@phdthesis{Adelhelm2007, author = {Adelhelm, Philipp}, title = {Novel carbon materials with hierarchical porosity : templating strategies and advanced characterization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15053}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The aim of this work was the generation of carbon materials with high surface area, exhibiting a hierarchical pore system in the macro- and mesorange. Such a pore system facilitates the transport through the material and enhances the interaction with the carbon matrix (macropores are pores with diameters > 50 nm, mesopores between 2 - 50 nm). Thereto, new strategies for the synthesis of novel carbon materials with designed porosity were developed that are in particular useful for the storage of energy. Besides the porosity, it is the graphene structure itself that determines the properties of a carbon material. Non-graphitic carbon materials usually exhibit a quite large degree of disorder with many defects in the graphene structure, and thus exhibit inherent microporosity (d < 2nm). These pores are traps and oppose reversible interaction with the carbon matrix. Furthermore they reduce the stability and conductivity of the carbon material, which was undesired for the proposed applications. As one part of this work, the graphene structures of different non-graphitic carbon materials were studied in detail using a novel wide-angle x-ray scattering model that allowed precise information about the nature of the carbon building units (graphene stacks). Different carbon precursors were evaluated regarding their potential use for the synthesis shown in this work, whereas mesophase pitch proved to be advantageous when a less disordered carbon microstructure is desired. By using mesophase pitch as carbon precursor, two templating strategies were developed using the nanocasting approach. The synthesized (monolithic) materials combined for the first time the advantages of a hierarchical interconnected pore system in the macro- and mesorange with the advantages of mesophase pitch as carbon precursor. In the first case, hierarchical macro- / mesoporous carbon monoliths were synthesized by replication of hard (silica) templates. Thus, a suitable synthesis procedure was developed that allowed the infiltration of the template with the hardly soluble carbon precursor. In the second case, hierarchical macro- / mesoporous carbon materials were synthesized by a novel soft-templating technique, taking advantage of the phase separation (spinodal decomposition) between mesophase pitch and polystyrene. The synthesis also allowed the generation of monolithic samples and incorporation of functional nanoparticles into the material. The synthesized materials showed excellent properties as an anode material in lithium batteries and support material for supercapacitors.}, language = {en} } @phdthesis{Popovic2011, author = {Popovic, Jelena}, title = {Novel lithium iron phosphate materials for lithium-ion batteries}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54591}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Conventional energy sources are diminishing and non-renewable, take million years to form and cause environmental degradation. In the 21st century, we have to aim at achieving sustainable, environmentally friendly and cheap energy supply by employing renewable energy technologies associated with portable energy storage devices. Lithium-ion batteries can repeatedly generate clean energy from stored materials and convert reversely electric into chemical energy. The performance of lithium-ion batteries depends intimately on the properties of their materials. Presently used battery electrodes are expensive to be produced; they offer limited energy storage possibility and are unsafe to be used in larger dimensions restraining the diversity of application, especially in hybrid electric vehicles (HEVs) and electric vehicles (EVs). This thesis presents a major progress in the development of LiFePO4 as a cathode material for lithium-ion batteries. Using simple procedure, a completely novel morphology has been synthesized (mesocrystals of LiFePO4) and excellent electrochemical behavior was recorded (nanostructured LiFePO4). The newly developed reactions for synthesis of LiFePO4 are single-step processes and are taking place in an autoclave at significantly lower temperature (200 deg. C) compared to the conventional solid-state method (multi-step and up to 800 deg. C). The use of inexpensive environmentally benign precursors offers a green manufacturing approach for a large scale production. These newly developed experimental procedures can also be extended to other phospho-olivine materials, such as LiCoPO4 and LiMnPO4. The material with the best electrochemical behavior (nanostructured LiFePO4 with carbon coating) was able to delive a stable 94\% of the theoretically known capacity.}, language = {en} } @phdthesis{Mazzanti2022, author = {Mazzanti, Stefano}, title = {Novel photocatalytic processes mediated by carbon nitride photocatalysis}, doi = {10.25932/publishup-54209}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542099}, school = {Universit{\"a}t Potsdam}, pages = {418}, year = {2022}, abstract = {The key to reduce the energy required for specific transformations in a selective manner is the employment of a catalyst, a very small molecular platform that decides which type of energy to use. The field of photocatalysis exploits light energy to shape one type of molecules into others, more valuable and useful. However, many challenges arise in this field, for example, catalysts employed usually are based on metal derivatives, which abundance is limited, they cannot be recycled and are expensive. Therefore, carbon nitrides materials are used in this work to expand horizons in the field of photocatalysis. Carbon nitrides are organic materials, which can act as recyclable, cheap, non-toxic, heterogeneous photocatalysts. In this thesis, they have been exploited for the development of new catalytic methods, and shaped to develop new types of processes. Indeed, they enabled the creation of a new photocatalytic synthetic strategy, the dichloromethylation of enones by dichloromethyl radical generated in situ from chloroform, a novel route for the making of building blocks to be used for the productions of active pharmaceutical compounds. Then, the ductility of these materials allowed to shape carbon nitride into coating for lab vials, EPR capillaries, and a cell of a flow reactor showing the great potential of such flexible technology in photocatalysis. Afterwards, their ability to store charges has been exploited in the reduction of organic substrates under dark conditions, gaining new insights regarding multisite proton coupled electron transfer processes. Furthermore, the combination of carbon nitrides with flavins allowed the development of composite materials with improved photocatalytic activity in the CO2 photoreduction. Concluding, carbon nitrides are a versatile class of photoactive materials, which may help to unveil further scientific discoveries and to develop a more sustainable future.