@misc{MayerScharhagRosenbergerCarlsohnetal.2011, author = {Mayer, Frank and Scharhag-Rosenberger, Friederike and Carlsohn, Anja and Cassel, Michael and M{\"u}ller, Steffen and Scharhag, J{\"u}rgen}, title = {The intensity and effects of strength training in the elderly}, series = {Deutsches {\"A}rzteblatt international : a weekly online journal of clinical medicine and public health}, volume = {108}, journal = {Deutsches {\"A}rzteblatt international : a weekly online journal of clinical medicine and public health}, number = {21}, publisher = {Dt. {\"A}rzte-Verl.}, address = {Cologne}, issn = {1866-0452}, doi = {10.3238/arztebl.2011.0359}, pages = {359 -- U30}, year = {2011}, abstract = {Background: The elderly need strength training more and more as they grow older to stay mobile for their everyday activities. The goal of training is to reduce the loss of muscle mass and the resulting loss of motor function. The dose-response relationship of training intensity to training effect has not yet been fully elucidated. Methods: PubMed was selectively searched for articles that appeared in the past 5 years about the effects and dose-response relationship of strength training in the elderly. Results: Strength training in the elderly (> 60 years) increases muscle strength by increasing muscle mass, and by improving the recruitment of motor units, and increasing their firing rate. Muscle mass can be increased through training at an intensity corresponding to 60\% to 85\% of the individual maximum voluntary strength. Improving the rate of force development requires training at a higher intensity (above 85\%), in the elderly just as in younger persons. It is now recommended that healthy old people should train 3 or 4 times weekly for the best results; persons with poor performance at the outset can achieve improvement even with less frequent training. Side effects are rare. Conclusion: Progressive strength training in the elderly is efficient, even with higher intensities, to reduce sarcopenia, and to retain motor function.}, language = {en} } @misc{DeSouzaSilveiraCarlsohnLangenetal.2016, author = {De Souza Silveira, Raul and Carlsohn, Anja and Langen, Georg and Mayer, Frank and Scharhag-Rosenberger, Friederike}, title = {Reliability and day-to-day variability of peak fat oxidation during treadmill ergometry}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {423}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407334}, pages = {7}, year = {2016}, abstract = {Background: Exercising at intensities where fat oxidation rates are high has been shown to induce metabolic benefits in recreational and health-oriented sportsmen. The exercise intensity (Fat peak ) eliciting peak fat oxidation rates is therefore of particular interest when aiming to prescribe exercise for the purpose of fat oxidation and related metabolic effects. Although running and walking are feasible and popular among the target population, no reliable protocols are available to assess Fat peak as well as its actual velocity (V PFO ) during treadmill ergometry. Our purpose was therefore, to assess the reliability and day-to-day variability of V PFO and Fat peak during treadmill ergometry running. Methods: Sixteen recreational athletes (f = 7, m = 9; 25 ± 3 y; 1.76 ± 0.09 m; 68.3 ± 13.7 kg; 23.1 ± 2.9 kg/m 2 ) performed 2 different running protocols on 3 different days with standardized nutrition the day before testing. At day 1, peak oxygen uptake (VO 2peak ) and the velocities at the aerobic threshold (V LT ) and respiratory exchange ratio (RER) of 1.00 (V RER ) were assessed. At days 2 and 3, subjects ran an identical submaximal incremental test (Fat-peak test) composed of a 10 min warm-up (70 \% V LT ) followed by 5 stages of 6 min with equal increments (stage 1 = V LT , stage 5 = V RER ). Breath-by-breath gas exchange data was measured continuously and used to determine fat oxidation rates. A third order polynomial function was used to identify V PFO and subsequently Fat peak . The reproducibility and variability of variables was verified with an int raclass correlation coef ficient (ICC), Pearson ' s correlation coefficient, coefficient of variation (CV) an d the mean differences (bias) ± 95 \% limits of agreement (LoA). Results: ICC, Pearson ' s correlation and CV for V PFO and Fat peak were 0.98, 0.97, 5.0 \%; and 0.90, 0.81, 7.0 \%, respectively. Bias ± 95 \% LoA was - 0.3 ± 0.9 km/h for V PFO and - 2±8\%ofVO 2peak for Fat peak. Conclusion: In summary, relative and absolute reliability indicators for V PFO and Fat peak were found to be excellent. The observed LoA may now serve as a basis for future training prescriptions, although fat oxidation rates at prolonged exercise bouts at this intensity still need to be investigated.