@phdthesis{Stone2020, author = {Stone, Kate}, title = {Predicting long-distance lexical content in German verb-particle constructions}, doi = {10.25932/publishup-47679}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476798}, school = {Universit{\"a}t Potsdam}, year = {2020}, abstract = {A large body of research now supports the presence of both syntactic and lexical predictions in sentence processing. Lexical predictions, in particular, are considered to indicate a deep level of predictive processing that extends past the structural features of a necessary word (e.g. noun), right down to the phonological features of the lexical identity of a specific word (e.g. /kite/; DeLong et al., 2005). However, evidence for lexical predictions typically focuses on predictions in very local environments, such as the adjacent word or words (DeLong et al., 2005; Van Berkum et al., 2005; Wicha et al., 2004). Predictions in such local environments may be indistinguishable from lexical priming, which is transient and uncontrolled, and as such may prime lexical items that are not compatible with the context (e.g. Kukona et al., 2014). Predictive processing has been argued to be a controlled process, with top-down information guiding preactivation of plausible upcoming lexical items (Kuperberg \& Jaeger, 2016). One way to distinguish lexical priming from prediction is to demonstrate that preactivated lexical content can be maintained over longer distances. In this dissertation, separable German particle verbs are used to demonstrate that preactivation of lexical items can be maintained over multi-word distances. A self-paced reading time and an eye tracking experiment provide some support for the idea that particle preactivation triggered by a verb and its context can be observed by holding the sentence context constant and manipulating the predictabilty of the particle. Although evidence of an effect of particle predictability was only seen in eye tracking, this is consistent with previous evidence suggesting that predictive processing facilitates only some eye tracking measures to which the self-paced reading modality may not be sensitive (Staub, 2015; Rayner1998). Interestingly, manipulating the distance between the verb and the particle did not affect reading times, suggesting that the surprisal-predicted faster reading times at long distance may only occur when the additional distance is created by information that adds information about the lexical identity of a distant element (Levy, 2008; Grodner \& Gibson, 2005). Furthermore, the results provide support for models proposing that temporal decay is not major influence on word processing (Lewandowsky et al., 2009; Vasishth et al., 2019). In the third and fourth experiments, event-related potentials were used as a method for detecting specific lexical predictions. In the initial ERP experiment, we found some support for the presence of lexical predictions when the sentence context constrained the number of plausible particles to a single particle. This was suggested by a frontal post-N400 positivity (PNP) that was elicited when a lexical prediction had been violated, but not to violations when more than one particle had been plausible. The results of this study were highly consistent with previous research suggesting that the PNP might be a much sought-after ERP marker of prediction failure (DeLong et al., 2011; DeLong et al., 2014; Van Petten \& Luka, 2012; Thornhill \& Van Petten, 2012; Kuperberg et al., 2019). However, a second experiment in a larger sample experiment failed to replicate the effect, but did suggest the relationship of the PNP to predictive processing may not yet be fully understood. Evidence for long-distance lexical predictions was inconclusive. The conclusion drawn from the four experiments is that preactivation of the lexical entries of plausible upcoming particles did occur and was maintained over long distances. The facilitatory effect of this preactivation at the particle site therefore did not appear to be the result of transient lexical priming. However, the question of whether this preactivation can also lead to lexical predictions of a specific particle remains unanswered. Of particular interest to future research on predictive processing is further characterisation of the PNP. Implications for models of sentence processing may be the inclusion of long-distance lexical predictions, or the possibility that preactivation of lexical material can facilitate reading times and ERP amplitude without commitment to a specific lexical item.}, language = {en} } @phdthesis{Rabe2024, author = {Rabe, Maximilian Michael}, title = {Modeling the interaction of sentence processing and eye-movement control in reading}, doi = {10.25932/publishup-62279}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622792}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 171}, year = {2024}, abstract = {The evaluation of process-oriented cognitive theories through time-ordered observations is crucial for the advancement of cognitive science. The findings presented herein integrate insights from research on eye-movement control and sentence comprehension during reading, addressing challenges in modeling time-ordered data, statistical inference, and interindividual variability. Using kernel density estimation and a pseudo-marginal likelihood for fixation durations and locations, a likelihood implementation of the SWIFT model of eye-movement control during reading (Engbert et al., Psychological Review, 112, 2005, pp. 777-813) is proposed. Within the broader framework of data assimilation, Bayesian parameter inference with adaptive Markov Chain Monte Carlo techniques is facilitated for reliable model fitting. Across the different studies, this framework has shown to enable reliable parameter recovery from simulated data and prediction of experimental summary statistics. Despite its complexity, SWIFT can be fitted within a