}, language = {en} } @phdthesis{Bojdys2009, author = {Bojdys, Michael Janus}, title = {On new allotropes and nanostructures of carbon nitrides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41236}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {In the first section of the thesis graphitic carbon nitride was for the first time synthesised using the high-temperature condensation of dicyandiamide (DCDA) - a simple molecular precursor - in a eutectic salt melt of lithium chloride and potassium chloride. The extent of condensation, namely next to complete conversion of all reactive end groups, was verified by elemental microanalysis and vibrational spectroscopy. TEM- and SEM-measurements gave detailed insight into the well-defined morphology of these organic crystals, which are not based on 0D or 1D constituents like known molecular or short-chain polymeric crystals but on the packing motif of extended 2D frameworks. The proposed crystal structure of this g-C3N4 species was derived in analogy to graphite by means of extensive powder XRD studies, indexing and refinement. It is based on sheets of hexagonally arranged s-heptazine (C6N7) units that are held together by covalent bonds between C and N atoms. These sheets stack in a graphitic, staggered fashion adopting an AB-motif, as corroborated by powder X-ray diffractometry and high-resolution transmission electron microscopy. This study was contrasted with one of many popular - yet unsuccessful - approaches in the last 30 years of scientific literature to perform the condensation of an extended carbon nitride species through synthesis in the bulk. The second section expands the repertoire of available salt melts introducing the lithium bromide and potassium bromide eutectic as an excellent medium to obtain a new phase of graphitic carbon nitride. The combination of SEM, TEM, PXRD and electron diffraction reveals that the new graphitic carbon nitride phase stacks in an ABA' motif forming unprecedentedly large crystals. This section seizes the notion of the preceding chapter, that condensation in a eutectic salt melt is the key to obtain a high degree of conversion mainly through a solvatory effect. At the close of this chapter ionothermal synthesis is seen established as a powerful tool to overcome the inherent kinetic problems of solid state reactions such as incomplete polymerisation and condensation in the bulk especially when the temperature requirement of the reaction in question falls into the proverbial "no man's land" of classical solvents, i.e. above 250 to 300 °C. The following section puts the claim to the test, that the crystalline carbon nitrides obtained from a salt melt are indeed graphitic. A typical property of graphite - namely the accessibility of its interplanar space for guest molecules - is transferred to the graphitic carbon nitride system. Metallic potassium and graphitic carbon nitride are converted to give the potassium intercalation compound, K(C6N8)3 designated according to its stoichiometry and proposed crystal structure. Reaction of the intercalate with aqueous solvents triggers the exfoliation of the graphitic carbon nitride material and - for the first time - enables the access of singular (or multiple) carbon nitride sheets analogous to graphene as seen in the formation of sheets, bundles and scrolls of carbon nitride in TEM imaging. The thus exfoliated sheets form a stable, strongly fluorescent solution in aqueous media, which shows no sign in UV/Vis spectroscopy that the aromaticity of individual sheets was subject to degradation. The final section expands on the mechanism underlying the formation of graphitic carbon nitride by literally expanding the distance between the covalently linked heptazine units which constitute these materials. A close examination of all proposed reaction mechanisms to-date in the light of exhaustive DSC/MS experiments highlights the possibility that the heptazine unit can be formed from smaller molecules, even if some of the designated leaving groups (such as ammonia) are substituted by an element, R, which later on remains linked to the nascent heptazine. Furthermore, it is suggested that the key functional groups in the process are the triazine- (Tz) and the carbonitrile- (CN) group. On the basis of these assumptions, molecular precursors are tailored which encompass all necessary functional groups to form a central heptazine unit of threefold, planar symmetry and then still retain outward functionalities for self-propagated condensation in all three directions. Two model systems based on a para-aryl (ArCNTz) and para-biphenyl (BiPhCNTz) precursors are devised via a facile synthetic procedure and then condensed in an ionothermal process to yield the heptazine based frameworks, HBF-1 and HBF-2. Due to the structural motifs of their molecular precursors, individual sheets of HBF-1 and HBF-2 span cavities of 14.2 {\AA} and 23.0 {\AA} respectively which makes both materials attractive as potential organic zeolites. Crystallographic analysis confirms the formation of ABA' layered, graphitic systems, and the extent of condensation is confirmed as next-to-perfect by elemental analysis and vibrational spectroscopy.}, language = {en} } @misc{LoehmannsroebenKantorKumkeetal.2005, author = {L{\"o}hmannsr{\"o}ben, Hans-Gerd and Kantor, Zoltan and Kumke, Michael Uwe and Schm{\"a}lzlin, Elmar and Reich, Oliver}, title = {OPQS - optische Prozess- und Qualit{\"a}ts-Sensorik}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13205}, year = {2005}, abstract = {Im vorliegenden Beitrag wird an Hand dreier Beispiele der Einsatz von optischer Sensorik zur Produktcharakterisierung dargestellt, n{\"a}mlich Untersuchungen zum O2-Gehalt in Fruchts{\"a}ften, zur Isotopiesignatur von CO2 in Mineralw{\"a}ssern und zu Lichtstreueigenschaften eines Sonnenschutzmittels. Inhalt: Bestimmung von O2 mit Lumineszenzsonden Isotopenselektive Bestimmung von CO2 mit TDLAS Optische Charakterisierung stark streuender Materialien mit Photonendichtewellen}, language = {de} } @misc{ReichLoehmannsroebenSchael2003, author = {Reich, Oliver and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Schael, Frank}, title = {Optical sensing with photon density waves: investigation of model media}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13147}, year = {2003}, abstract = {Investigations with frequency domain photon density waves allow elucidation of absorption and scattering properties of turbid media. The temporal and spatial propagation of intensity modulated light with frequencies up to more than 1 GHz can be described by the P1 approximation to the Boltzmann transport equation. In this study, we establish requirements for the appropriate choice of turbid model media and characterize mixtures of isosulfan blue as absorber and polystyrene beads as scatterer. For these model media, the independent determination of absorption and reduced scattering coefficients over large absorber and scatterer concentration ranges is demonstrated with a frequency domain photon density wave spectrometer employing intensity and phase measurements at various modulation frequencies.}, language = {en} } @misc{FrimmelKumke1998, author = {Frimmel, Fritz Hartmann and Kumke, Michael Uwe}, title = {Optische Parameter zur Stoffcharakterisierung vom Trinkwasser bis zum Abwasser}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13088}, year = {1998}, abstract = {Die Anwendung von optischen Parametern zur Stoffcharakterisierung wird diskutiert. Dabei ist der Schwerpunkt der Diskussion auf absorptions- und fluoreszenzspektroskopische Methoden gesetzt. Beide Methoden k{\"o}nnen schnell und zuverl{\"a}ssig - auch im on-line Betrieb - eingesetzt werden. Der Beitrag soll einen {\"U}berblick {\"u}ber die grundlegenden M{\"o}glichkeiten der Anwendung beider Methoden geben.}, language = {de} } @phdthesis{RuizRodriguez2019, author = {Ruiz Rodriguez, Janete Lorena}, title = {Osmotic pressure effects on collagen mimetic peptides}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2019}, abstract = {Collagen is the most abundant protein in mammals. In many tissues, collagen molecules assemble to form a hierarchical structure. In the smallest supramolecular unit, named fibril, each molecule is displaced in the axial direction with respect to its neighbors. This staggering creates a periodic gap and overlap regions, where the gap regions exhibit 20\% less density. These fibril-forming collagens play an essential role in the strength of connective tissues. Despite much effort, directed at understanding collagen function and regulation, the influence of the chemical environment on the local structural and mechanical properties remains poorly understood. Recent studies, aimed at elucidating the effect of osmotic pressure, showed that collagen contracts upon water removal. This observation highlights the importance of water for the stabilization and mechanics of the collagen molecule. Using collagen mimetic peptides (CMPs), which fold into triple helical structures reminiscent of natural collagen, the primary goal of this work was to investigate the effect of the osmotic pressure on specific collagen-mimetic