}, language = {en} } @article{AppiahDwomohCarlsohnMayer2018, author = {Appiah-Dwomoh, Edem Korkor and Carlsohn, Anja and Mayer, Frank}, title = {Assessment of Dietary Intake of Long-Distance Race Car Drivers}, series = {Sports}, volume = {6}, journal = {Sports}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2075-4663}, doi = {10.3390/sports6040118}, pages = {1 -- 7}, year = {2018}, abstract = {Long-distance race car drivers are classified as athletes. The sport is physically and mentally demanding, requiring long hours of practice. Therefore, optimal dietary intake is essential for health and performance of the athlete. The aim of the study was to evaluate dietary intake and to compare the data with dietary recommendations for athletes and for the general adult population according to the German Nutrition Society (DGE). A 24-h dietary recall during a competition preparation phase was obtained from 16 male race car drivers (28.3 ± 6.1 years, body mass index (BMI) of 22.9 ± 2.3 kg/m2). The mean intake of energy, nutrients, water and alcohol was recorded. The mean energy, vitamin B2, vitamin E, folate, fiber, calcium, water and alcohol intake were 2124 ± 814 kcal/day, 1.3 ± 0.5 mg/day, 12.5 ± 9.5 mg/day, 231.0 ± 90.9 ug/day, 21.4 ± 9.4 g/day, 1104 ± 764 mg/day, 3309 ± 1522 mL/day and 0.8 ± 2.5 mL/day respectively. Our study indicated that many of the nutrients studied, including energy and carbohydrate, were below the recommended dietary intake for both athletes and the DGE.}, language = {en} } @misc{AppiahDwomohCarlsohnMayer2018, author = {Appiah-Dwomoh, Edem Korkor and Carlsohn, Anja and Mayer, Frank}, title = {Assessment of Dietary Intake of Long-Distance Race Car Drivers}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {482}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419997}, pages = {7}, year = {2018}, abstract = {Long-distance race car drivers are classified as athletes. The sport is physically and mentally demanding, requiring long hours of practice. Therefore, optimal dietary intake is essential for health and performance of the athlete. The aim of the study was to evaluate dietary intake and to compare the data with dietary recommendations for athletes and for the general adult population according to the German Nutrition Society (DGE). A 24-h dietary recall during a competition preparation phase was obtained from 16 male race car drivers (28.3 ± 6.1 years, body mass index (BMI) of 22.9 ± 2.3 kg/m2). The mean intake of energy, nutrients, water and alcohol was recorded. The mean energy, vitamin B2, vitamin E, folate, fiber, calcium, water and alcohol intake were 2124 ± 814 kcal/day, 1.3 ± 0.5 mg/day, 12.5 ± 9.5 mg/day, 231.0 ± 90.9 ug/day, 21.4 ± 9.4 g/day, 1104 ± 764 mg/day, 3309 ± 1522 mL/day and 0.8 ± 2.5 mL/day respectively. Our study indicated that many of the nutrients studied, including energy and carbohydrate, were below the recommended dietary intake for both athletes and the DGE.}, language = {en} } @misc{CarlsohnCasselLinneetal.2010, author = {Carlsohn, Anja and Cassel, Michael and Linn{\´e}, Karsten and Mayer, Frank}, title = {How much is too much?}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {515}, issn = {1866-8364}, doi = {10.25932/publishup-41291}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412910}, pages = {5}, year = {2010}, abstract = {Although dietary nutrient intake is often adequate, nutritional supplement use is common among elite athletes. However, high-dose supplements or the use of multiple supplements may exceed the recommended daily allowance (RDA) of particular nutrients or even result in a daily intake above tolerable upper limits (UL). The present case report presents nutritional intake data and supplement use of a highly trained male swimmer competing at international level. Habitual energy and micronutrient intake were analysed by 3 d dietary reports. Supplement use and dosage were assessed, and total amount of nutrient supply was calculated. Micronutrient intake was evaluated based on RDA and UL as presented by the European Scientific Committee on Food, and maximum permitted levels in supplements (MPL) are