principled Bayesian workflow, capturing interindividual differences and modeling experimental effects on reading across different geometrical alterations of text. Based on these advancements, the integrated dynamical model SEAM is proposed, which combines eye-movement control, a traditionally psychological research area, and post-lexical language processing in the form of cue-based memory retrieval (Lewis \& Vasishth, Cognitive Science, 29, 2005, pp. 375-419), typically the purview of psycholinguistics. This proof-of-concept integration marks a significant step forward in natural language comprehension during reading and suggests that the presented methodology can be useful to develop complex cognitive dynamical models that integrate processes at levels of perception, higher cognition, and (oculo-)motor control. These findings collectively advance process-oriented cognitive modeling and highlight the importance of Bayesian inference, individual differences, and interdisciplinary integration for a holistic understanding of reading processes. Implications for theory and methodology, including proposals for model comparison and hierarchical parameter inference, are briefly discussed.}, language = {en} } @phdthesis{Jaeger2015, author = {J{\"a}ger, Lena Ann}, title = {Working memory and prediction in human sentence parsing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82517}, school = {Universit{\"a}t Potsdam}, pages = {xi, 144}, year = {2015}, abstract = {This dissertation investigates the working memory mechanism subserving human sentence processing and its relative contribution to processing difficulty as compared to syntactic prediction. Within the last decades, evidence for a content-addressable memory system underlying human cognition in general has accumulated (e.g., Anderson et al., 2004). In sentence processing research, it has been proposed that this general content-addressable architecture is also used for language processing (e.g., McElree, 2000). Although there is a growing body of evidence from various kinds of linguistic dependencies that is consistent with a general content-addressable memory subserving sentence processing (e.g., McElree et al., 2003; VanDyke2006), the case of reflexive-antecedent dependencies has challenged this view. It has been proposed that in the processing of reflexive-antecedent dependencies, a syntactic-structure based memory access is used rather than cue-based retrieval within a content-addressable framework (e.g., Sturt, 2003). Two eye-tracking experiments on Chinese reflexives were designed to tease apart accounts assuming a syntactic-structure based memory access mechanism from cue-based retrieval (implemented in ACT-R as proposed by Lewis and Vasishth (2005). In both experiments, interference effects were observed from noun phrases which syntactically do not qualify as the reflexive's antecedent but match the animacy requirement the reflexive imposes on its antecedent. These results are interpreted as evidence against a purely syntactic-structure based memory access. However, the exact pattern of effects observed in the data is only partially compatible with the Lewis and Vasishth cue-based parsing model. Therefore, an extension of the Lewis and Vasishth model is proposed. Two principles are added to the original model, namely 'cue confusion' and 'distractor prominence'. Although interference effects are generally interpreted in favor of a content-addressable memory architecture, an alternative explanation for interference effects in reflexive processing has been proposed which, crucially, might reconcile interference effects with a structure-based account. It has been argued that interference effects do not necessarily reflect cue-based retrieval interference in a content-addressable memory but might equally well be accounted for by interference effects which have already occurred at the moment of encoding the antecedent in memory (Dillon, 2011). Three experiments (eye-tracking and self-paced reading) on German reflexives and Swedish possessives were designed to tease apart cue-based retrieval interference from encoding interference. The results of all three experiments suggest that there is no evidence that encoding interference affects the retrieval of a reflexive's antecedent. Taken together, these findings suggest that the processing of reflexives can be explained with the same cue-based retrieval mechanism that has been invoked to explain syntactic dependency resolution in a range of other structures. This supports the view that the language processing system is located within a general cognitive architecture, with a general-purpose content-addressable working memory system operating on linguistic expressions. Finally, two experiments (self-paced reading and eye-tracking) using Chinese relative clauses were conducted to determine the relative contribution to sentence processing difficulty of working-memory processes as compared to syntactic prediction during incremental parsing. Chinese has the cross-linguistically rare property of being a language with subject-verb-object word order and pre-nominal relative clauses. This property leads to opposing predictions of expectation-based accounts and memory-based accounts with respect to the relative processing difficulty of subject vs. object relatives. Previous studies showed contradictory results, which has been attributed to different kinds local ambiguities confounding the materials (Lin and Bever, 2011). The two experiments presented are the first to compare Chinese relatives clauses in syntactically unambiguous contexts. The results of both experiments were consistent with the predictions of the expectation-based account of sentence processing but not with the memory-based account. From these findings, I conclude that any theory of human sentence processing needs to take into account the power of predictive processes unfolding in the human mind.}, language = {en} }