sequences. CMPs were used as the model system as they provide sequence control, which is essential for discriminating local from global structural changes and for relating the observed effects to existing knowledge about the full-length collagen molecule. Of specific interest was the structure of individual collagen triple helices as well as their organization into self-assembled higher order structures. These key structural features were monitored with infrared spectroscopy (IR) and synchrotron X-ray scattering, while varying the osmotic pressure. For controlling the osmotic pressure, CMP powder samples were incubated in air of defined relative humidity, ranging from dry conditions to highly "humid". In addition, to obtain more biologically relevant conditions, the CMPs were measured in ultrapure water and in solutions containing small molecule osmolytes. Using the sequences (Pro-Pro-Gly)10, (Pro-Hyp-Gly)10 and (Hyp-Hyp-Gly)10, it was shown that CMPs with different degrees of proline hydroxylation (Hyp = hydroxyproline) exhibit a sequence-specific response to osmotic pressure. IR spectroscopy revealed that osmotic pressure changes affect the strength of the triple helix stabilizing, interchain hydrogen bond and that the extent of this change depends on the degree of hydroxylation. X-ray scattering experiments further showed that changes in osmotic pressure affect both the molecular length as well as the higher order organization of CMPs. Starting from a pseudo-hexagonal packing in the dry state, all three CMPs showed isotropic swelling when increasing the water content to approximately 1.2 water molecules per amino acid, again to different extents depending on the degree of hydroxylation. When increasing the water content further, this pseudo-hexagonal arrangement breaks down. In the fully hydrated state, each CMP is characterized by its own specific and more complex packing geometry. While these changes in the lateral packing arrangement suggest swelling upon hydration, an overall decrease of the molecular length (i.e. contraction) was observed in the axial direction. Also for this structural feature, a strong dependency on the specific amino acid sequence was found. Interestingly, the observed contraction is the opposite of what has been reported for natural collagen. As (Pro-Pro-Gly)n, (Pro-Hyp-Gly)n and (Hyp-Hyp-Gly)n repeat units are found in collagen with a relatively high abundance, this suggests that other collagen sequence fragments need to respond to hydration in the opposite way to obtain a net elongation of the full-length collagen molecule. To test this hypothesis, sequences predicted to be sensitive to osmotic pressure were considered. One such sequence, consisting of two repeat units (Ala-Arg-Gly-Ser-Asp-Gly), was inserted as a guest into a (Pro-Pro-Gly) host. When compared to the canonical CMP sequences investigated earlier, the lateral helix packing follows a similar trend with increasing hydration; however, the host-guest CMP axially elongates with increasing water content. This behavior is more similar to what has been found for natural collagen and suggests that different sequences do determine the molecular length of collagen sequences differently. Interestingly, the canonical sequences are more abundant in the overlap region while the guest sequence is found in the gap region. This allows to speculate that sequences in the gap and overlap regions possess a specifically fine-tuned local response to osmotic pressure changes. Clearly, more experiments with additional sequences are needed to confirm this. In conclusion, the results obtained in this work indicate a highly sequence specific interaction between collagen and water. Osmotic pressure-induced conformational changes mostly originate from local geometries and bonding patterns and affect both the structure of individual triple helices as well as higher order assemblies. One key remaining question is how these conformational changes affect the local mechanical properties of the collagen molecule. As a first step, the stiffness (persistence length) of full-length collagen was determined using atomic force microscopy. In the future, experimental strategies need to be developed that allow for investigating the mechanical properties of specific collagen sequences, e.g. performing single-molecule force spectroscopy of CMPs.}, language = {en} } @misc{KochLaschewskyRingsdorfetal.1986, author = {Koch, Horst and Laschewsky, Andr{\´e} and Ringsdorf, Helmut and Teng, Kang}, title = {Photodimerization and photopolymerization of amphiphilic cinnamic acid derivatives in oriented monolayers, vesicles and solution}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17111}, year = {1986}, abstract = {Cinnamic acid moieties were incorporated into amphiphilic compounds containing one and two alkyl chains. These lipid-like compounds with photoreactive units undergo self-organization to form monolayers at the gas-water interface and bilayer structures (vesicles) in aqueous solutions. The photoreaction of the cinnamic acid moiety induced by 254 nm UV light was investigated in the crystalline state, in monolayers, in vesicles and in solution in organic solvents. The single-chain amphiphiles undergo dimerization to yield photoproducts with twice the molecular weight of the corresponding monomers in organized systems. The photoreaction of amphiphiles containing two cinnamic acid groups occurs via two mechanisms: The intramolecular dimerization produces bicycles, with retention of the molecular weight of the corresponding monomer. The intermolecular reaction leads to oligomeric and polymeric photoproducts. In contrast to the single-chain amphiphiles, photodimerization processes of lipoids containing two cinnamic acid moieties also occur in solution in organic solvents.}, language = {en} } @article{ZuehlkeMeilingRoderetal.2021, author = {Z{\"u}hlke, Martin and Meiling, Till Thomas and Roder, Phillip and Riebe, Daniel and Beitz, Toralf and Bald, Ilko and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Janßen, Traute and Erhard, Marcel and Repp, Alexander}, title = {Photodynamic inactivation of E. coli bacteria via carbon nanodots}, series = {ACS omega / American Chemical Society}, volume = {6}, journal = {ACS omega / American Chemical Society}, number = {37}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {2470-1343}, doi = {10.1021/acsomega.1c01700}, pages = {23742 -- 23749}, year = {2021}, abstract = {The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines.}, language = {en} } @misc{DoscheMicklerLoehmannsroebenetal.2007, author = {Dosche, Carsten and Mickler, Wulfhard and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Agenet, Nicolas and Vollhardt, K. Peter C.}, title = {Photoinduced electron transfer in [N]phenylenes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12463}, year = {2007}, abstract = {First studies of electron transfer in [N]phenylenes were performed in bimolecular quenching reactions of angular [3]- and triangular [4]phenylene with various electron acceptors. The relation between the quenching rate constants kq and the free energy change of the electron transfer (ΔG0CS ) could be described by the Rehm-Weller equation. From the experimental results, a reorganization energy λ of 0.7 eV was derived. Intramolecular electron transfer reactions were studied in an [N]phenylene bichomophore and a corresponding reference compound. Fluorescence lifetime and quantum yield of the bichromophor display a characteristic dependence on the solvent polarity, whereas the corresponding values of the reference compound remain constant. From the results, a nearly isoenergonic ΔG0CS can be determined. As the triplet quantum yield is nearly independent of the polarity, charge recombination leads to the population of the triplet state.