features, catchment size, land use types, and soil properties) of these 25 events were analyzed. On this basis, a new approach was developed to identify the main influencing factor per event and to provide additional information for determining the dominant flood occurrence pathways for severe floods. The events were then classified through hierarchical cluster analysis. As a result, six different clusters were found and characterized. Cluster 1 comprised flood events that were mainly influenced by drainage characteristics (e.g., catchment size and shape); Cluster 2 comprised events aggravated predominantly by urbanization; steep topography was identified to be the dominant factor for Cluster 3; extreme rainfall was determined as the main triggering factor for Cluster 4; saturated soil conditions were found to be the dominant factor for Cluster 5; and orographic effects of mountain ranges characterized Cluster 6. This study determined pathway patterns of the severe floods in Turkey with regard to their main causal or aggravating mechanisms. Accordingly, geomorphological properties are of major importance in large catchments in eastern and northeastern Anatolia. In addition, in small catchments, the share of urbanized area seems to be an important factor for the extent of flood impacts. This paper presents an outcome that could be used for future urban planning and flood risk prevention studies to understand the flood mechanisms in different regions of Turkey.}, language = {en} } @article{LaudanZoellerThieken2020, author = {Laudan, Jonas and Z{\"o}ller, Gert and Thieken, Annegret}, title = {Flash floods versus river floods}, series = {Natural Hazards and Earth System Sciences}, volume = {20}, journal = {Natural Hazards and Earth System Sciences}, publisher = {European Geophysical Society}, address = {Katlenburg-Lindau}, issn = {1684-9981}, doi = {10.5194/nhess-20-999-2020}, pages = {999 -- 1023}, year = {2020}, abstract = {River floods are among the most damaging natural hazards that frequently occur in Germany. Flooding causes high economic losses and impacts many residents. In 2016, several southern German municipalities were hit by flash floods after unexpectedly severe heavy rainfall, while in 2013 widespread river flooding had occurred. This study investigates and compares the psychological impacts of river floods and flash floods and potential consequences for precautionary behaviour. Data were collected using computer-aided telephone interviews that were conducted among flood-affected households around 9 months after each damaging event. This study applies Bayesian statistics and negative binomial regressions to test the suitability of psychological indicators to predict the precaution motivation of individuals. The results show that it is not the particular flood type but rather the severity and local impacts of the event that are crucial for the different, and potentially negative, impacts on mental health. According to the used data, however, predictions of the individual precaution motivation should not be based on the derived psychological indicators - i.e. coping appraisal, threat appraisal, burden and evasion - since their explanatory power was generally low and results are, for the most part, non-significant. Only burden reveals a significant positive relation to planned precaution regarding weak flash floods. In contrast to weak flash floods and river floods, the perceived threat of strong flash floods is significantly lower although feelings of burden and lower coping appraisals are more pronounced. Further research is needed to better include psychological assessment procedures and to focus on alternative data sources regarding floods and the connected precaution motivation of affected residents.}, language = {en} } @article{HudsonPhamHagedoornetal.2020, author = {Hudson, Paul and Pham, My and Hagedoorn, Liselotte and Thieken, Annegret and Lasage, Ralph and Bubeck, Philip}, title = {Self-stated recovery from flooding}, series = {Journal of Flood Risk Management}, volume = {14}, journal = {Journal of Flood Risk Management}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1753-318X}, doi = {10.1111/jfr3.12680}, pages = {15}, year = {2020}, abstract = {Social inequalities lead to flood resilience inequalities across social groups, a topic that requires improved documentation and understanding. The objective of this paper is to attend to these differences by investigating self-stated flood recovery across genders in Vietnam as a conceptual replication of earlier results from Germany. This study employs a regression-based analysis of 1,010 respondents divided between a rural coastal and an urban community in Thua Thien-Hue province. The results highlight an important set of recovery process-related variables. The set of relevant variables is similar across genders in terms of inclusion and influence, and includes age, social capital, internal and external support after a flood, perceived severity of previous flood impacts, and the perception of stress-resilience. However, women were affected more heavily by flooding in terms of longer recovery times, which should be accounted for in risk management. Overall, the studied variables perform similarly in Vietnam and Germany. This study, therefore, conceptually replicates previous results suggesting that women display slightly slower recovery levels as well as that psychological variables influence recovery rates more than adverse flood impacts. This provides an indication of the results' potentially robust nature due to the different socio-environmental contexts in Germany and Vietnam.}, language = {en} } @article{JehmlichHudsonThieken2020, author = {Jehmlich, Caroline and Hudson, Paul and Thieken, Annegret}, title = {Short contribution on adaptive behaviour of flood-prone companies}, series = {Journal of Flood Risk Management}, volume = {13}, journal = {Journal of Flood Risk Management}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1753-318X}, doi = {10.1111/jfr3.12653}, pages = {7}, year = {2020}, abstract = {Integrated flood management strategies consider property-level precautionary measures as a vital part. Whereas this is a well-researched topic for residents, little is known about the adaptive behaviour of flood-prone companies although they often settle on the ground floor of buildings and are thus among the first affected by flooding. This pilot study analyses flood responses of 64 businesses in a district of the city of Dresden, Germany that experienced major flooding in 2002 and 2013. Using standardised survey data and accompanying qualitative interviews, the analyses revealed that the largest driver of adaptive behaviour is experiencing flood events. Intangible factors such as tradition and a sense of community play a role for the decision to stay in the area, while lacking ownership might hamper property-level adaptation. Further research is also needed to understand the role of insurance and governmental aid for recovery and adaptation of businesses.}, language = {en} } @article{SamprognaMohorThiekenKorup2021, author = {Samprogna Mohor, Guilherme and Thieken, Annegret and Korup, Oliver}, title = {Residential flood loss estimated from Bayesian multilevel models}, series = {Natural Hazards and Earth System Sciences}, volume = {21}, journal = {Natural Hazards and Earth System Sciences}, publisher = {European Geophysical Society}, address = {Katlenburg-Lindau}, issn = {2195-9269}, doi = {10.5194/nhess-21-1599-2021}, pages = {1599 -- 1614}, year = {2021}, abstract = {Models for the predictions of monetary losses from floods mainly blend data deemed to represent a single flood type and region. Moreover, these approaches largely ignore indicators of preparedness and how predictors may vary between regions and events, challenging the transferability of flood loss models. We use a flood loss database of 1812 German flood-affected households to explore how Bayesian multilevel models can estimate normalised flood damage stratified by event, region, or flood process type. Multilevel models acknowledge natural groups in the data and allow each group to learn from others. We obtain posterior estimates that differ between flood types, with credibly varying influences of water depth, contamination, duration, implementation of property-level precautionary measures, insurance, and previous flood experience; these influences overlap across most events or regions, however. We infer that the underlying damaging processes of distinct flood types deserve further attention. Each reported flood loss and affected region involved mixed flood types, likely explaining the uncertainty in the coefficients. Our results emphasise the need to consider flood types as an important step towards applying flood loss models elsewhere. We argue that failing to do so may unduly generalise the model and systematically bias loss estimations from empirical data.