@article{FischerBrettinRoessneretal.2022, author = {Fischer, Melanie and Brettin, Jana and Roessner, Sigrid and Walz, Ariane and Fort, Monique and Korup, Oliver}, title = {Rare flood scenarios for a rapidly growing high-mountain city: Pokhara, Nepal}, series = {Natural Hazards and Earth System Sciences}, volume = {22}, journal = {Natural Hazards and Earth System Sciences}, edition = {9}, publisher = {Copernicus Publications}, address = {Katlenburg-Lindau}, issn = {1684-9981}, doi = {10.5194/nhess-22-3105-2022}, pages = {3105 -- 3123}, year = {2022}, abstract = {Pokhara (ca. 850 m a.s.l.), Nepal's second-largest city, lies at the foot of the Higher Himalayas and has more than tripled its population in the past 3 decades. Construction materials are in high demand in rapidly expanding built-up areas, and several informal settlements cater to unregulated sand and gravel mining in the Pokhara Valley's main river, the Seti Khola. This river is fed by the Sabche glacier below Annapurna III (7555 m a.s.l.), some 35 km upstream of the city, and traverses one of the steepest topographic gradients in the Himalayas. In May 2012 a sudden flood caused >70 fatalities and intense damage along this river and rekindled concerns about flood risk management. We estimate the flow dynamics and inundation depths of flood scenarios using the hydrodynamic model HEC-RAS (Hydrologic Engineering Center's River Analysis System). We simulate the potential impacts of peak discharges from 1000 to 10 000 m3 s-1 on land cover based on high-resolution Maxar satellite imagery and OpenStreetMap data (buildings and road network). We also trace the dynamics of two informal settlements near Kaseri and Yamdi with high potential flood impact from RapidEye, PlanetScope, and Google Earth imagery of the past 2 decades. Our hydrodynamic simulations highlight several sites of potential hydraulic ponding that would largely affect these informal settlements and sites of sand and gravel mining. These built-up areas grew between 3- and 20-fold, thus likely raising local flood exposure well beyond changes in flood hazard. Besides these drastic local changes, about 1 \% of Pokhara's built-up urban area and essential rural road network is in the highest-hazard zones highlighted by our flood simulations. Our results stress the need to adapt early-warning strategies for locally differing hydrological and geomorphic conditions in this rapidly growing urban watershed.}, language = {en} } @article{SafdariCherstvyChechkinetal.2017, author = {Safdari, Hadiseh and Cherstvy, Andrey G. and Chechkin, Aleksei and Bodrova, Anna and Metzler, Ralf}, title = {Aging underdamped scaled Brownian motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {95}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.95.012120}, pages = {15}, year = {2017}, abstract = {We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic, and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the ballistic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD trajectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffusive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken, both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered, with a mixed logarithmic and power-law dependence of the ensemble-and time-averaged MSDs of the particles. In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the short time ballistic limit. The approaches developed here open ways for considering other stochastic processes under physically important conditions when a finite particle mass and aging in the system cannot be neglected.}, language = {en} } @article{BloetheKorup2013, author = {Bl{\"o}the, Jan Henrik and Korup, Oliver}, title = {Millennial lag times in the Himalayan sediment routing system}, series = {Earth \& planetary science letters}, volume = {382}, journal = {Earth \& planetary science letters}, number = {20}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2013.08.044}, pages = {38 -- 46}, year = {2013}, abstract = {Any understanding of sediment routing from mountain belts to their forelands and offshore sinks remains incomplete without estimates of intermediate storage that decisively buffers sediment yields from erosion rates, attenuates water and sediment fluxes, and protects underlying bedrock from incision. We quantify for the first time the sediment stored in > 38000 mainly postglacial Himalayan valley fills, based on an empirical volume-area scaling of valley-fill outlines automatically extracted from digital topographic data. The estimated total volume of 690(+452/-242) km(3) is mostly contained