}, language = {en} } @phdthesis{Latnikova2012, author = {Latnikova, Alexandra}, title = {Polymeric capsules for self-healing anticorrosion coatings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60432}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {The present work is devoted to establishing of a new generation of self-healing anti-corrosion coatings for protection of metals. The concept of self-healing anticorrosion coatings is based on the combination of the passive part, represented by the matrix of conventional coating, and the active part, represented by micron-sized capsules loaded with corrosion inhibitor. Polymers were chosen as the class of compounds most suitable for the capsule preparation. The morphology of capsules made of crosslinked polymers, however, was found to be dependent on the nature of the encapsulated liquid. Therefore, a systematic analysis of the morphology of capsules consisting of a crosslinked polymer and a solvent was performed. Three classes of polymers such as polyurethane, polyurea and polyamide were chosen. Capsules made of these polymers and eight solvents of different polarity were synthesized via interfacial polymerization. It was shown that the morphology of the resulting capsules is specific for every polymer-solvent pair. Formation of capsules with three general types of morphology, such as core-shell, compact and multicompartment, was demonstrated by means of Scanning Electron Microscopy. Compact morphology was assumed to be a result of the specific polymer-solvent interactions and be analogues to the process of swelling. In order to verify the hypothesis, pure polyurethane, polyurea and polyamide were synthesized; their swelling behavior in the solvents used as the encapsulated material was investigated. It was shown that the swelling behavior of the polymers in most cases correlates with the capsules morphology. Different morphologies (compact, core-shell and multicompartment) were therefore attributed to the specific polymer-solvent interactions and discussed in terms of "good" and "poor" solvent. Capsules with core-shell morphology are formed when the encapsulated liquid is a "poor" solvent for the chosen polymer while compact morphologies are formed when the solvent is "good". Multicompartment morphology is explained by the formation of infinite networks or gelation of crosslinked polymers. If gelation occurs after the phase separation in the system is achieved, core-shell morphology is present. If gelation of the polymer occurs far before crosslinking is accomplished, further condensation of the polymer due to the crosslinking may lead to the formation of porous or multicompartment morphologies. It was concluded that in general, the morphology of capsules consisting of certain polymer-solvent pairs can be predicted on the basis of polymer-solvent behavior. In some cases, the swelling behavior and morphology may not match. The reasons for that are discussed in detail in the thesis. The discussed approach is only capable of predicting capsule morphology for certain polymer-solvent pairs. In practice, the design of the capsules assumes the trial of a great number of polymer-solvent combinations; more complex systems consisting of three, four or even more components are often used. Evaluation of the swelling behavior of each component pair of such systems becomes unreasonable. Therefore, exploitation of the solubility parameter approach was found to be more useful. The latter allows consideration of the properties of each single component instead of the pair of components. In such a manner, the Hansen Solubility Parameter (HSP) approach was used for further analysis. Solubility spheres were constructed for polyurethane, polyurea and polyamide. For this a three-dimensional graph is plotted with dispersion, polar and hydrogen bonding components of solubility parameter, obtained from literature, as the orthogonal axes. The HSP of the solvents are used as the coordinates for the points on the HSP graph. Then a sphere with a certain radius is located on a graph, and the "good" solvents would be located inside the sphere, while the "poor" ones are located outside. Both the location of the sphere center and the sphere radius should be fitted according to the information on polymer swelling behavior in a number of solvents. According to the existing correlation between the capsule morphology and swelling behavior of polymers, the solvents located inside the solubility sphere of a polymer give capsules with compact morphologies. The solvents located outside the solubility sphere of the solvent give either core-shell or multicompartment capsules in combination with the chosen polymer. Once the solubility sphere of a polymer is found, the solubility/swelling behavior is approximated to all possible substances. HSP theory allows therefore prediction of polymer solubility/swelling behavior and consequently the capsule morphology for any given substance with known HSP parameters on the basis of limited data. The latter makes the theory so attractive for application in chemistry and technology, since the choice of the system components is usually performed on the basis of a large number of different parameters that should mutually match. Even slight change of the technology sometimes leads to the necessity to find the analogue of this or that solvent in a sense of solvency but carrying different chemistry. Usage of the HSP approach in this case is indispensable. In the second part of the work examples of the HSP application for the fabrication of capsules with on-demand-morphology are presented. Capsules with compact or core-shell morphology containing corrosion inhibitors were synthesized. Thus, alkoxysilanes possessing long hydrophobic tail, combining passivating and water-repelling properties, were encapsulated in polyurethane shell. The mechanism of action of the active material required core-shell morphology of the capsules. The new hybrid corrosion inhibitor, cerium diethylhexyl phosphate, was encapsulated in polyamide shells in order to facilitate the dispersion of the substance and improve its adhesion to the coating matrix. The encapsulation of commercially available antifouling agents in polyurethane shells was carried out in order to control its release behavior and colloidal stability. Capsules with compact morphology made of polyurea containing the liquid corrosion inhibitor 2-methyl benzothiazole were synthesized in order to improve the colloidal stability of the substance. Capsules with compact morphology allow slower release of the liquid encapsulated material compared to the core-shell ones. If the "in-situ" encapsulation is not possible due to the reaction of the oil-soluble monomer with the encapsulated material, a solution was proposed: loading of the capsules should be performed after monomer deactivation due to the accomplishment of the polymerization reaction. Capsules of desired morphologies should be preformed followed by the loading step. In this way, compact polyurea capsules containing the highly effective but chemically active corrosion inhibitors 8-hydroxyquinoline and benzotriazole were fabricated. All the resulting capsules were successfully introduced into model coatings. The efficiency of the resulting "smart" self-healing anticorrosion coatings on steel and aluminium alloy of the AA-2024 series was evaluated using characterization techniques such as Scanning Vibrating Electron Spectroscopy, Electrochemical Impedance Spectroscopy and salt-spray chamber tests.}, language = {en} } @misc{LaschewskyRingsdorf1988, author = {Laschewsky, Andr{\´e} and Ringsdorf, H.}, title = {Polymerization of amphiphilic dienes in Langmuir-Blodgett multilayers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17176}, year = {1988}, abstract = {Amphiphilic derivatives of octadiene and docosadiene were investigated in monolayers and Langmuir-Blodgett multilayers, with respect to their self-organization and their polymerization behavior. All amphiphiles investigated form monolayers. However, only acid and alcohol derivatives were able to build up multilayers. Those multilayers are rapidly photopolymerized in the layers via a two-step process: Irradiation with long-wavelength UV light yields soluble polymers, whereas additional irradiation with sfiort-wavelength UV light produces insoluble and presumably cross-linked polymers. The reaction meclianism is discussed according to the polymer characterization by UV spectroscopy, small-angle X-ray scattering, NMR spectroscopy, and gel permeation chromatography. All multilayers undergo structural changes during the polymerization; substantial changes result in defects in the polymerized layers as observed by scanning electron microscopy. In contrast to the acids and alcohols, the deposition of monolayers of the aldehyde derivatives did not yield well-ordered multilayers, but rather amorphous films. In this different film structure, the photopolymerization process differs from the one observed in multilayers.