@article{PengLiuWangetal.2018, author = {Peng, Junjie and Liu, Danxu and Wang, Yingtao and Zeng, Ying and Cheng, Feng and Zhang, Wenqiang}, title = {Weight-based strategy for an I/O-intensive application at a cloud data center}, series = {Concurrency and computation : practice \& experience}, volume = {30}, journal = {Concurrency and computation : practice \& experience}, number = {19}, publisher = {Wiley}, address = {Hoboken}, issn = {1532-0626}, doi = {10.1002/cpe.4648}, pages = {14}, year = {2018}, abstract = {Applications with different characteristics in the cloud may have different resources preferences. However, traditional resource allocation and scheduling strategies rarely take into account the characteristics of applications. Considering that an I/O-intensive application is a typical type of application and that frequent I/O accesses, especially small files randomly accessing the disk, may lead to an inefficient use of resources and reduce the quality of service (QoS) of applications, a weight allocation strategy is proposed based on the available resources that a physical server can provide as well as the characteristics of the applications. Using the weight obtained, a resource allocation and scheduling strategy is presented based on the specific application characteristics in the data center. Extensive experiments show that the strategy is correct and can guarantee a high concurrency of I/O per second (IOPS) in a cloud data center with high QoS. Additionally, the strategy can efficiently improve the utilization of the disk and resources of the data center without affecting the service quality of applications.}, language = {en} } @article{KoehlerKoehlerDeckwartetal.2018, author = {Koehler, Friedrich and Koehler, Kerstin and Deckwart, Oliver and Prescher, Sandra and Wegscheider, Karl and Winkler, Sebastian and Vettorazzi, Eik and Polze, Andreas and Stangl, Karl and Hartmann, Oliver and Marx, Almuth and Neuhaus, Petra and Scherf, Michael and Kirwan, Bridget-Anne and Anker, Stefan D.}, title = {Telemedical Interventional Management in Heart Failure II (TIM-HF2), a randomised, controlled trial investigating the impact of telemedicine on unplanned cardiovascular hospitalisations and mortality in heart failure patients}, series = {European Journal of Heart Failure}, volume = {20}, journal = {European Journal of Heart Failure}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {1388-9842}, doi = {10.1002/ejhf.1300}, pages = {1485 -- 1493}, year = {2018}, abstract = {Background Heart failure (HF) is a complex, chronic condition that is associated with debilitating symptoms, all of which necessitate close follow-up by health care providers. Lack of disease monitoring may result in increased mortality and more frequent hospital readmissions for decompensated HF. Remote patient management (RPM) in this patient population may help to detect early signs and symptoms of cardiac decompensation, thus enabling a prompt initiation of the appropriate treatment and care before a manifestation of HF decompensation. Objective The objective of the present article is to describe the design of a new trial investigating the impact of RPM on unplanned cardiovascular hospitalisations and mortality in HF patients. Methods The TIM-HF2 trial is designed as a prospective, randomised, controlled, parallel group, open (with randomisation concealment), multicentre trial with pragmatic elements introduced for data collection. Eligible patients with HF are randomised (1:1) to either RPM + usual care or to usual care only and are followed for 12 months. The primary outcome is the percentage of days lost due to unplanned cardiovascular hospitalisations or all-cause death. The main secondary outcomes are all-cause and cardiovascular mortality. Conclusion The TIM-HF2 trial will provide important prospective data on the potential beneficial effect of telemedical monitoring and RPM on unplanned cardiovascular hospitalisations and mortality in HF patients.}, language = {en} } @article{vonSchorlemerWeiss2019, author = {von Schorlemer, Stephan and Weiß, Christian-Cornelius}, title = {data4life - Eine nutzerkontrollierte Gesundheitsdaten-Infrastruktu}, publisher = {Medizinisch Wissenschaftliche Verlagsgesellschaft}, address = {Berlin}, isbn = {978-3-95466-448-1}, pages = {249 -- 258}, year = {2019}, language = {de} } @misc{HerzogHoenigSchroederPreikschatetal.2019, author = {Herzog, Benedict and H{\"o}nig, Timo and Schr{\"o}der-Preikschat, Wolfgang and Plauth, Max and K{\"o}hler, Sven and Polze, Andreas}, title = {Bridging the Gap}, series = {e-Energy '19: Proceedings of the Tenth ACM International Conference on Future Energy Systems}, journal = {e-Energy '19: Proceedings of the Tenth ACM International Conference on Future Energy