}, language = {en} } @article{KocPetrowThieken2020, author = {Koc, Gamze and Petrow, Theresia and Thieken, Annegret}, title = {Analysis of the most severe flood events in Turkey (1960-2014)}, series = {Water / Molecular Diversity Preservation International (MDPI)}, volume = {12}, journal = {Water / Molecular Diversity Preservation International (MDPI)}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w12061562}, pages = {32}, year = {2020}, abstract = {The most severe flood events in Turkey were determined for the period 1960-2014 by considering the number of fatalities, the number of affected people, and the total economic losses as indicators. The potential triggering mechanisms (i.e., atmospheric circulations and precipitation amounts) and aggravating pathways (i.e., topographic features, catchment size, land use types, and soil properties) of these 25 events were analyzed. On this basis, a new approach was developed to identify the main influencing factor per event and to provide additional information for determining the dominant flood occurrence pathways for severe floods. The events were then classified through hierarchical cluster analysis. As a result, six different clusters were found and characterized. Cluster 1 comprised flood events that were mainly influenced by drainage characteristics (e.g., catchment size and shape); Cluster 2 comprised events aggravated predominantly by urbanization; steep topography was identified to be the dominant factor for Cluster 3; extreme rainfall was determined as the main triggering factor for Cluster 4; saturated soil conditions were found to be the dominant factor for Cluster 5; and orographic effects of mountain ranges characterized Cluster 6. This study determined pathway patterns of the severe floods in Turkey with regard to their main causal or aggravating mechanisms. Accordingly, geomorphological properties are of major importance in large catchments in eastern and northeastern Anatolia. In addition, in small catchments, the share of urbanized area seems to be an important factor for the extent of flood impacts. This paper presents an outcome that could be used for future urban planning and flood risk prevention studies to understand the flood mechanisms in different regions of Turkey.}, language = {en} } @article{KellermannSchroeterThiekenetal.2020, author = {Kellermann, Patric and Schr{\"o}ter, Kai and Thieken, Annegret and Haubrock, S{\"o}ren-Nils and Kreibich, Heidi}, title = {The object-specific flood damage database HOWAS 21}, series = {Natural hazards and earth system sciences}, volume = {20}, journal = {Natural hazards and earth system sciences}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-20-2503-2020}, pages = {2503 -- 2519}, year = {2020}, abstract = {The Flood Damage Database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. The main purpose of development of HOWAS 21 was to support forensic flood analysis and the derivation of flood damage models. HOWAS 21 was first developed for Germany and currently almost exclusively contains datasets from Germany. However, its scope has recently been enlarged with the aim to serve as an international flood damage database; e.g. its web application is now available in German and English. This paper presents the recent advancements of HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data. The data applications indicate a large potential of the database for fostering a better understanding and estimation of the consequences of flooding.}, language = {en} } @article{WutzlerHudsonThieken2022, author = {Wutzler, Bianca and Hudson, Paul and Thieken, Annegret}, title = {Adaptation strategies of flood-damaged businesses in Germany}, series = {Frontiers in Water}, journal = {Frontiers in Water}, publisher = {Frontiers Media SA}, address = {Lausanne, Schweiz}, issn = {2624-9375}, doi = {10.3389/frwa.2022.932061}, pages = {13}, year = {2022}, abstract = {Flood risk management in Germany follows an integrative approach in which both private households and businesses can make an important contribution to reducing flood damage by implementing property-level adaptation measures. While the flood adaptation behavior of private households has already been widely researched, comparatively less attention has been paid to the adaptation strategies of businesses. However, their ability to cope with flood risk plays an important role in the social and economic development of a flood-prone region. Therefore, using quantitative survey data, this study aims to identify different strategies and adaptation drivers of 557 businesses damaged by a riverine flood in 2013 and 104 businesses damaged by pluvial or flash floods between 2014 and 2017. Our results indicate that a low perceived self-efficacy may be an important factor that can reduce the motivation of businesses to adapt to flood risk. Furthermore, property-owners tended to act more proactively than tenants. In addition, high experience with previous flood events and low perceived response costs could strengthen proactive adaptation behavior. These findings should be considered in business-tailored risk communication.}, language = {en} } @article{GoetzKohrsParraHormazabaletal.2021, author = {Goetz, Jason and Kohrs, Robin and Parra Hormaz{\´a}bal, Eric and Bustos Morales, Manuel and Araneda Riquelme, Mar{\´i}a Bel{\´e}n and Henr{\´i}quez Ruiz, Cristian and Brenning, Alexander}, title = {Optimizing and validating the Gravitational Process Path model for regional debris-flow runout modelling}, series = {Natural hazards and earth system sciences : NHESS / European Geophysical Society}, volume = {21}, journal = {Natural hazards and earth system sciences : NHESS / European Geophysical Society}, number = {8}, publisher = {European Geophysical Society}, address = {Katlenburg-Lindau}, issn = {1561-8633}, doi = {10.5194/nhess-21-2543-2021}, pages = {2543 -- 2562}, year = {2021}, abstract = {Knowing the source and runout of debris flows can help in planning strategies aimed at mitigating these hazards. Our research in this paper focuses on developing a novel approach for optimizing runout models for regional susceptibility modelling, with a case study in the upper Maipo River basin in the Andes of Santiago, Chile. We propose a two-stage optimization approach for automatically selecting parameters for estimating runout path and distance. This approach optimizes the random-walk and Perla et al.'s (PCM) two-parameter friction model components of the open-source Gravitational Process Path (GPP) modelling framework. To validate model performance, we assess the spatial transferability of the optimized runout model using spatial crossvalidation, including exploring the model's sensitivity to sample size. We also present diagnostic tools for visualizing uncertainties in parameter selection and model performance. Although there was considerable variation in optimal parameters for individual events, we found our runout modelling approach performed well at regional prediction of potential runout areas. We also found that although a relatively small sample size was sufficient to achieve generally good runout modelling performance, larger samples sizes (i.e. >= 80) had higher model performance and lower uncertainties for estimating runout distances at unknown locations. We anticipate that this automated approach using the open-source R software and the System for Automated Geoscientific Analyses geographic information system (SAGA-GIS) will make process-based debris-flow models more readily accessible and thus enable researchers and spatial planners to improve regional-scale hazard assessments.}, language = {en} } @techreport{DillenardtThieken2021, author = {Dillenardt, Lisa and Thieken, Annegret}, title = {Untersuchung der r{\"a}umlichen Verteilung von Bodenk{\"u}hlpotenzialen in Remscheid}, doi = {10.25932/publishup-52667}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526670}, pages = {III, 40}, year = {2021}, abstract = {Eine Zunahme der allgemeinen Temperatur auf Grund des Klimawandels und die damit einhergehende Zunahme von Hitzewellen f{\"u}hrten dazu, dass das Landesamt f{\"u}r Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV) einen Leitfaden f{\"u}r den Schutz der positiven Klimafunktion urbaner B{\"o}den herausgab. Darauf aufbauend wurde auf regionaler Ebene f{\"u}r die Stadt D{\"u}sseldorf die K{\"u}hlleistung der urbanen B{\"o}den quantifiziert, um besonders schutzw{\"u}rdige Bereiche zu identifizieren. Im Rahmen des Projektes ExTrass sollte nun die K{\"u}hlleistung urbaner B{\"o}den innerhalb Remscheids quantifiziert werden, jedoch auf Basis von frei zug{\"a}nglichen Daten. Eine solche Datengrundlage schließt eine Modellierung des Bodenwasserhaushaltes, welches die Grundlage der Quantifizierung in D{\"u}sseldorf war, f{\"u}r Remscheid aus. Jedoch bietet der vorgestellte Ansatz die M{\"o}glichkeit, eine solche Untersuchung auch in anderen Gemeinden innerhalb Deutschlands mit relativ wenig Aufwand durchzuf{\"u}hren. Die K{\"u}hlleistung der B{\"o}den wurde {\"u}ber die nutzbare Feldkapazit{\"a}t abgesch{\"a}tzt, welche das Wasserspeichervolumen der obersten durchwurzelten Bodenzone angibt. Es ist der Bodenwasserspeicher, der