}, language = {en} } @phdthesis{Schneider2023, author = {Schneider, Helen}, title = {Reactive eutectic media based on ammonium formate for the valorization of bio-sourced materials}, doi = {10.25932/publishup-61302}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613024}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2023}, abstract = {In the last several decades eutectic mixtures of different compositions were successfully used as solvents for vast amount of chemical processes, and only relatively recently they were discovered to be widely spread in nature. As such they are discussed as a third liquid media of the living cell, that is composed of common cell metabolites. Such media may also incorporate water as a eutectic component in order to regulate properties such as enzyme activity or viscosity. Taking inspiration form such sophisticated use of eutectic mixtures, this thesis will explore the use of reactive eutectic media (REM) for organic synthesis. Such unconventional media are characterized by the reactivity of their components, which means that mixture may assume the role of the solvent as well as the reactant itself. The thesis focuses on novel REM based on ammonium formate and investigates their potential for the valorization of bio-sourced materials. The use of REM allows the performance of a number of solvent-free reactions, which entails the benefits of a superior atom and energy economy, higher yields and faster rates compared to reactions in solution. This is evident for the Maillard reaction between ammonium formate and various monosaccharides for the synthesis of substituted pyrazines as well as for a Leuckart type reaction between ammonium formate and levulinic acid for the synthesis of 5-methyl-2-pyrrolidone. Furthermore, reaction of ammonium formate with citric acid for the synthesis of yet undiscovered fluorophores, shows that synthesis in REM can open up unexpected reaction pathways. Another focus of the thesis is the study of water as a third component in the REM. As a result, the concept of two different dilution regimes (tertiary REM and in REM in solvent) appears useful for understanding the influence of water. It is shown that small amounts of water can be of great benefit for the reaction, by reducing viscosity and at the same time increasing reaction yields. REM based on ammonium formate and organic acids are employed for lignocellulosic biomass treatment. The thesis thereby introduces an alternative approach towards lignocellulosic biomass fractionation that promises a considerable process intensification by the simultaneous generation of cellulose and lignin as well as the production of value-added chemicals from REM components. The thesis investigates the generated cellulose and the pathway to nanocellulose generation and also includes the structural analysis of extracted lignin. Finally, the thesis investigates the potential of microwave heating to run chemical reactions in REM and describes the synergy between these two approaches. Microwave heating for chemical reactions and the use of eutectic mixtures as alternative reaction media are two research fields that are often described in the scope of green chemistry. The thesis will therefore also contain a closer inspection of this terminology and its greater goal of sustainability.}, language = {en} } @phdthesis{MichalikOnichimowska2022, author = {Michalik-Onichimowska, Aleksandra}, title = {Real-time monitoring of (photo)chemical reactions in micro flow reactors and levitated droplets by IR-MALDI ion mobility and mass spectrometry}, doi = {10.25932/publishup-55729}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557298}, school = {Universit{\"a}t Potsdam}, pages = {v, 68}, year = {2022}, abstract = {Eine nachhaltigere chemische Industrie erfordert eine Minimierung der L{\"o}sungsmittel und Chemikalien. Daher werden Optimierung und Entwicklung chemischer Prozesse vor einer Produktion in großem Maßstab in kleinen Chargen durchgef{\"u}hrt. Der entscheidende Schritt bei diesem Ansatz ist die Skalierbarkeit von kleinen Reaktionssystemen auf große, kosteneffiziente Reaktoren. Die Vergr{\"o}ßerung des Volumens des Reaktionsmediums geht immer mit der Vergr{\"o}ßerung der Oberfl{\"a}che einher, die mit dem begrenzenden Gef{\"a}ß in Kontakt steht. Da das Volumen kubisch, w{\"a}hrend die Oberfl{\"a}che quadratisch mit zunehmendem Radius skaliert, nimmt ihr Verh{\"a}ltnis nicht linear zu. Viele an der Grenzfl{\"a}che zwischen Oberfl{\"a}che und Fl{\"u}ssigkeit auftretende Ph{\"a}nomene k{\"o}nnen die Reaktionsgeschwindigkeiten und Ausbeuten beeinflussen, was zu falschen Prognosen aufgrund der kleinskaligen Optimierung f{\"u}hrt. Die Anwendung von schwebenden Tropfen als beh{\"a}lterlose Reaktionsgef{\"a}ße bietet eine vielversprechende M{\"o}glichkeit, die oben genannten Probleme zu vermeiden. In der vorgestellten Arbeit wurde eine effiziente Kopplung von akustisch schwebenden Tropfen und IM Spektrometer f{\"u}r die Echtzeit{\"u}berwachung chemischer Reaktionen entwickelt, bei denen akustisch schwebende Tropfen als Reaktionsgef{\"a}ße fungieren. Das Design des Systems umfasst die ber{\"u}hrungslose Probenahme und Ionisierung, die durch Laserdesorption und -ionisation bei 2,94 µm realisiert wird. Der Umfang der Arbeit umfasst grundlegende Studien zum Verst{\"a}ndnis der Laserbestrahlung von Tropfen im akustischen Feld. Das Verst{\"a}ndnis dieses Ph{\"a}nomens ist entscheidend, um den Effekt der zeitlichen und r{\"a}umlichen Aufl{\"o}sung der erzeugten Ionenwolke zu verstehen, die die Aufl{\"o}sung des Systems beeinflusst. Der Aufbau umfasst eine akustische Falle, Laserbestrahlung und elektrostatische Linsen, die bei hoher Spannung unter Umgebungsdruck arbeiten. Ein effektiver Ionentransfer im Grenzfl{\"a}chenbereich zwischen dem schwebenden Tropfen und dem IMS muss daher elektrostatische und akustische Felder vollst{\"a}ndig ber{\"u}cksichtigen. F{\"u}r die Probenahme und Ionisation wurden zwei unterschiedliche Laserpulsl{\"a}ngen untersucht, n{\"a}mlich im ns- und µs-Bereich. Die Bestrahlung {\"u}ber µs-Laserpulse bietet gegen{\"u}ber ns-Pulse mehrere Vorteile: i) das Tropfenvolumen wird nicht stark beeinflusst, was es erm{\"o}glichet, nur ein kleines Volumen des Tropfens abzutasten; ii) die geringere Fluenz f{\"u}hrt zu weniger ausgepr{\"a}gten Schwingungen des im akustischen Feld eingeschlossenen Tropfens und der Tropfen wird nicht aus dem akustischen Feld r{\"u}ckgeschlagen, was zum Verlust der Probe f{\"u}hren w{\"u}rde; iii) die milde Laserbestrahlung f{\"u}hrt zu einer besseren r{\"a}umlichen und zeitlichen Begrenzung der Ionenwolken, was zu einer besseren Aufl{\"o}sung der detektierten Ionenpakete f{\"u}hrt. Schließlich erm{\"o}glicht dieses Wissen die Anwendung der Ionenoptik, die erforderlich ist, um den Ionenfluss zwischen dem im akustischen Feld suspendierten Tropfen und dem IM Spektrometer zu induzieren. Die Ionenoptik aus 2 elektrostatischen Linsen in der N{\"a}he des Tropfens erm{\"o}glicht es, die Ionenwolke effektiv zu fokussieren und direkt zum IM Spektrometer-Eingang zu f{\"u}hren. Diese neuartige Kopplung hat sich beim Nachweis einiger basischer Molek{\"u}le als erfolgreich erwiesen. Um die Anwendbarkeit des Systems zu belegen, wurde die Reaktion zwischen N-Boc Cysteine Methylester und Allylalkohol in einem Chargenreaktor durchgef{\"u}hrt und online {\"u}berwacht. F{\"u}r eine Kalibrierung wurde der Reaktionsfortschritt parallel mittels 1H-NMR verfolgt. Der beobachtete Reaktionsumsatz von mehr als 50\% innerhalb der ersten 20 Minuten demonstrierte die Eignung der Reaktion, um die Einsatzpotentiale des entwickelten Systems zu bewerten.