Systems}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-6671-7}, doi = {10.1145/3307772.3330176}, pages = {428 -- 430}, year = {2019}, abstract = {The recent restructuring of the electricity grid (i.e., smart grid) introduces a number of challenges for today's large-scale computing systems. To operate reliable and efficient, computing systems must adhere not only to technical limits (i.e., thermal constraints) but they must also reduce operating costs, for example, by increasing their energy efficiency. Efforts to improve the energy efficiency, however, are often hampered by inflexible software components that hardly adapt to underlying hardware characteristics. In this paper, we propose an approach to bridge the gap between inflexible software and heterogeneous hardware architectures. Our proposal introduces adaptive software components that dynamically adapt to heterogeneous processing units (i.e., accelerators) during runtime to improve the energy efficiency of computing systems.}, language = {en} } @misc{MarweckiWilsonOfeketal.2019, author = {Marwecki, Sebastian and Wilson, Andrew D. and Ofek, Eyal and Franco, Mar Gonzalez and Holz, Christian}, title = {Mise-Unseen}, series = {UIST '19: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology}, journal = {UIST '19: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-6816-2}, doi = {10.1145/3332165.3347919}, pages = {777 -- 789}, year = {2019}, abstract = {Creating or arranging objects at runtime is needed in many virtual reality applications, but such changes are noticed when they occur inside the user's field of view. We present Mise-Unseen, a software system that applies such scene changes covertly inside the user's field of view. Mise-Unseen leverages gaze tracking to create models of user attention, intention, and spatial memory to determine if and when to inject a change. We present seven applications of Mise-Unseen to unnoticeably modify the scene within view (i) to hide that task difficulty is adapted to the user, (ii) to adapt the experience to the user's preferences, (iii) to time the use of low fidelity effects, (iv) to detect user choice for passive haptics even when lacking physical props, (v) to sustain physical locomotion despite a lack of physical space, (vi) to reduce motion sickness during virtual locomotion, and (vii) to verify user understanding during story progression. We evaluated Mise-Unseen and our applications in a user study with 15 participants and find that while gaze data indeed supports obfuscating changes inside the field of view, a change is rendered unnoticeably by using gaze in combination with common masking techniques.}, language = {en} } @misc{BjoerkHoelze2019, author = {Bj{\"o}rk, Jennie and H{\"o}lze, Katharina}, title = {Editorial}, series = {Creativity and innovation management}, volume = {28}, journal = {Creativity and innovation management}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0963-1690}, doi = {10.1111/caim.12336}, pages = {289 -- 290}, year = {2019}, language = {en} } @article{YousfiWeske2019, author = {Yousfi, Alaaeddine and Weske, Mathias}, title = {Discovering commute patterns via process mining}, series = {Knowledge and Information Systems}, volume = {60}, journal = {Knowledge and Information Systems}, number = {2}, publisher = {Springer}, address = {London}, issn = {0219-1377}, doi = {10.1007/s10115-018-1255-1}, pages = {691 -- 713}, year = {2019}, abstract = {Ubiquitous computing has proven its relevance and efficiency in improving the user experience across a myriad of situations. It is now the ineluctable solution to keep pace with the ever-changing environments in which current systems operate. Despite the achievements of ubiquitous computing, this discipline is still overlooked in business process management. This is surprising, since many of today's challenges, in this domain, can be addressed by methods and techniques from ubiquitous computing, for instance user context and dynamic aspects of resource locations. This paper takes a first step to integrate methods and techniques from ubiquitous computing in business process management. To do so, we propose discovering commute patterns via process mining. Through our proposition, we can deduce the users' significant locations, routes, travel times and travel modes. This information can be a stepping-stone toward helping the business process management community embrace the latest achievements in ubiquitous computing, mainly in location-based service. To corroborate our claims, a user study was conducted. The significant places, routes, travel modes and commuting times of our test subjects were inferred with high accuracies. All in all, ubiquitous computing can enrich the processes with new capabilities that go beyond what has been established in business process management so far.