in few large valley fills > 1 km(3), while catastrophic mass wasting adds another 177(31) km(3). Sediment storage volumes are highly disparate along the strike of the orogen. Much of the Himalaya's stock of sediment is sequestered in glacially scoured valleys that provide accommodation space for similar to 44\% of the total volume upstream of the rapidly exhuming and incising syntaxes. Conversely, the step-like long-wave topography of the central Himalayas limits glacier extent, and thus any significant glacier-derived storage of sediment away from tectonic basins. We show that exclusive removal of Himalayan valley fills could nourish contemporary sediment flux from the Indus and Brahmaputra basins for > 1 kyr, though individual fills may attain residence times of > 100 kyr. These millennial lag times in the Himalayan sediment routing system may sufficiently buffer signals of short-term seismic as well as climatic disturbances, thus complicating simple correlation and interpretation of sedimentary archives from the Himalayan orogen, its foreland, and its submarine fan systems. (C) 2013 Elsevier B.V. All rights reserved.}, language = {en} } @article{SandevMetzlerChechkin2018, author = {Sandev, Trifce and Metzler, Ralf and Chechkin, Aleksei}, title = {From continuous time random walks to the generalized diffusion equation}, series = {Fractional calculus and applied analysis : an international journal for theory and applications}, volume = {21}, journal = {Fractional calculus and applied analysis : an international journal for theory and applications}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {1311-0454}, doi = {10.1515/fca-2018-0002}, pages = {10 -- 28}, year = {2018}, abstract = {We obtain a generalized diffusion equation in modified or Riemann-Liouville form from continuous time random walk theory. The waiting time probability density function and mean squared displacement for different forms of the equation are explicitly calculated. We show examples of generalized diffusion equations in normal or Caputo form that encode the same probability distribution functions as those obtained from the generalized diffusion equation in modified form. The obtained equations are general and many known fractional diffusion equations are included as special cases.}, language = {en} } @misc{SchuckSchleicherJanssenetal.2020, author = {Schuck, Bernhard and Schleicher, Anja M. and Janssen, Christoph and Toy, Virginia G. and Dresen, Georg}, title = {Fault zone architecture of a large plate-bounding strike-slip fault}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51244}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512441}, pages = {32}, year = {2020}, abstract = {New Zealand's Alpine Fault is a large, platebounding strike-slip fault, which ruptures in large (M-w > 8) earthquakes. We conducted field and laboratory analyses of fault rocks to assess its fault zone architecture. Results reveal that the Alpine Fault Zone has a complex geometry, comprising an anastomosing network of multiple slip planes that have accommodated different amounts of displacement. This contrasts with the previous perception of the Alpine Fault Zone, which assumes a single principal slip zone accommodated all displacement. This interpretation is supported by results of drilling projects and geophysical investigations. Furthermore, observations presented here show that the young, largely unconsolidated sediments that constitute the footwall at shallow depths have a significant influence on fault gouge rheological properties and structure.}, language = {en} } @misc{JeonChechkinMetzler2014, author = {Jeon, Jae-Hyung and Chechkin, Aleksei and Metzler, Ralf}, title = {Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76302}, pages = {15811 -- 15817}, year = {2014}, abstract = {Anomalous diffusion is frequently described by scaled Brownian motion (SBM){,} a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is ?x2(t)? [similar{,} equals] 2K(t)t with K(t) [similar{,} equals] t[small alpha]-1 for 0 < [small alpha] < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion{,} for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely{,} we demonstrate that under confinement{,} the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments{,} in particular{,} under confinement inside cellular compartments or when optical tweezers tracking methods are used.