}, language = {en} } @phdthesis{Friese2016, author = {Friese, Viviane A.}, title = {Solvato-, vapo, mechanochromic and luminescent behavior of Rhodium, Platinum and Gold complexes and their coordination polymers}, school = {Universit{\"a}t Potsdam}, pages = {100 S.}, year = {2016}, language = {en} } @misc{KaafaraniWexStrehmeletal.2002, author = {Kaafarani, Bilal R. and Wex, Brigitte and Strehmel, Bernd and Neckers, Douglas C.}, title = {Structural concept for fluorinated Y-enynes with solvatochromic properties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13168}, year = {2002}, abstract = {An approach to the development of fluorescent probes to follow polymerizations in situ using fluorinated cross-conjugated enediynes (Y-enynes) is reported. Different substitution patterns in the Y-enynes result in distinct solvatochromic behavior. β,β-Bis(phenylethynyl)pentafluorostyrene 7, which bears no donor substituents and only fluorine at the styrene moiety, shows no solvatochromism. Donor substituted β,β-bis(3,4,5-trimethoxyphenylethynyl) pentafluorostyrene 8 and β,β-bis(4-butyl-2,3,5,6-tetrafluorophenylethynyl)-3,4,5-trimethoxystyrene 9 exhibit solvatochromism upon change of solvent polarity. Y-enyne 8 showed the largest solvatochromic shift (94 nm bathochromic shift) upon changing solvent from cyclohexane to acetonitrile. A smaller solvatochromic response (44 nm bathochromic shift) was observed for 9. Lippert-Mataga treatment of 8 and 9 yields slopes of -10,800 and -6,400 cm -1, respectively. This corresponds to a change in dipole moment of 9.6 and 6.9 D, respectively. The solvatochromic behavior in 8 and 9 supports the formation of an intramolecular charge transfer (ICT) state. The low fluorescence quantum yields are caused by competitive double bond rotation. The fluorescence decay time of 9 decreases in methyltetrahydrofuran from 2.1 ns at 77 K to 0.11 ns at 200 K. Efficient single bond rotation in 9 was frozen at -50 °C in a configuration in which the trimethoxyphenyl ring is perpendicular to the fluorinated rings. 7-9 are photostable compounds. The X-ray structure of 7 shows it is not planar and that its conjugation is distorted. Y-enyne 7 stacks in the solid state showing coulombic, actetylene-arene, and fluorine-π interactions.}, language = {en} } @phdthesis{Andersen2005, author = {Andersen, Audr{\´e}e}, title = {Surfactant dynamics at interfaces : a series of second harmonic generation experiments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6553}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Adsorption layers of soluble surfactants enable and govern a variety of phenomena in surface and colloidal sciences, such as foams. The ability of a surfactant solution to form wet foam lamellae is governed by the surface dilatational rheology. Only systems having a non-vanishing imaginary part in their surface dilatational modulus, E, are able to form wet foams. The aim of this thesis is to illuminate the dissipative processes that give rise to the imaginary part of the modulus. There are two controversial models discussed in the literature. The reorientation model assumes that the surfactants adsorb in two distinct states, differing in their orientation. This model is able to describe the frequency dependence of the modulus E. However, it assumes reorientation dynamics in the millisecond time regime. In order to assess this model, we designed a SHG pump-probe experiment that addresses the orientation dynamics. Results obtained reveal that the orientation dynamics occur in the picosecond time regime, being in strong contradiction with the two states model. The second model regards the interface as an interphase. The adsorption layer consists of a topmost monolayer and an adjacent sublayer. The dissipative process is due to the molecular exchange between both layers. The assessment of this model required the design of an experiment that discriminates between the surface compositional term and the sublayer contribution. Such an experiment has been successfully designed and results on elastic and viscoelastic surfactant provided evidence for the correctness of the model. Because of its inherent surface specificity, surface SHG is a powerful analytical tool that can be used to gain information on molecular dynamics and reorganization of soluble surfactants. They are central elements of both experiments. However, they impose several structural elements of the model system. During the course of this thesis, a proper model system has been identified and characterized. The combination of several linear and nonlinear optical techniques, allowed for a detailed picture of the interfacial architecture of these surfactants.}, subject = {Tensid}, language = {en} } @phdthesis{ChaleawlertUmpon2018, author = {Chaleawlert-Umpon, Saowaluk}, title = {Sustainable electrode materials based on lignin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411793}, school = {Universit{\"a}t Potsdam}, pages = {114}, year = {2018}, abstract = {The utilization of lignin as renewable electrode material for electrochemical energy storage is a sustainable approach for future batteries and supercapacitors. The composite electrode was fabricated from Kraft lignin and conductive carbon and the charge storage contribution was determined in terms of electrical double layer (EDL) and redox reactions. The important factors at play for achieving high faradaic charge storage capacity contribute to high surface area, accessibility of redox sites in lignin and their interaction with conductive additives. A thinner layer of lignin covering the high surface area of carbon facilitates the electron transfer process with a shorter pathway from the active sites of nonconductive lignin to the current collector leading to the improvement of faradaic charge storage capacity. Composite electrodes from lignin and carbon would be even more sustainable if the fluorinated binder can be omitted. A new route to fabricate a binder-free composite electrode from Kraft lignin and high surface area carbon has been proposed by crosslinking lignin with glyoxal. A high molecular weight of lignin is obtained to enhance both electroactivity and binder capability in composite electrodes. The order of the processing step of crosslinking lignin on the composite electrode plays a crucial role in achieving a stable electrode and high charge storage capacity. The crosslinked lignin based electrodes are promising since they allow for more stable, sustainable, halogen-free and environmentally benign devices for energy storage applications. Furthermore, improvement of the amount of redox active groups (quinone groups) in lignin is useful to enhance the capacity in lithium battery applications. Direct oxidative demethylation by cerium ammonium nitrate has been carried out under mild conditions. This proves that an increase of quinone groups is able to enhance the performance of lithium battery. Thus, lignin is a promising material and could be a good candidate for application in sustainable energy storage devices.