Wasser f{\"u}r die Evapotranspiration zur Verf{\"u}gung stellt und damit maßgeblich die K{\"u}hlleistung eines Bodens definiert, d.h. durch direkte Evaporation des Bodenwassers sowie durch die Transpiration von Wasser durch Pflanzen. In die Erstellung der Karte sind eingegangen: (a) die Bodenkarte Nordrhein-Westfalens (BK50), um die nutzbare Feldkapazit{\"a}t (nFK) je Fl{\"a}che zu bestimmen; (b) der Landnutzungsdatensatz UrbanAtlas 2012, in Verbindung mit einer Literaturrecherche, um den Einfluss der Landnutzung auf die Werte der nFK, insbesondere im Hinblick auf Versiegelung und Verdichtung herzuleiten; und (c) OpenStreetMap (OSM), um den Anteil der versiegelten Fl{\"a}chen genauer zu bestimmen, als dies auf Basis des UrbanAtlas m{\"o}glich gewesen w{\"a}re. Es hat sich gezeigt, dass dieser Ansatz geeignet ist, um die r{\"a}umliche Verteilung der potenziellen Bodenk{\"u}hlfunktion innerhalb einer Stadt zu untersuchen. Es ist zu beachten, dass der Einfluss des Grundwassers in Remscheid nicht ber{\"u}cksichtigt werden konnte. Denn es ist damit zu rechnen, dass die Grundwasserverh{\"a}ltnisse aufgrund der geologischen und topographischen Situation in Remscheid kleinr{\"a}umig Variationen unterliegen und es somit keinen durchg{\"a}ngigen und kartierten Aquifer gibt. Kleingartenanlagen, Parks und Friedh{\"o}he im innerst{\"a}dtischen Bereich und allgemein die Landnutzungsklassen Wald und Gr{\"u}nland wurden als Fl{\"a}chen mit einem besonders hohem potenziellen Bodenk{\"u}hlpotenzial identifiziert. Solche Fl{\"a}chen sind besonders sch{\"u}tzenswert. Die Analyse der Speicherf{\"u}llst{\"a}nde der oberen Bodenzone, basierend auf der erstellten Karte der potenziellen Bodenk{\"u}hlfunktion und der klimatischen Wasserbilanz, ergab, dass besonders innerst{\"a}dtische Fl{\"a}chen, die einen kleinen Bodenwasserspeicher haben, in einem trockenen Jahr bereits fr{\"u}h im Sommer ihre K{\"u}hlfunktion verlieren und bei Hitzewellen somit eine verringerte positive Klimafunktion haben. Gest{\"u}tzt wird diese Aussage durch eine Auswertung des normalisierten differenzierten Vegetationsindex (NDVI), der genutzt wurde, um die Ver{\"a}nderung der Pflanzenvitalit{\"a}t vor und nach einer Hitzeperiode im Juni/Juli 2018 zu untersuchen. Messungen mit Meteobikes, einer Vorrichtung, die dazu geeignet ist, w{\"a}hrend einer Radfahrt kontinuierlich die Temperatur zu messen, st{\"u}tzen die Erkenntnis, dass innerst{\"a}dtische Gr{\"u}nfl{\"a}chen wie Parks eine positive Wirkung auf das urbane Mikroklima haben. Weiterhin zeigen diese Messungen, dass die Topographie innerhalb des Untersuchungsgebietes die Aufheizung einzelner Fl{\"a}chen und die Temperaturverteilung vermutlich mitbestimmt. Die hier vorgestellte Karte der potenziellen K{\"u}hlfunktion f{\"u}r Remscheid sollte als Erg{\"a}nzung in die Klimafunktionskarte f{\"u}r Remscheid eingehen und den bestehenden Layer „fl{\"a}chenhafte Klimafunktion", der nur die Landnutzung ber{\"u}cksichtigt, ersetzen.}, language = {de} } @article{MuellerSchuelerZechetal.2022, author = {M{\"u}ller, Sebastian and Sch{\"u}ler, Lennart and Zech, Alraune and Heße, Falk}, title = {GSTools v1.3: a toolbox for geostatistical modelling in Python}, series = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, volume = {15}, journal = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-15-3161-2022}, pages = {3161 -- 3182}, year = {2022}, abstract = {Geostatistics as a subfield of statistics accounts for the spatial correlations encountered in many applications of, for example, earth sciences. Valuable information can be extracted from these correlations, also helping to address the often encountered burden of data scarcity. Despite the value of additional data, the use of geostatistics still falls short of its potential. This problem is often connected to the lack of user-friendly software hampering the use and application of geostatistics. We therefore present GSTools, a Python-based software suite for solving a wide range of geostatistical problems. We chose Python due to its unique balance between usability, flexibility, and efficiency and due to its adoption in the scientific community. GSTools provides methods for generating random fields; it can perform kriging, variogram estimation and much more. We demonstrate its abilities by virtue of a series of example applications detailing their use.}, language = {en} } @article{BauerBoersigPhametal.2022, author = {Bauer, Jonas and B{\"o}rsig, Nicolas and Pham, Van Cam and Hoan, Tran Viet and Nguyen, Ha Thi and Norra, Stefan}, title = {Geochemistry and evolution of groundwater resources in the context of salinization and freshening in the southernmost Mekong Delta, Vietnam}, series = {Journal of Hydrology: Regional Studies}, volume = {40}, journal = {Journal of Hydrology: Regional Studies}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-5818}, doi = {10.1016/j.ejrh.2022.101010}, pages = {17}, year = {2022}, abstract = {Study region: Ca Mau Province (CMP), Mekong Delta (MD), Vietnam. Study focus: Groundwater from deep aquifers is the most reliable source of freshwater in the MD but extensive overexploitation in the last decades led to the drop of hydraulic heads and negative environmental impacts. Therefore, a comprehensive groundwater investigation was conducted to evaluate its composition in the context of Quaternary marine transgression and regression cycles, geochemical processes as well as groundwater extraction. New hydrological insights for the region: The abundance of groundwater of Na-HCO3 type and distinct ion ratios, such as Na+/Cl-, indicate extensive freshwater intrusion in an initially saline hydrogeological system, with decreasing intensity from upper Pleistocene to deeper Miocene aquifers, most likely during the last marine regression phase 60-12 ka BP. Deviations from the conservative mixing line between the two endmembers seawater and freshwater are attributed to ion-exchange processes on mineral surfaces, making ion ratios in combination with a customized water type analysis a useful tool to distinguish between salinization and freshening processes. Elevated salinity in some areas is attributed to HCO3- generation by organic matter decomposition in marine sediments rather than to seawater intrusion. Nevertheless, a few randomly distributed locations show strong evidence of recent salinization in an early stage, which may be caused by the downwards migration of saline Holocene groundwater through natural and anthropogenic pathways into deep aquifers.}, language = {en} } @article{FaireyTimmermanSudoetal.2019, author = {Fairey, Brenton J. and Timmerman, Martin Jan and Sudo, Masafumi and Tsikos, Harilaos}, title = {The role of hydrothermal activity in the formation of Karst-hosted manganese deposits of the Postmasburg Mn Field, Northern Cape Province, South Africa}, series = {Minerals}, volume = {9}, journal = {Minerals}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2075-163X}, doi = {10.3390/min9070408}, pages = {28}, year = {2019}, abstract = {The Postmasburg Manganese Field (PMF), Northern Cape Province, South Africa, once represented one of the largest sources of manganese ore worldwide. Two belts of manganese ore deposits have been distinguished in the PMF, namely the Western Belt of ferruginous manganese ores and the Eastern Belt of siliceous manganese ores. Prevailing models of ore formation in these two belts invoke karstification of manganese-rich dolomites and residual accumulation of manganese wad which later underwent diagenetic and low-grade metamorphic processes. For the most part, the role of hydrothermal processes and metasomatic alteration towards ore formation has not been adequately discussed. Here we report an abundance of common and some rare Al-, Na-, K- and Ba-bearing minerals, particularly aegirine, albite, microcline, banalsite, serandite-pectolite, paragonite and natrolite in Mn ores of the PMF, indicative of hydrothermal influence. Enrichments in Na, K and/or Ba in the ores are generally on a percentage level for most samples analysed through bulk-rock techniques. The presence of As-rich tokyoite also suggests the presence of As and V in the hydrothermal fluid. The fluid was likely oxidized and alkaline in nature, akin to a mature basinal brine. Various replacement textures, particularly of Na- and K- rich minerals by Ba-bearing phases, suggest sequential deposition of gangue as well as ore-minerals from the hydrothermal fluid, with Ba phases being deposited at a later stage. The stratigraphic variability of the studied ores and their deviation from the strict classification of ferruginous and siliceous ores in the literature, suggests that a re-evaluation of genetic models is warranted. New Ar-Ar ages for K-feldspars suggest a late Neoproterozoic timing for hydrothermal activity. This corroborates previous geochronological evidence for regional hydrothermal activity that affected Mn ores at the PMF but also, possibly, the high-grade Mn ores of the Kalahari Manganese Field to the north. A revised, all-encompassing model for the development of the manganese deposits of the PMF is then proposed, whereby the source of metals is attributed to underlying carbonate rocks beyond the Reivilo Formation of the Campbellrand Subgroup. The main process by which metals are primarily accumulated is attributed to karstification of the dolomitic substrate. The overlying Asbestos Hills Subgroup banded iron formation (BIF) is suggested as a potential source of alkali metals, which also provides a mechanism for leaching of these BIFs to form high-grade residual iron ore deposits.