}, language = {en} } @article{PatyniakLandgrafDzhumabaevaetal.2017, author = {Patyniak, Magda and Landgraf, Angela and Dzhumabaeva, Atyrgul and Abdrakhmatov, Kanatbek E. and Rosenwinkel, Swenja and Korup, Oliver and Preusser, Frank and Fohlmeister, Jens Bernd and Arrowsmith, J. Ramon and Strecker, Manfred}, title = {Paleoseismic Record of Three Holocene Earthquakes Rupturing the Issyk-Ata Fault near Bishkek, North Kyrgyzstan}, series = {Bulletin of the Seismological Society of America}, volume = {107}, journal = {Bulletin of the Seismological Society of America}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120170083}, pages = {2721 -- 2737}, year = {2017}, abstract = {The northern edge of the western central Tien Shan range is bounded by the Issyk-Ata fault situated south of Bishkek, the capital of Kyrgyzstan. Contraction in this thick-skinned orogen occurs with low-strain accumulation and long earthquake recurrence intervals. In the nineteenth to twentieth centuries, a sequence of large earthquakes with magnitudes between 6.9 and 8 affected the northern Tien Shan but left nearly the entire extent of the Issyk-Ata fault unruptured. Here, the only known historic earthquake ruptured in A.D. 1885 (M6.9) along the western end of the Issyk-Ata fault. Because earthquakes in low-strain regions often tend to cluster in time and may promote failure along nearby structures, the earthquake history of the northern Tien Shan represents an exceptional structural setting for studying fault behavior affected by an intraplate earthquake sequence. We present a paleoseismological study from one site (Belek) along the Issyk-Ata fault located east of the A.D. 1885 epicentral area. Our analysis combines a range of tools, including photogrammetry, differential Global Positioning System, 3D visualization, and age modeling with different dating methods (infrared stimulated luminescence, radiocarbon, U-series) to improve the reliability of an event chronology for the trench stratigraphy and fault geometry. We were able to distinguish three different surfacerupturing paleoearthquakes; these affected the area before 10.5 +/- 1.1 cal ka B.P., at similar to 5.6 +/- 1.0 cal ka B.P., and at similar to 630 +/- 100 cal B.P., respectively. Associated paleomagnitudes for the last two earthquakes range between M6.7 and 7.4, with a cumulative slip rate of 0.7 +/- 0.32 mm/yr. We did not find evidence for the A.D. 1885 event at Belek. Our study yielded two main overall results: first, it extends the regional historic and paleoseismic record; second, the documented rupture events along the Issyk-Ata fault suggest that this fault was not affected in its entirety; instead, these events indicate segmented rupture behavior.}, language = {en} } @article{BloetheRosenwinkelHoeseretal.2018, author = {Bl{\"o}the, Jan H. and Rosenwinkel, Swenja and Hoeser, Thorsten and Korup, Oliver}, title = {Rock-glacier dams in High Asia}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {44}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.4532}, pages = {808 -- 824}, year = {2018}, abstract = {Rock glaciers in semiarid mountains contain large amounts of ice and might be important water stores aside from glaciers, lakes, and rivers. Yet whether and how rock glaciers interact with river channels in mountain valleys remains largely unresolved. We examine the potential for rock glaciers to block or disrupt river channels, using a new inventory of more than 2000 intact rock glaciers that we mapped from remotely sensed imagery in the Karakoram (KR), Tien Shan (TS), and Altai (ALT) mountains. We find that between 5\% and 14\% of the rock glaciers partly buried, blocked, diverted or constricted at least 95 km of mountain rivers in the entire study area. We use a Bayesian robust logistic regression with multiple topographic and climatic inputs to discern those rock glaciers disrupting mountain rivers from those with no obvious impacts. We identify elevation and potential incoming solar radiation (PISR), together with the size of feeder basins, as dominant predictors, so that lower-lying and larger rock glaciers from larger basins are more likely to disrupt river channels. Given that elevation and PISR are key inputs for modelling the regional distribution of mountain permafrost from the positions of rock-glacier toes, we infer that river-blocking rock glaciers may be diagnostic of non-equilibrated permafrost. Principal component analysis adds temperature evenness and wet-season precipitation to the controls that characterise rock glaciers impacting on rivers. Depending on the choice of predictors, the accuracy of our classification is moderate to good with median posterior area-under-the-curve values of 0.71-0.89. Clarifying whether rapidly advancing rock glaciers can physically impound rivers, or fortify existing dams instead, deserves future field investigation. We suspect that rock-glacier dams are conspicuous features that have a polygenetic history and encourage more research on the geomorphic coupling between permafrost lobes, river channels, and the sediment cascades of semiarid mountain belts. (c) 2018 John Wiley \& Sons, Ltd.