}, language = {en} } @phdthesis{Milke2012, author = {Milke, Bettina}, title = {Synthese von Metallnitrid- und Metalloxinitridnanopartikeln f{\"u}r energierelevante Anwendungen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60008}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Ein viel diskutiertes Thema unserer Zeit ist die Zukunft der Energiegewinnung und Speicherung. Dabei nimmt die Nanowissenschaft eine bedeutende Rolle ein; sie f{\"u}hrt zu einer Effizienzsteigerung bei der Speicherung und Gewinnung durch bereits bekannte Materialien und durch neue Materialien. In diesem Zusammenhang ist die Chemie Wegbereiter f{\"u}r Nanomaterialien. Allerdings f{\"u}hren bisher die meisten bekannten Synthesen von Nanopartikeln zu undefinierten Partikeln. Eine einfache, kosteng{\"u}nstige und sichere Synthese w{\"u}rde die M{\"o}glichkeit einer breiten Anwendung und Skalierbarkeit bieten. In dieser Arbeit soll daher die Darstellung der einfachen Synthese von Mangannitrid-, Aluminiumnitrid-, Lithiummangansilicat-, Zirkonium-oxinitrid- und Mangancarbonatnanopartikel betrachtet werden. Dabei werden die sogenannte Harnstoff-Glas-Route als eine Festphasensynthese und die Solvothermalsynthese als typische Fl{\"u}ssigphasensynthese eingesetzt. Beide Synthesewege f{\"u}hren zu definierten Partikelgr{\"o}ßen und interessanten Morphologien und erm{\"o}glichen eine Einflussnahme auf die Produkte. Im Falle der Synthese der Mangannitridnanopartikel mithilfe der Harnstoff-Glas-Route f{\"u}hrt diese zu Nanopartikeln mit Kern-H{\"u}lle-Struktur, deren Einsatz als Konversionsmaterial erstmalig vorgestellt wird. Mit dem Ziel einer leichteren Anwendung von Nanopartikeln wird eine einfache Beschichtung von Oberfl{\"a}chen mit Nanopartikeln mithilfe der Rotationsbeschichtung beschrieben. Es entstand ein Gemisch aus MnN0,43/MnO-Nanopartikeln, eingebettet in einem Kohlenstofffilm, dessen Untersuchung als Konversionsmaterial hohe spezifische Kapazit{\"a}ten (811 mAh/g) zeigt, die die von dem konventionellen Anodenmaterial Graphit (372 mAh/g) {\"u}bersteigt. Neben der Synthese des Anodenmaterials wurde ebenfalls die des Kathodenmaterials Li2MnSiO4-Nanopartikeln mithilfe der Harnstoff-Glas-Route vorgestellt. Mithilfe der Synthese von Zirkoniumoxinitridnanopartikeln Zr2ON2 kann eine einfache Einflussnahme auf das gew{\"u}nschte Produkt durch die Variation derReaktionsbedingungen, wie Harnstoffmenge oder Reaktionstemperatur, bei der Harnstoff-Glas-Route demonstriert werden. Der Zusatz von kleinsten Mengen an Ammoniumchlorid vermeidet, dass sich Kohlenstoff im Endprodukt bildet und f{\"u}hrt so zu gelben Zr2ON2-Nanopartikeln mit einer Gr{\"o}ße d = 8 nm, die Halbleitereigen-schaften besitzen. Die Synthese von Aluminiumnitridnanopartikeln f{\"u}hrt zu kristallinen Nanopartikeln, die in eine amorphe Matrix eingebettet sind. Die Solvothermalsynthese von Mangancarbonatnanopartikel l{\"a}sst neue Morphologien in Form von Nanost{\"a}bchen entstehen, die zu schuppenartigen sph{\"a}rischen {\"U}berstrukturen agglomeriert sind.}, language = {de} } @misc{PeterBoldtNiedersteinetal.1990, author = {Peter, Martin G. and Boldt, Peter C. and Niederstein, Yvonne and Peter-Katalinić, Jasna}, title = {Synthesen von Galactose-Cluster-haltigen Steroid-Derivaten}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16783}, year = {1990}, abstract = {The synthesis of galactose clusters that are linked to a steroid moiety by a peptide-like spacer unit is described. The galactose cluster is obtained by Koenigs-Knorr glycosylation of TRIS-Gly-Fmoc (2b) under Helferich conditions. Peptide and ester bonds are formed after activation of carboxylic acids as diphenylthiophene dioxide (TDO) esters. 6a is synthesized in a convergent way by coupling of (Ac4Gal)3-TRIS-Gly (3e) with cholesteryl TDO succinate (5b). Coupling of (Ac4Gal)3-TRIS-Gly hydrogen succinate (3f) with Gly-O-Chol (5d) by means of EEDQ yields 6d. Reaction of (Ac4Gal)3-TRIS-Gly-SUCC-O-TDO (3g) with 25-hydroxycholesterol leads in a linear sequence to the oxysterol derivative 6f. Selective cleavage of the acetyl groups from galactose units yields the known compound 6b and the new derivatives 6e and 6g.}, language = {de} } @phdthesis{Zhang2019, author = {Zhang, Shuhao}, title = {Synthesis and self-assembly of protein-polymer conjugates for the preparation of biocatalytically active membranes}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 161}, year = {2019}, abstract = {This thesis covers the synthesis of conjugates of 2-Deoxy-D-ribose-5-phosphate aldolase (DERA) with suitable polymers and the subsequent immobilization of these conjugates in thin films via two different approaches. 2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. Conjugation and immobilization renders the enzyme applicable for utilization in a continuously run biocatalytic process which avoids the common problem of product inhibition. Within this thesis, conjugates of DERA and poly(N-isopropylacrylamide) (PNIPAm) for immobilization via a self-assembly approach were synthesized and isolated, as well as conjugates with poly(N,N-dimethylacrylamide) (PDMAA) for a simplified and scalable spray-coating approach. For the DERA/PNIPAm-conjugates different synthesis routes were tested, including grafting-from and grafting-to, both being common methods for the conjugation. Furthermore, both lysines and cysteines were addressed for the conjugation in order to find optimum conjugation conditions. It turned out that conjugation via lysine causes severe activity loss as one lysine plays a key role in the catalyzing mechanism. The conjugation via the cysteines by a grafting-to approach using pyridyl disulfide (PDS) end-group functionalized polymers led to high conjugation efficiencies in the presence of polymer solubilizing NaSCN. The resulting conjugates maintained enzymatic activity and also gained high acetaldehyde tolerance which is necessary for their use later on in an industrial relevant process after their immobilization. The resulting DERA/PNIPAm conjugates exhibited enhanced interfacial activity at the air/water interface compared to the single components, which is an important pre-requisite for the immobilization via the self-assembly approach. Conjugates with longer polymer chains formed homogeneous films on silicon wafers and glass slides while the ones with short chains could only form isolated aggregates. On top of that, long chain conjugates showed better activity maintenance upon the immobilization. The crosslinking of conjugates, as well as their fixation on the support materials, are important for the mechanical stability of the films obtained from the self-assembly process. Therefore, in a second step, we introduced the UV-crosslinkable monomer DMMIBA to the PNIPAm polymers to be used for conjugation. The introduction of DMMIBA reduced the lower critical solution temperature (LCST) of the polymer and thus the water solubility at ambient conditions, resulting in lower conjugation efficiencies and in turn slightly poorer acetaldehyde tolerance of the resulting conjugates. Unlike the DERA/PNIPAm, the conjugates from the copolymer P(NIPAM-co-DMMIBA) formed continuous, homogenous films only after the crosslinking step via UV-treatment. For a firm binding of the crosslinked films, a functionalization protocol for the model support material cyclic olefin copolymer (COC) and the final target support, PAN based membranes, was developed that introduces analogue UV-reactive groups to the support surface. The conjugates immobilized on the modified COC films maintained enzymatic activity and showed good mechanical stability after several cycles of activity assessment. Conjugates with longer polymer chains, however, showed a higher degree of crosslinking after the UV-treatment leading to a pronounced loss of activity. A porous PAN membrane onto which the conjugates were immobilized as well, was finally transferred to a dead end filtration membrane module to catalyze the aldol reaction of the industrially relevant mixture of acetaldehyde and hexanal in a continuous mode. Mono aldol product was detectable, but yields were comparably low and the operational stability needs to be further improved Another approach towards immobilization of DERA conjugates that was followed, was to generate the conjugates in situ by simply mixing enzyme and polymer and spray coat the mixture onto the membrane support. Compared to the previous approach, the focus was more put on simplicity and a possible scalability of the immobilization. Conjugates were thus only generated in-situ and not further isolated and characterized. For the conjugation, PDMAA equipped with N-2-thiolactone acrylamide (TlaAm) side chains was used, an amine-reactive comonomer that can react with the lysine residues of DERA, as well as with amino groups introduced to a desired support surface. Furthermore disulfide formation after hydrolysis of the Tla groups causes a crosslinking effect. The synthesized copolymer poly(N,N-Dimethylacrylamide-co-N-2-thiolactone acrylamide) (P(DMAA-co-TlaAm)) thus serves a multiple purpose including protein binding, crosslinking and binding to support materials. The mixture of DERA and polymer could be immobilized on the PAN support by spray-coating under partial maintenance of enzymatic activity. To improve the acetaldehyde tolerance, the polymer in used was further equipped with cysteine reactive PDS end-groups that had been used for the conjugation as described in the first part of the thesis. The generated conjugates indeed showed good acetaldehyde tolerance and were thus used to be coated onto PAN membrane supports. Post treatment with a basic aqueous solution of H2O2 was supposed to further crosslink the spray-coated film hydrolysis and oxidation of the thiolactone groups. However, a washing off of the material was observed. Optimization is thus still necessary.