}, language = {en} } @article{NeugartWiesnerReinholdFredeetal.2018, author = {Neugart, Susanne and Wiesner-Reinhold, Melanie and Frede, Katja and Jander, Elisabeth and Homann, Thomas and Rawel, Harshadrai Manilal and Schreiner, Monika and Baldermann, Susanne}, title = {Effect of Solid Biological Waste Compost on the Metabolite Profile of Brassica rapa ssp chinensis}, series = {Frontiers in plant science : FPLS}, volume = {9}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2018.00305}, pages = {13}, year = {2018}, abstract = {Large quantities of biological waste are generated at various steps within the food production chain and a great utilization potential for this solid biological waste exists apart from the current main usage for the feedstuff sector. It remains unclear how the usage of biological waste as compost modulates plant metabolites. We investigated the effect of biological waste of the processing of coffee, aronia, and hop added to soil on the plant metabolite profile by means of liquid chromatography in pak choi sprouts. Here we demonstrate that the solid biological waste composts induced specific changes in the metabolite profiles and the changes are depending on the type of the organic residues and its concentration in soil. The targeted analysis of selected plant metabolites, associated with health beneficial properties of the Brassicaceae family, revealed increased concentrations of carotenoids (up to 3.2-fold) and decreased amounts of glucosinolates (up to 4.7-fold) as well as phenolic compounds (up to 1.5-fold).}, language = {en} } @techreport{BerghaeuserSchoppaUlrichetal.2021, author = {Bergh{\"a}user, Lisa and Schoppa, Lukas and Ulrich, Jana and Dillenardt, Lisa and Jurado, Oscar E. and Passow, Christian and Samprogna Mohor, Guilherme and Seleem, Omar and Petrow, Theresia and Thieken, Annegret}, title = {Starkregen in Berlin}, doi = {10.25932/publishup-50056}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-500560}, pages = {44}, year = {2021}, abstract = {In den Sommern der Jahre 2017 und 2019 kam es in Berlin an mehreren Orten zu {\"U}berschwemmungen in Folge von Starkregenereignissen. In beiden Jahren f{\"u}hrte dies zu erheblichen Beeintr{\"a}chtigungen im Alltag der Berliner:innen sowie zu hohen Sachsch{\"a}den. Eine interdisziplin{\"a}re Taskforce des DFG-Graduiertenkollegs NatRiskChange untersuchte (1) die meteorologischen Eigenschaften zweier besonders eindr{\"u}cklicher Unwetter, sowie (2) die Vulnerabilit{\"a}t der Berliner Bev{\"o}lkerung gegen{\"u}ber Starkregen. Eine vergleichende meteorologische Rekonstruktion der Starkregenereignisse von 2017 und 2019 ergab deutliche Unterschiede in der Entstehung und den {\"U}berschreitungswahrscheinlichkeiten der beiden Unwetter. So war das Ereignis von 2017 mit einer relativ großen r{\"a}umlichen Ausdehnung und langer Dauer ein untypisches Starkregenereignis, w{\"a}hrend es sich bei dem Unwetter von 2019 um ein typisches, kurzzeitiges Starkregenereignis mit ausgepr{\"a}gter r{\"a}umlicher Heterogenit{\"a}t handelte. Eine anschließende statistische Analyse zeigte, dass das Ereignis von 2017 f{\"u}r l{\"a}ngere Niederschlagsdauern (>=24 h) als großfl{\"a}chiges Extremereignis mit {\"U}berschreitungswahrscheinlichkeiten von unter 1 \% einzuordnen ist (d.h. Wiederkehrperioden >=100 Jahre). Im Jahr 2019 wurden dagegen {\"a}hnliche {\"U}berschreitungswahrscheinlichkeiten nur lokal und f{\"u}r k{\"u}rzere Zeitr{\"a}ume (1-2 h) berechnet. Die Vulnerabilit{\"a}tsanalyse basiert auf einer von April bis Juni 2020 in Berlin durchgef{\"u}hrten Onlinebefragung. Diese richtete sich an Personen, die bereits von vergangenen Starkregenereignissen betroffen waren und thematisierte das Schadensereignis selbst, daraus entstandene Beeintr{\"a}chtigungen und Sch{\"a}den, Risikowahrnehmung sowie Notfall- und Vorsorgemaßnahmen. Die erhobenen Umfragedaten (n=102) beziehen sich vornehmlich auf die Ereignisse von 2017 und 2019 und zeigen, dass die Berliner Bev{\"o}lkerung sowohl im Alltag (z.B. bei der Beschaffung von Lebensmitteln) als auch im eigenen Haushalt (z.B. durch {\"U}berschwemmungssch{\"a}den) von den Unwettern beeintr{\"a}chtigt war. Zudem deuteten die Antworten der Betroffenen auf M{\"o}glichkeiten hin, die Vulnerabilit{\"a}t der Gesellschaft gegen{\"u}ber Starkregen weiter zu reduzieren - etwa durch die Unterst{\"u}tzung besonders betroffener Gruppen (z.B. Pflegende), durch gezielte Informationskampagnen zum Schutz vor Starkregen oder durch die Erh{\"o}hung der Reichweite von Unwetterwarnungen. Eine statistische Analyse zur Effektivit{\"a}t privater Notfall- und Vorsorgemaßnahmen auf Grundlage der Umfragedaten best{\"a}tigte vorherige Studienergebnisse. So gab es Anhaltspunkte daf{\"u}r, dass durch das Umsetzen von Vorsorgemaßnahmen wie beispielsweise das Installieren von R{\"u}ckstauklappen, Barriere-Systemen oder Pumpen Starkregensch{\"a}den reduziert werden k{\"o}nnen. Die Ergebnisse dieses Berichts unterstreichen die Notwendigkeit f{\"u}r ein integriertes Starkregenrisikomanagment, das die Risikokomponenten Gef{\"a}hrdung, Vulnerabilit{\"a}t und Exposition ganzheitlich und auf mehreren Ebenen (z.B. staatlich, kommunal, privat) betrachtet.}, language = {de} } @article{JobeLiBookhagenetal.2018, author = {Jobe, Jessica Ann Thompson and Li, Tao and Bookhagen, Bodo and Chen, Jie and Burbank, Douglas W.}, title = {Dating growth strata and basin fill by combining Al-26/Be-10 burial dating and magnetostratigraphy}, series = {Lithosphere}, volume = {10}, journal = {Lithosphere}, number = {6}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {1941-8264}, doi = {10.1130/L727.1}, pages = {806 -- 828}, year = {2018}, abstract = {Cosmogenic burial dating enables dating of coarse-grained, Pliocene-Pleistocene sedimentary units that are typically difficult to date with traditional methods, such as magnetostratigraphy. In the actively deforming western Tarim Basin in NW China, Pliocene-Pleistocene conglomerates were dated at eight sites, integrating Al-26/Be-10 burial dating with previously published magnetostratigraphic sections. These samples were collected from growth strata on the flanks of growing folds and from sedimentary units beneath active faults to place timing constraints on the initiation of deformation of structures within the basin and on shortening rates on active faults. These new basin-fill and growthstrata ages document the late Neogene and Quaternary growth of the Pamir and Tian Shan orogens between >5 and 1 Ma and delineate the eastward propagation of deformation at rates up to 115 km/m.y. and basinward growth of both mountain belts at rates up to 12 km/m.y.}, language = {en} } @article{PuppeLeueSommeretal.2022, author = {Puppe, Daniel and Leue, Martin and Sommer, Michael and Schaller, J{\"o}rg and Kaczorek, Danuta}, title = {Auto-fluorescence in phytoliths}, series = {Frontiers in Environmental Science}, volume = {10}, journal = {Frontiers in Environmental Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-665X}, doi = {10.3389/fenvs.2022.915947}, pages = {14}, year = {2022}, abstract = {The detection of auto-fluorescence in phytogenic, hydrated amorphous silica depositions (phytoliths) has been found to be a promising approach to verify if phytoliths were burnt or not, especially in archaeological contexts. However, it is unknown so far at what temperature and how auto-fluorescence is induced in phytoliths. We used fluorescence microscopy, scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared spectroscopy to analyze auto-fluorescence in modern phytoliths extracted from plant samples or in intact leaves of winter wheat. Leaves and extracted phytoliths were heated at different temperatures up to 600 degrees C. The aims of our experiments were i) to find out what temperature is needed to induce auto-fluorescence in phytoliths, ii) to detect temperature-dependent changes in the molecular structure of phytoliths related to auto-fluorescence, and iii) to derive a mechanistic understanding of auto-fluorescence in phytoliths. We found organic compounds associated with phytoliths to cause auto-fluorescence in phytoliths treated at temperatures below approx. 