@misc{YarmanScheller2020, author = {Yarman, Aysu and Scheller, Frieder W.}, title = {How reliable is the electrochemical readout of MIP-sensors?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {960}, issn = {1866-8372}, doi = {10.25932/publishup-47160}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471608}, pages = {25}, year = {2020}, abstract = {Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration.}, language = {en} } @misc{PengYarmanJetzschmannetal.2017, author = {Peng, Lei and Yarman, Aysu and Jetzschmann, Katharina J. and Jeoung, Jae-Hun and Schad, Daniel and Dobbek, Holger and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Molecularly imprinted electropolymer for a hexameric heme protein with direct electron transfer and peroxide electrocatalysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400627}, pages = {11}, year = {2017}, abstract = {For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs) with a formal potential of -184.4 ± 13.7 mV vs. Ag/AgCl (1 M KCl) at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP).}, language = {en} }