}, language = {en} } @article{KastiusSchlosser2022, author = {Kastius, Alexander and Schlosser, Rainer}, title = {Dynamic pricing under competition using reinforcement learning}, series = {Journal of revenue and pricing management}, volume = {21}, journal = {Journal of revenue and pricing management}, number = {1}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {1476-6930}, doi = {10.1057/s41272-021-00285-3}, pages = {50 -- 63}, year = {2022}, abstract = {Dynamic pricing is considered a possibility to gain an advantage over competitors in modern online markets. The past advancements in Reinforcement Learning (RL) provided more capable algorithms that can be used to solve pricing problems. In this paper, we study the performance of Deep Q-Networks (DQN) and Soft Actor Critic (SAC) in different market models. We consider tractable duopoly settings, where optimal solutions derived by dynamic programming techniques can be used for verification, as well as oligopoly settings, which are usually intractable due to the curse of dimensionality. We find that both algorithms provide reasonable results, while SAC performs better than DQN. Moreover, we show that under certain conditions, RL algorithms can be forced into collusion by their competitors without direct communication.}, language = {en} } @article{MendlingWebervanderAalstetal.2018, author = {Mendling, Jan and Weber, Ingo and van der Aalst, Wil and Brocke, Jan Vom and Cabanillas, Cristina and Daniel, Florian and Debois, Soren and Di Ciccio, Claudio and Dumas, Marlon and Dustdar, Schahram and Gal, Avigdor and Garcia-Banuelos, Luciano and Governatori, Guido and Hull, Richard and La Rosa, Marcello and Leopold, Henrik and Leymann, Frank and Recker, Jan and Reichert, Manfred and Reijers, Hajo A. and Rinderle-Ma, Stefanie and Solti, Andreas and Rosemann, Michael and Schulte, Stefan and Singh, Munindar P. and Slaats, Tijs and Staples, Mark and Weber, Barbara and Weidlich, Matthias and Weske, Mathias and Xu, Xiwei and Zhu, Liming}, title = {Blockchains for Business Process Management}, series = {ACM Transactions on Management Information Systems}, volume = {9}, journal = {ACM Transactions on Management Information Systems}, number = {1}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {2158-656X}, doi = {10.1145/3183367}, pages = {1 -- 16}, year = {2018}, abstract = {Blockchain technology offers a sizable promise to rethink the way interorganizational business processes are managed because of its potential to realize execution without a central party serving as a single point of trust (and failure). To stimulate research on this promise and the limits thereof, in this article, we outline the challenges and opportunities of blockchain for business process management (BPM). We first reflect how blockchains could be used in the context of the established BPM lifecycle and second how they might become relevant beyond. We conclude our discourse with a summary of seven research directions for investigating the application of blockchain technology in the context of BPM.}, language = {en} } @article{KossmannHalfpapJankriftetal.2020, author = {Kossmann, Jan and Halfpap, Stefan and Jankrift, Marcel and Schlosser, Rainer}, title = {Magic mirror in my hand, which is the best in the land?}, series = {Proceedings of the VLDB Endowment}, volume = {13}, journal = {Proceedings of the VLDB Endowment}, number = {11}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {2150-8097}, doi = {10.14778/3407790.3407832}, pages = {2382 -- 2395}, year = {2020}, abstract = {Indexes are essential for the efficient processing of database workloads. Proposed solutions for the relevant and challenging index selection problem range from metadata-based simple heuristics, over sophisticated multi-step algorithms, to approaches that yield optimal results. The main challenges are (i) to accurately determine the effect of an index on the workload cost while considering the interaction of indexes and (ii) a large number of possible combinations resulting from workloads containing many queries and massive schemata with possibly thousands of attributes.
In this work, we describe and analyze eight index selection algorithms that are based on different concepts and compare them along different dimensions, such as solution quality, runtime, multi-column support, solution granularity, and complexity. In particular, we analyze the solutions of the algorithms for the challenging analytical Join Order, TPC-H, and TPC-DS benchmarks. Afterward, we assess strengths and weaknesses, infer insights for index selection in general and each approach individually, before we give recommendations on when to use which approach.}, language = {en} }