400 degrees C. In phytoliths treated at higher temperatures, i.e., 450 and 600 degrees C, phytolith auto-fluorescence was mainly caused by molecular changes of phytolith silica. Based on our results we propose that auto-fluorescence in phytoliths is caused by clusterization-triggered emissions, which are caused by overlapping electron clouds forming non-conventional chromophores. In phytoliths heated at temperatures above about 400 degrees C dihydroxylation and the formation of siloxanes result in oxygen clusters that serve as non-conventional chromophores in fluorescence events. Furthermore, SEM-EDX analyses revealed that extractable phytoliths were dominated by lumen phytoliths (62\%) compared to cell wall phytoliths (38\%). Our findings might be not only relevant in archaeological phytolith-based examinations, but also for studies on the temperature-dependent release of silicon from phytoliths and the potential of long-term carbon sequestration in phytoliths.}, language = {en} } @article{SchmidtNendelFunketal.2019, author = {Schmidt, Martin and Nendel, Claas and Funk, Roger and Mitchell, Matthew G. E. and Lischeid, Gunnar}, title = {Modeling Yields Response to Shading in the Field-to-Forest Transition Zones in Heterogeneous Landscapes}, series = {Agriculture}, volume = {9}, journal = {Agriculture}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2077-0472}, doi = {10.3390/agriculture9010006}, pages = {15}, year = {2019}, abstract = {In crop modeling and yield predictions, the heterogeneity of agricultural landscapes is usually not accounted for. This heterogeneity often arises from landscape elements like forests, hedges, or single trees and shrubs that cast shadows. Shading from forested areas or shrubs has effects on transpiration, temperature, and soil moisture, all of which affect the crop yield in the adjacent arable land. Transitional gradients of solar irradiance can be described as a function of the distance to the zero line (edge), the cardinal direction, and the height of trees. The magnitude of yield reduction in transition zones is highly influenced by solar irradiance-a factor that is not yet implemented in crop growth models on a landscape level. We present a spatially explicit model for shading caused by forested areas, in agricultural landscapes. With increasing distance to forest, solar irradiance and yield increase. Our model predicts that the shading effect from the forested areas occurs up to 15 m from the forest edge, for the simulated wheat yields, and up to 30 m, for simulated maize. Moreover, we estimated the spatial extent of transition zones, to calculate the regional yield reduction caused by shading of the forest edges, which amounted to 5\% to 8\% in an exemplary region.}, language = {en} } @article{WengLuedekeZempetal.2018, author = {Weng, Wei and L{\"u}deke, Matthias K. B. and Zemp, Delphine Clara and Lakes, Tobia and Kropp, J{\"u}rgen}, title = {Aerial and surface rivers}, series = {Hydrology and earth system sciences : HESS}, volume = {22}, journal = {Hydrology and earth system sciences : HESS}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-22-911-2018}, pages = {911 -- 927}, year = {2018}, abstract = {The abundant evapotranspiration provided by the Amazon forests is an important component of the hydrological cycle, both regionally and globally. Since the last century, deforestation and expanding agricultural activities have been changing the ecosystem and its provision of moisture to the atmosphere. However, it remains uncertain how the ongoing land use change will influence rainfall, runoff, and water availability as findings from previous studies differ. Using moisture tracking experiments based on observational data, we provide a spatially detailed analysis recognizing potential teleconnection between source and sink regions of atmospheric moisture. We apply land use scenarios in upwind moisture sources and quantify the corresponding rainfall and runoff changes in downwind moisture sinks. We find spatially varying responses of water regimes to land use changes, which may explain the diverse results from previous studies. Parts of the Peruvian Amazon and western Bolivia are identified as the sink areas most sensitive to land use change in the Amazon and we highlight the current water stress by Amazonian land use change on these areas in terms of the water availability. Furthermore, we also identify the influential source areas where land use change may considerably reduce a given target sink's water reception (from our example of the Ucayali River basin outlet, rainfall by 5-12 \% and runoff by 19-50 \% according to scenarios). Sensitive sinks and influential sources are therefore suggested as hotspots for achieving sustainable land-water management.}, language = {en} } @article{PradhanKropp2020, author = {Pradhan, Prajal and Kropp, J{\"u}rgen}, title = {Interplay between diets, health, and climate change}, series = {Sustainability}, volume = {12}, journal = {Sustainability}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su12093878}, pages = {14}, year = {2020}, abstract = {The world is facing a triple burden of undernourishment, obesity, and environmental impacts from agriculture while nourishing its population. This burden makes sustainable nourishment of the growing population a global challenge. Addressing this challenge requires an understanding of the interplay between diets, health, and associated environmental impacts (e.g., climate change). For this, we identify 11 typical diets that represent dietary habits worldwide for the last five decades. Plant-source foods provide most of all three macronutrients (carbohydrates, protein, and fat) in developing countries. In contrast, animal-source foods provide a majority of protein and fat in developed ones. The identified diets deviate from the recommended healthy diet with either too much (e.g., red meat) or too little (e.g., fruits and vegetables) food and nutrition supply. The total calorie supplies are lower than required for two diets. Sugar consumption is higher than recommended for five diets. Three and five diets consist of larger-than-recommended carbohydrate and fat shares, respectively. Four diets with a large share of animal-source foods exceed the recommended value of red meat. Only two diets consist of at least 400 gm/cap/day of fruits and vegetables while accounting for food waste. Prevalence of undernourishment and underweight dominates in the diets with lower calories. In comparison, a higher prevalence of obesity is observed for diets with higher calories with high shares of sugar, fat, and animal-source foods. However, embodied emissions in the diets do not show a clear relation with calorie supplies and compositions. Two high-calorie diets embody more than 1.5 t CO2eq/cap/yr, and two low-calorie diets embody around 1 t CO2eq/cap/yr. Our analysis highlights that sustainable and healthy diets can serve the purposes of both nourishing the population and, at the same time, reducing the environmental impacts of agriculture.}, language = {en} } @article{KrummenauerCostaPrahletal.2021, author = {Krummenauer, Linda and Costa, Lu{\´i}s F{\´i}l{\´i}pe Carvalho da and Prahl, Boris F. and Kropp, J{\"u}rgen}, title = {Future heat adaptation and exposure among urban populations and why a prospering economy alone won't save us}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-021-99757-0}, pages = {14}, year = {2021}, abstract = {When inferring on the magnitude of future heat-related mortality due to climate change, human adaptation to heat should be accounted for. We model long-term changes in minimum mortality temperatures (MMT), a well-established metric denoting the lowest risk of heat-related mortality, as a function of climate change and socio-economic progress across 3820 cities. Depending on the combination of climate trajectories and socio-economic pathways evaluated, by 2100 the risk to human health is expected to decline in 60\% to 80\% of the cities against contemporary conditions. This is caused by an average global increase in MMTs driven by long-term human acclimatisation to future climatic conditions and economic development of countries. While our adaptation model suggests that negative effects on health from global warming can broadly be kept in check, the trade-offs are highly contingent to the scenario path and location-specific. For high-forcing climate scenarios (e.g. RCP8.5) the maintenance of uninterrupted high economic growth by 2100 is a hard requirement to increase MMTs and level-off the negative health effects from additional scenario-driven heat exposure. Choosing a 2 degrees C-compatible climate trajectory alleviates the dependence on fast growth, leaving room for a sustainable economy, and leads to higher reductions of mortality risk.