}, language = {en} } @article{RosenwinkelKorupLandgrafetal.2015, author = {Rosenwinkel, Swenja and Korup, Oliver and Landgraf, Angela and Dzhumabaeva, Atyrgul}, title = {Limits to lichenometry}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {129}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2015.10.031}, pages = {229 -- 238}, year = {2015}, abstract = {Lichenometry is a straightforward and inexpensive method for dating Holocene rock surfaces. The rationale is that the diameter of the largest lichen scales with the age of the originally fresh rock surface that it colonised. The success of the method depends on finding the largest lichen diameters, a suitable lichen-growth model, and a robust calibration curve. Recent critique of the method motivates us to revisit the accuracy and uncertainties of lichenometry. Specifically, we test how well lichenometry is capable of resolving the ages of different lobes of large active rock glaciers in the Kyrgyz Tien Shan. We use a bootstrapped quantile regression to calibrate local growth curves of Xanthoria elegans, Aspicilia tianshanica, and Rhizocarpon geographicum, and report a nonlinear decrease in dating accuracy with increasing lichen diameter. A Bayesian type of an analysis of variance demonstrates that our calibration allows discriminating credibly between rock-glacier lobes of different ages despite the uncertainties tied to sample size and correctly identifying the largest lichen thalli. Our results also show that calibration error grows with lichen size, so that the separability of rock-glacier lobes of different ages decreases, while the tendency to assign coeval ages increases. The abundant young (<200 yr) specimen of fast-growing X elegans are in contrast with the fewer, slow-growing, but older (200-1500 yr) R. geographicum and A. tianshanica, and record either a regional reactivation of lobes in the past 200 years, or simply a censoring effect of lichen mortality during early phases of colonisation. The high variance of lichen sizes captures the activity of rock-glacier lobes, which is difficult to explain by regional climatic cooling or earthquake triggers alone. Therefore, we caution against inferring palaeoclimatic conditions from the topographic position of rock-glacier lobes. We conclude that lichenometry works better as a tool for establishing a relative, rather than an absolute, chronology of rock-glacier lobes in the northern Tien Shan. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{MohrMangaWangetal.2017, author = {Mohr, Christian Heinrich and Manga, Michael and Wang, Chi-Yuen and Korup, Oliver}, title = {Regional changes in streamflow after a megathrust earthquake}, series = {Earth \& planetary science letters}, volume = {458}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.11.013}, pages = {418 -- 428}, year = {2017}, abstract = {Moderate to large earthquakes can increase the amount of water feeding stream flows, mobilizing excess water from deep groundwater, shallow groundwater, or the vadose zone. Here we examine the regional pattern of streamflow response to the Maule M8.8 earthquake across Chile's diverse topographic and hydro-climatic gradients. We combine streamflow analyses with groundwater flow modeling and a random forest classifier, and find that, after the earthquake, at least 85 streams had a change in flow. Discharge mostly increased () shortly after the earthquake, liberating an excess water volume of >1.1 km3, which is the largest ever reported following an earthquake. Several catchments had increased discharge of >50 mm, locally exceeding seasonal streamflow discharge under undisturbed conditions. Our modeling results favor enhanced vertical permeability induced by dynamic strain as the most probable process explaining the observed changes at the regional scale. Supporting this interpretation, our random forest classification identifies peak ground velocity and elevation extremes as most important for predicting streamflow response. Given the mean recurrence interval of ∼25 yr for >M8.0 earthquakes along the Peru-Chile Trench, our observations highlight the role of earthquakes in the regional water cycle, especially in arid environments.}, language = {en} }