given. The athlete's diet provided adequate micronutrient content well above RDA except for vitamin D. Simultaneous use of ten different supplements was reported, resulting in excess intake above tolerable UL for folate, vitamin E and Zn. Additionally, daily supplement dosage was considerably above MPL for nine micronutrients consumed as artificial products. Risks and possible side effects of exceeding UL by the athlete are discussed. Athletes with high energy intake may be at risk of exceeding UL of particular nutrients if multiple supplements are added. Therefore, dietary counselling of athletes should include assessment of habitual diet and nutritional supplement intake. Educating athletes to balance their diets instead of taking supplements might be prudent to prevent health risks that may occur with long-term excess nutrient intake.}, language = {en} } @misc{CarlsohnScharhagRosenbergerCasseletal.2017, author = {Carlsohn, Anja and Scharhag-Rosenberger, Friederike and Cassel, Michael and Mayer, Frank}, title = {Resting Metabolic Rate in Elite Rowers and Canoeists: Difference between Indirect Calorimetry and Prediction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-399837}, pages = {6}, year = {2017}, abstract = {Background: Athletes may differ in their resting metabolic rate (RMR) from the general population. However, to estimate the RMR in athletes, prediction equations that have not been validated in athletes are often used. The purpose of this study was therefore to verify the applicability of commonly used RMR predictions for use in athletes. Methods: The RMR was measured by indirect calorimetry in 17 highly trained rowers and canoeists of the German national teams (BMI 24 ± 2 kg/m2, fat-free mass 69 ± 15 kg). In addition, the RMR was predicted using Cunningham (CUN) and Harris-Benedict (HB) equations. A two-way repeated measures ANOVA was calculated to test for differences between predicted and measured RMR (α = 0.05). The root mean square percentage error (RMSPE) was calculated and the Bland-Altman procedure was used to quantify the bias for each prediction. Results: Prediction equations significantly underestimated the RMR in males (p < 0.001). The RMSPE was calculated to be 18.4\% (CUN) and 20.9\% (HB) in the entire group. The bias was 133 kcal/24 h for CUN and 202 kcal/24 h for HB. Conclusions: Predictions significantly underestimate the RMR in male heavyweight endurance athletes but not in females. In athletes with a high fat-free mass, prediction equations might therefore not be applicable to estimate energy requirements. Instead, measurement of the resting energy expenditure or specific prediction equations might be needed for the individual heavyweight athlete.}, language = {en} } @misc{MuellerCarlsohnMuelleretal.2016, author = {M{\"u}ller, Steffen and Carlsohn, Anja and M{\"u}ller, Juliane and Baur, Heiner and Mayer, Frank}, title = {Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90108}, year = {2016}, abstract = {Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0 +/- 2.9yr; 1.23 +/- 0.19m; 26.6 +/- 10.6kg; BMI: 17.1 +/- 2.4kg/m(2)) were included for (complete case) data analysis. Children were categorized to normalweight (>= 3rd and <90th percentile; n = 6458), overweight (>= 90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid-and hindfoot. Data was analyzed descriptively (mean +/- SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett's C; alpha = 0.05). Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children.}, language = {en} } @article{MuellerCarlsohnMuelleretal.2016, author = {M{\"u}ller, Steffen and Carlsohn, Anja and M{\"u}ller, Juliane and Baur, Heiner and Mayer, Frank}, title = {Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, number = {2}, publisher = {Public Library of Science}, address = {Lawrence, Kan.}, issn = {1932-6203}, doi = {10.1371/journal.pone.0149924}, year = {2016}, abstract = {Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0 +/- 2.9yr; 1.23 +/- 0.19m; 26.6 +/- 10.6kg; BMI: 17.1 +/- 2.4kg/m(2)) were included for (complete case) data analysis. Children were categorized to normalweight (>= 3rd and <90th percentile; n = 6458), overweight (>= 90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid-and hindfoot. Data was analyzed descriptively (mean +/- SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett's C; alpha = 0.05). Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children.}, language = {en} }