}, language = {en} } @article{AtharePradhanSinghetal.2022, author = {Athare, Tushar Ramchandra and Pradhan, Prajal and Singh, S. R. K. and Kropp, J{\"u}rgen}, title = {India consists of multiple food systems with scoioeconomic and environmental variations}, series = {PLOS ONE / Public Library of Science}, volume = {17}, journal = {PLOS ONE / Public Library of Science}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0270342}, pages = {18}, year = {2022}, abstract = {Agriculture in India accounts for 18\% of greenhouse gas (GHG) emissions and uses significant land and water. Various socioeconomic factors and food subsidies influence diets in India. Indian food systems face the challenge of sustainably nourishing the 1.3 billion population. However, existing studies focus on a few food system components, and holistic analysis is still missing. We identify Indian food systems covering six food system components: food consumption, production, processing, policy, environmental footprints, and socioeconomic factors from the latest Indian household consumer expenditure survey. We identify 10 Indian food systems using k-means cluster analysis on 15 food system indicators belonging to the six components. Based on the major source of calorie intake, we classify the ten food systems into production-based (3), subsidy-based (3), and market-based (4) food systems. Home-produced and subsidized food contribute up to 2000 kcal/consumer unit (CU)/day and 1651 kcal/CU/day, respectively, in these food systems. The calorie intake of 2158 to 3530 kcal/CU/day in the food systems reveals issues of malnutrition in India. Environmental footprints are commensurate with calorie intake in the food systems. Embodied GHG, land footprint, and water footprint estimates range from 1.30 to 2.19 kg CO(2)eq/CU/day, 3.89 to 6.04 m(2)/CU/day, and 2.02 to 3.16 m(3)/CU/day, respectively. Our study provides a holistic understanding of Indian food systems for targeted nutritional interventions on household malnutrition in India while also protecting planetary health.}, language = {en} } @article{KhuranaHesseKleidonHildebrandtetal.2022, author = {Khurana, Swamini and Hesse, Falk and Kleidon-Hildebrandt, Anke and Thullner, Martin}, title = {Should we worry about surficial dynamics when assessing nutrient cycling in the groundwater?}, series = {Frontiers in water}, volume = {4}, journal = {Frontiers in water}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2624-9375}, doi = {10.3389/frwa.2022.780297}, pages = {17}, year = {2022}, abstract = {The fluxes of water and solutes in the subsurface compartment of the Critical Zone are temporally dynamic and it is unclear how this impacts microbial mediated nutrient cycling in the spatially heterogeneous subsurface. To investigate this, we undertook numerical modeling, simulating the transport in a wide range of spatially heterogeneous domains, and the biogeochemical transformation of organic carbon and nitrogen compounds using a complex microbial community with four (4) distinct functional groups, in water saturated subsurface compartments. We performed a comprehensive uncertainty analysis accounting for varying residence times and spatial heterogeneity. While the aggregated removal of chemical species in the domains over the entire simulation period was approximately the same as that in steady state conditions, the sub-scale temporal variation of microbial biomass and chemical discharge from a domain depended strongly on the interplay of spatial heterogeneity and temporal dynamics of the forcing. We showed that the travel time and the Damkohler number (Da) can be used to predict the temporally varying chemical discharge from a spatially heterogeneous domain. In homogeneous domains, chemical discharge in temporally dynamic conditions could be double of that in the steady state conditions while microbial biomass varied up to 75\% of that in steady state conditions. In heterogeneous domains, the interquartile range of uncertainty in chemical discharge in reaction dominated systems (log(10)Da > 0) was double of that in steady state conditions. However, high heterogeneous domains resulted in outliers where chemical discharge could be as high as 10-20 times of that in steady state conditions in high flow periods. And in transport dominated systems (log(10)Da < 0), the chemical discharge could be half of that in steady state conditions in unusually low flow conditions. In conclusion, ignoring spatio-temporal heterogeneities in a numerical modeling approach may exacerbate inaccurate estimation of nutrient export and microbial biomass. The results are relevant to long-term field monitoring studies, and for homogeneous soil column-scale experiments investigating the role of temporal dynamics on microbial redox dynamics.}, language = {en} } @article{SchneidemesserSibiyaCaseiroetal.2021, author = {Schneidemesser, Erika von and Sibiya, Bheki and Caseiro, Alexandre and Butler, Tim and Lawrence, Mark and Leitao, Joana and Lupa{\c{s}}cu, Aura and Salvador, Pedro}, title = {Learning from the COVID-19 lockdown in Berlin}, series = {Atmospheric environment: X}, volume = {12}, journal = {Atmospheric environment: X}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2590-1621}, doi = {10.1016/j.aeaoa.2021.100122}, pages = {13}, year = {2021}, abstract = {Urban air pollution is a substantial threat to human health. Traffic emissions remain a large contributor to air pollution in urban areas. The mobility restrictions put in place in response to the COVID-19 pandemic provided a large-scale real-world experiment that allows for the evaluation of changes in traffic emissions and the corresponding changes in air quality. Here we use observational data, as well as modelling, to analyse changes in nitrogen dioxide, ozone, and particulate matter resulting from the COVID-19 restrictions at the height of the lockdown period in Spring of 2020. Accounting for the influence of meteorology on air quality, we found that reduction of ca. 30-50 \% in traffic counts, dominated by changes in passenger cars, corresponded to reductions in median observed nitrogen dioxide concentrations of ca. 40 \% (traffic and urban background locations) and a ca. 22 \% increase in ozone (urban background locations) during weekdays. Lesser reductions in nitrogen dioxide concentrations were observed at urban background stations at weekends, and no change in ozone was observed. The modelled reductions in median nitrogen dioxide at urban background locations were smaller than the observed reductions and the change was not significant. The model results showed no significant change in ozone on weekdays or weekends. The lack of a simulated weekday/weekend effect is consistent with previous work suggesting that NOx emissions from traffic could be significantly underestimated in European cities by models. These results indicate the potential for improvements in air quality due to policies for reducing traffic, along with the scale of reductions that would be needed to result in meaningful changes in air quality if a transition to sustainable mobility is to be seriously considered. They also confirm once more the highly relevant role of traffic for air quality in urban areas.}, language = {en} } @article{FreymarkBottCacaceetal.2019, author = {Freymark, Jessica and Bott, Judith and Cacace, Mauro and Ziegler, Moritz 0. and Scheck-Wenderoth, Magdalena}, title = {Influence of the Main Border Faults on the 3D Hydraulic Field of the Central Upper Rhine Graben}, series = {Geofluids}, journal = {Geofluids}, publisher = {Wiley-Hindawi}, address = {London}, issn = {1468-8115}, doi = {10.1155/2019/7520714}, pages = {21}, year = {2019}, abstract = {The Upper Rhine Graben (URG) is an active rift with a high geothermal potential. Despite being a well-studied area, the three-dimensional interaction of the main controlling factors of the thermal and hydraulic regime is still not fully understood. Therefore, we have used a data-based 3D structural model of the lithological configuration of the central URG for some conceptual numerical experiments of 3D coupled simulations of fluid and heat transport. To assess the influence of the main faults bordering the graben on the hydraulic and the deep thermal field, we carried out a sensitivity analysis on fault width and permeability. Depending on the assigned width and permeability of the main border faults, fluid velocity and temperatures are affected only in the direct proximity of the respective border faults. Hence, the hydraulic characteristics of these major faults do not significantly influence the graben-wide groundwater flow patterns. Instead, the different scenarios tested provide a consistent image of the main characteristics of fluid and heat transport as they have in common: (1) a topography-driven basin-wide fluid flow perpendicular to the rift axis from the graben shoulders to the rift center, (2) a N/NE-directed flow parallel to the rift axis in the center of the rift and, (3) a pronounced upflow of hot fluids along the rift central axis, where the streams from both sides of the rift merge. This upflow axis is predicted to occur predominantly in the center of the URG (northern and southern model area) and shifted towards the eastern boundary fault (central model area).}, language = {en} } @article{VyseSemiromiLischeidetal.2020, author = {Vyse, Stuart Andrew and Semiromi, Majid Taie and Lischeid, Gunnar and Merz, Christoph}, title = {Characterizing hydrological processes within kettle holes using stable water isotopes in the Uckermark of northern Brandenburg, Germany}, series = {Hydrological Processes}, volume = {34}, journal = {Hydrological Processes}, number = {8}, publisher = {Wiley}, address = {New York}, issn = {0885-6087}, doi = {10.1002/hyp.13699}, pages = {1868 -- 1887}, year = {2020}, abstract = {Understanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north-east of Germany. For this reason, based on the stable isotopes of oxygen (delta O-18) and hydrogen (delta H-2), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7\%) were ascertained to have a partially open, flow-through-dominated system. Moreover, we identified an inverse correlation between E/I ratios and the altitudes of the kettle holes. The same holds for electrical conductivity (EC) and the altitudes of the kettle holes. In accordance with the findings obtained from this study, a conceptual model explaining the interaction between the shallow groundwater and the kettle holes of Uckermark was developed. The model exhibited that across the highest altitudes, the recharge kettle holes are dominant, where a lower ratio of E/I and a lower EC was detected. By contrast, the lowest topographical depressions represent the discharge kettle holes, where a higher ratio of E/I and EC could be identified. The kettle holes existing in between were categorized as flow-through kettle holes through which the recharge takes place from one side and discharge from the other side.}, language = {en} } @article{SmetanovaMuellerZargaretal.2020, author = {Smetanov{\´a}, Anna and M{\"u}ller, Anne and Zargar, Morteza and Suleiman, Mohamed A. and Gholami, Faraz Rabei and Mousavi, Maryam}, title = {Mesoscale mapping of sediment source hotspots for dam sediment management in data-sparse semi-arid catchments}, series = {Water}, volume = {12}, journal = {Water}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w12020396}, pages = {1 -- 24}, year = {2020}, abstract = {Land degradation and water availability in semi-arid regions are interdependent challenges for management that are influenced by climatic and anthropogenic changes. Erosion and high sediment loads in rivers cause reservoir siltation and decrease storage capacity, which pose risk on water security for citizens, agriculture, and industry. In regions where resources for management are limited, identifying spatial-temporal variability of sediment sources is crucial to decrease siltation. Despite widespread availability of rigorous methods, approaches simplifying spatial and temporal variability of erosion are often inappropriately applied to very data sparse semi-arid regions. In this work, we review existing approaches for mapping erosional hotspots, and provide an example of spatial-temporal mapping approach in two case study regions. The barriers limiting data availability and their effects on erosion mapping methods, their validation, and resulting prioritization of leverage management areas are discussed.}, language = {en} } @article{SiegmundPanebiancoAvecillaetal.2022, author = {Siegmund, Nicole and Panebianco, Juan E. and Avecilla, Fernando and Iturri, Laura Antonela and Sommer, Michael and Buschiazzo, Daniel and Funk, Roger}, title = {From gustiness to dustiness}, series = {Atmosphere}, volume = {13}, journal = {Atmosphere}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2073-4433}, doi = {10.3390/atmos13081173}, pages = {14}, year = {2022}, abstract = {This study delivers the first empirical data-driven analysis of the impact of turbulence induced gustiness on the fine dust emissions from a measuring field. For quantification of the gust impact, a new measure, the Gust uptake Efficiency (GuE) is introduced. GuE provides a percentage of over- or under-proportional dust uptake due to gust activity during a wind event. For the three analyzed wind events, GuE values of up to 150\% could be found, yet they significantly differed per particle size class with a tendency for lower values for smaller particles. In addition, a high-resolution correlation analysis among 31 particle size classes and wind speed was conducted; it revealed strong negative correlation coefficients for very small particles and positive correlations for bigger particles, where 5 mu m appears to be an empirical threshold dividing both directions. We conclude with a number of suggestions for further investigations: an optimized field experiment setup, a new particle size ratio (PM1/PM0.5 in addition to PM10/PM2.5), as well as a comprehensive data-driven search for an optimal wind gust definition in terms of soil erosivity.}, language = {en} } @article{FrielerSchaubergerArnethetal.2017, author = {Frieler, Katja and Schauberger, Bernhard and Arneth, Almut and Balkovic, Juraj and Chryssanthacopoulos, James and Deryng, Delphine and Elliott, Joshua and Folberth, Christian and Khabarov, Nikolay and M{\"u}ller, Christoph and Olin, Stefan and Pugh, Thomas A. M. and Schaphoff, Sibyll and Schewe, Jacob and Schmid, Erwin and Warszawski, Lila and Levermann, Anders}, title = {Understanding the weather signal in national crop-yield variability}, series = {Earths future}, volume = {5}, journal = {Earths future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2016EF000525}, pages = {605 -- 616}, year = {2017}, abstract = {Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50\% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50\% in seven countries, including the United States. The explained variance exceeds 50\% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.}, language = {en} } @article{SchallerPuppeKaczoreketal.2021, author = {Schaller, J{\"o}rg and Puppe, Daniel and Kaczorek, Danuta and Ellerbrock, Ruth and Sommer, Michael}, title = {Silicon cycling in soils revisited}, series = {Plants : open access journal}, volume = {10}, journal = {Plants : open access journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2223-7747}, doi = {10.3390/plants10020295}, pages = {33}, year = {2021}, abstract = {Silicon (Si) speciation and availability in soils is highly important for ecosystem functioning, because Si is a beneficial element for plant growth. Si chemistry is highly complex compared to other elements in soils, because Si reaction rates are relatively slow and dependent on Si species. Consequently, we review the occurrence of different Si species in soil solution and their changes by polymerization, depolymerization, and condensation in relation to important soil processes. We show that an argumentation based on thermodynamic endmembers of Si dependent processes, as currently done, is often difficult, because some reactions such as mineral crystallization require months to years (sometimes even centuries or millennia). Furthermore, we give an overview of Si reactions in soil solution and the predominance of certain solid compounds, which is a neglected but important parameter controlling the availability, reactivity, and function of Si in soils. We further discuss the drivers of soil Si cycling and how humans interfere with these processes. The soil Si cycle is of major importance for ecosystem functioning; therefore, a deeper understanding of drivers of Si cycling (e.g., predominant speciation), human disturbances and the implication for important soil properties (water storage, nutrient availability, and micro aggregate stability) is of fundamental relevance.}, language = {en} } @article{HoanRichterBorsigetal.2022, author = {Hoan, Tran Viet and Richter, Karl-Gerd and Borsig, Nicolas and Bauer, Jonas and Ha, Nguyen Thi and Norra, Stefan}, title = {An improved groundwater model framework for aquifer structures of the quaternary-formed sediment body in the southernmost parts of the Mekong Delta, Vietnam}, series = {Hydrology : open access journal}, volume = {9}, journal = {Hydrology : open access journal}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2306-5338}, doi = {10.3390/hydrology9040061}, pages = {20}, year = {2022}, abstract = {The Ca Mau peninsula (CMP) is a key economic region in southern Vietnam. In recent decades, the high demand for water has increased the exploitation of groundwater, thus lowering the groundwater level and leading to risks of degradation, depletion, and land subsidence, as well as salinity intrusion in the groundwater of the whole Mekong Delta region. By using a finite element groundwater model with boundary expansion to the sea, we updated the latest data on hydrogeological profiles, groundwater levels, and exploitation. The basic model setup covers seven aquifers and seven aquitards. It is determined that the inflow along the coastline to the mainland is 39\% of the total inflow. The exploitation of the study area in 2019 was 567,364 m(3)/day. The most exploited aquifers are the upper-middle Pleistocene (qp(2-3)) and the middle Pliocene (n(2)(2)), accounting for 63.7\% and 24.6\%, respectively; the least exploited aquifers are the upper Pleistocene and the upper Miocene, accounting for 0.35\% and 0.02\%, respectively. In the deeper aquifers, qp(2-3) and n(2)(2), the change in storage is negative due to the high exploitation rate, leading to a decline in the reserves of these aquifers. These groundwater model results are the calculations of groundwater reserves from the coast to the mainland in the entire system of aquifers in the CMP. This makes groundwater decision managers, stakeholders, and others more efficient in sustainable water resources planning in the CMP and Mekong Delta (MKD).}, language = {en} } @article{ReineckeTrautmannWageneretal.2022, author = {Reinecke, Robert and Trautmann, Tim and Wagener, Thorsten and Sch{\"u}ler, Katja}, title = {The critical need to foster computational reproducibility}, series = {Environmental research letters}, volume = {17}, journal = {Environmental research letters}, number = {4}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac5cf8}, pages = {5}, year = {2022}, language = {en} } @article{DidovetsKrysanovaBuergeretal.2019, author = {Didovets, Iulii and Krysanova, Valentina and B{\"u}rger, Gerd and Snizhko, Sergiy and Balabukh, Vira and Bronstert, Axel}, title = {Climate change impact on regional floods in the Carpathian region}, series = {Journal of hydrology : Regional studies}, volume = {22}, journal = {Journal of hydrology : Regional studies}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-5818}, doi = {10.1016/j.ejrh.2019.01.002}, pages = {14}, year = {2019}, abstract = {Study region: Tisza and Prut catchments, originating on the slopes of the Carpathian mountains. Study focus: The study reported here investigates (i) climate change impacts on flood risk in the region, and (ii) uncertainty related to hydrological modelling, downscaling techniques and climate projections. The climate projections used in the study were derived from five GCMs, downscaled either dynamically with RCMs or with the statistical downscaling model XDS. The resulting climate change scenarios were applied to drive the eco-hydrological model SWIM, which was calibrated and validated for the catchments in advance using observed climate and hydrological data. The changes in the 30-year flood hazards and 98 and 95 percentiles of discharge were evaluated for the far future period (2071-2100) in comparison with the reference period (1981-2010). New hydrological insights for the region: The majority of model outputs under RCP 4.5 show a small to strong increase of the 30-year flood level in the Tisza ranging from 4.5\% to 62\%, and moderate increase in the Prut ranging from 11\% to 22\%. The impact results under RCP 8.5 are more uncertain with changes in both directions due to high uncertainties in GCM-RCM climate projections, downscaling methods and the low density of available climate stations.}, language = {en} } @article{DevittNealWageneretal.2021, author = {Devitt, Laura and Neal, Jeffrey and Wagener, Thorsten and Coxon, Gemma}, title = {Uncertainty in the extreme flood magnitude estimates of large-scale flood hazard models}, series = {Environmental research letters : ERL / Institute of Physics}, volume = {16}, journal = {Environmental research letters : ERL / Institute of Physics}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/abfac4}, pages = {15}, year = {2021}, abstract = {The growing worldwide impact of flood events has motivated the development and application of global flood hazard models (GFHMs). These models have become useful tools for flood risk assessment and management, especially in regions where little local hazard information is available. One of the key uncertainties associated with GFHMs is the estimation of extreme flood magnitudes to generate flood hazard maps. In this study, the 1-in-100 year flood (Q100) magnitude was estimated using flow outputs from four global hydrological models (GHMs) and two global flood frequency analysis datasets for 1350 gauges across the conterminous US. The annual maximum flows of the observed and modelled timeseries of streamflow were bootstrapped to evaluate the sensitivity of the underlying data to extrapolation. Results show that there are clear spatial patterns of bias associated with each method. GHMs show a general tendency to overpredict Western US gauges and underpredict Eastern US gauges. The GloFAS and HYPE models underpredict Q100 by more than 25\% in 68\% and 52\% of gauges, respectively. The PCR-GLOBWB and CaMa-Flood models overestimate Q100 by more than 25\% at 60\% and 65\% of gauges in West and Central US, respectively. The global frequency analysis datasets have spatial variabilities that differ from the GHMs. We found that river basin area and topographic elevation explain some of the spatial variability in predictive performance found in this study. However, there is no single model or method that performs best everywhere, and therefore we recommend a weighted ensemble of predictions of extreme flood magnitudes should be used for large-scale flood hazard assessment.}, language = {en} } @article{MtilatilaBronstertShresthaetal.2020, author = {Mtilatila, Lucy Mphatso Ng'ombe and Bronstert, Axel and Shrestha, Pallav and Kadewere, Peter and Vormoor, Klaus Josef}, title = {Susceptibility of water resources and hydropower production to climate change in the tropics}, series = {Hydrology : open access journal}, volume = {7}, journal = {Hydrology : open access journal}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2306-5338}, doi = {10.3390/hydrology7030054}, pages = {26}, year = {2020}, abstract = {The sensitivity of key hydrologic variables and hydropower generation to climate change in the Lake Malawi and Shire River basins is assessed. The study adapts the mesoscale Hydrological Model (mHM) which is applied separately in the Upper Lake Malawi and Shire River basins. A particular Lake Malawi model, which focuses on reservoir routing and lake water balance, has been developed and is interlinked between the two basins. Climate change projections from 20 Coordinated Regional Climate Downscaling Experiment (CORDEX) models for Africa based on two scenarios (RCP4.5 and RCP8.5) for the periods 2021-2050 and 2071-2100 are used. An annual temperature increase of 1 degrees C decreases mean lake level and outflow by 0.3 m and 17\%, respectively, signifying the importance of intensified evaporation for Lake Malawi's water budget. Meanwhile, a +5\% (-5\%) deviation in annual rainfall changes mean lake level by +0.7 m (-0.6 m). The combined effects of temperature increase and rainfall decrease result in significantly lower flows in the Shire River. The hydrological river regime may change from perennial to seasonal with the combination of annual temperature increase and precipitation decrease beyond 1.5 degrees C (3.5 degrees C) and -20\% (-15\%). The study further projects a reduction in annual hydropower production between 1\% (RCP8.5) and 2.5\% (RCP4.5) during 2021-2050 and between 5\% (RCP4.5) and 24\% (RCP8.5) during 2071-2100. The results show that it is of great importance that a further development of hydro energy on the Shire River should take into account the effects of climate change, e.g., longer low flow periods and/or higher discharge fluctuations, and thus uncertainty in the amount of electricity produced.}, language = {en} } @article{SeleemAyzelCostaTomazdeSouzaetal.2022, author = {Seleem, Omar and Ayzel, Georgy and Costa Tomaz de Souza, Arthur and Bronstert, Axel and Heistermann, Maik}, title = {Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany}, series = {Geomatics, natural hazards and risk}, volume = {13}, journal = {Geomatics, natural hazards and risk}, number = {1}, publisher = {Taylor \& Francis}, address = {London}, issn = {1947-5705}, doi = {10.1080/19475705.2022.2097131}, pages = {1640 -- 1662}, year = {2022}, abstract = {Identifying urban pluvial flood-prone areas is necessary but the application of two-dimensional hydrodynamic models is limited to small areas. Data-driven models have been showing their ability to map flood susceptibility but their application in urban pluvial flooding is still rare. A flood inventory (4333 flooded locations) and 11 factors which potentially indicate an increased hazard for pluvial flooding were used to implement convolutional neural network (CNN), artificial neural network (ANN), random forest (RF) and support vector machine (SVM) to: (1) Map flood susceptibility in Berlin at 30, 10, 5, and 2 m spatial resolutions. (2) Evaluate the trained models' transferability in space. (3) Estimate the most useful factors for flood susceptibility mapping. The models' performance was validated using the Kappa, and the area under the receiver operating characteristic curve (AUC). The results indicated that all models perform very well (minimum AUC = 0.87 for the testing dataset). The RF models outperformed all other models at all spatial resolutions and the RF model at 2 m spatial resolution was superior for the present flood inventory and predictor variables. The majority of the models had a moderate performance for predictions outside the training area based on Kappa evaluation (minimum AUC = 0.8). Aspect and altitude were the most influencing factors on the image-based and point-based models respectively. Data-driven models can be a reliable tool for urban pluvial flood susceptibility mapping wherever a reliable flood inventory is available.}, language = {en} }