}, language = {en} } @phdthesis{Imranulhaq2008, author = {Imran ul-haq, Muhammad}, title = {Synthesis of fluorinated polymers in supercritical carbon dioxide (scCO₂)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-19868}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {For the first time stabilizer-free vinylidene fluoride (VDF) polymerizations were carried out in homogeneous phase with supercritical CO₂. Polymerizations were carried out at 140°C, 1500 bar and were initiated with di-tert-butyl peroxide (DTBP). In-line FT-NIR (Fourier Transform- Near Infrared) spectroscopy showed that complete monomer conversion may be obtained. Molecular weights were determined via size-exclusion chromatography (SEC) and polymer end group analysis by 1H-NMR spectroscopy. The number average molecular weights were below 104 g∙mol-1 and polydispersities ranged from 3.1 to 5.7 depending on DTBP and VDF concentration. To allow for isothermal reactions high CO₂ contents ranging from 61 to 83 wt.\% were used. The high-temperature, high-pressure conditions were required for homogeneous phase polymerization. These conditions did not alter the amount of defects in VDF chaining. Scanning electron microscopy (SEM) indicated that regular stack-type particles were obtained upon expansion of the homogeneous polymerization mixture. To reduce the required amount of initiator, further VDF polymerizations using chain transfer agents (CTAs) to control molecular weights were carried out in homogeneous phase with supercritical carbon dioxide (scCO₂) at 120 °C and 1500 bar. Using perfluorinated hexyl iodide as CTA, polymers of low polydispersity ranging from 1.5 to 1.2 at the highest iodide concentration of 0.25 mol·L-1 were obtained. Electrospray ionization- mass spectroscopy (ESI-MS) indicates the absence of initiator derived end groups, supporting livingness of the system. The "livingness" is based on the labile C-I bond. However, due to the weakness of the C-I bond perfluorinated hexyl iodide also contributes to initiation. To allow for kinetic analyses of VDF polymerizations the CTA should not contribute to initiation. Therefore, additional CTAs were applied: BrCCl3, C6F13Br and C6F13H. It was found that C6F13H does not contribute to initiation. At 120°C and 1500 bar kp/kt0.5~ 0.64 (L·mol-1·s-1)0.5 was derived. The chain transfer constant (CT) at 120°C has been determined to be 8·10-1, 9·10-2 and 2·10-4 for C6F13I, C6F13Br and C6F13H, respectively. These CT values are associated with the bond energy of the C-X bond. Moreover, the labile C-I bond allows for functionalization of the polymer to triazole end groups applying click reactions. After substitution of the iodide end group by an azide group 1,3 dipolar cycloadditions with alkynes yield polymers with 1,2,3 triazole end groups. Using symmetrical alkynes the reactions may be carried out in the absence of any catalyst. This end-functionalized poly (vinylidene fluoride) (PVDF) has higher thermal stability as compared to the normal PVDF. PVDF samples from homogeneous phase polymerizations in supercritical CO₂ and subsequent expansion to ambient conditions were analyzed with respect to polymer end groups, crystallinity, type of polymorphs and morphology. Upon expansion the polymer was obtained as white powder. Scanning electron microscopy (SEM) showed that DTBP derived polymer end groups led to stack-type particles whereas sponge- or rose-type particles were obtained in case of CTA fragments as end groups. Fourier-Transform Infrared spectroscopy and wide angle X-ray diffraction indicated that the type of polymorph, α or β crystal phase was significantly affected by the type of end group. The content of β-phase material, which is responsible for piezoelectricity of PVDF, is the highest for polymer with DTBP-derived end groups. In addition, the crystallinity of the material, as determined via differential scanning calorimetry is affected by the end groups and polymer molecular weights. For example, crystallinity ranges from around 26 \% for DTBP-derived end groups to a maximum of 62 \% for end groups originating from perfluorinated hexyl iodide for polymers with Mn ~2200 g·mol-1. Expansion of the homogeneous polymerization mixture results in particle formation by a non-optimized RESS (Rapid Expansion from Supercritical Solution) process. Thus, it was tested how polymer end groups affect the particles size distribution obtained from RESS process under controlled conditions (T = 50°C and P = 200 bar). In all RESS experiments, small primary PVDF with diameters less than 100 nm without the use of liquid solvents, surfactants, or other additives were produced. A strong correlation between particle size and particle size distribution with polymer end groups and molecular weight of the original material was observed. The smallest particles were found for RESS of PVDF with Mn~ 4000 g·mol-1 and PFHI (C6F13I) - derived end groups.}, language = {en} } @phdthesis{Kim2023, author = {Kim, Jiyong}, title = {Synthesis of InP quantum dots and their applications}, doi = {10.25932/publishup-58535}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585351}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 142}, year = {2023}, abstract = {Technologically important, environmentally friendly InP quantum dots (QDs) typically used as green and red emitters in display devices can achieve exceptional photoluminescence quantum yields (PL QYs) of near-unity (95-100\%) when the-state-of-the-art core/shell heterostructure of the ZnSe inner/ZnS outer shell is elaborately applied. Nevertheless, it has only led to a few industrial applications as QD liquid crystal display (QD-LCD) which is applied to blue backlight units, even though QDs has a lot of possibilities that able to realize industrially feasible applications, such as QD light-emitting diodes (QD‒LEDs) and luminescence solar concentrator (LSC), due to their functionalizable characteristics. Before introducing the main research, the theoretical basis and fundamentals of QDs are described in detail on the basis of the quantum mechanics and experimental synthetic results, where a concept of QD and colloidal QD, a type-I core/shell structure, a transition metal doped semiconductor QDs, the surface chemistry of QD, and their applications (LSC, QD‒LEDs, and EHD jet printing) are sequentially elucidated for better understanding. This doctoral thesis mainly focused on the connectivity between QD materials and QD devices, based on the synthesis of InP QDs that are composed of inorganic core (core/shell heterostructure) and organic shell (surface ligands on the QD surface). In particular, as for the former one (core/shell heterostructure), the ZnCuInS mid-shell as an intermediate layer is newly introduced between a Cu-doped InP core and a ZnS shell for LSC devices. As for the latter one (surface ligands), the ligand effect by 1-octanethiol and chloride ion are investigated for the device stability in QD‒LEDs and the printability of electro-hydrodynamic (EHD) jet printing system, in which this research explores the behavior of surface ligands, based on proton transfer mechanism on the QD surface. Chapter 3 demonstrates the synthesis of strain-engineered highly emissive Cu:InP/Zn-Cu-In-S (ZCIS)/ZnS core/shell/shell heterostructure QDs via a one-pot approach. When this unconventional combination of a ZCIS/ZnS double shelling scheme is introduced to a series of Cu:InP cores with different sizes, the resulting Cu:InP/ZCIS/ZnS QDs with a tunable near-IR PL range of 694-850 nm yield the highest-ever PL QYs of 71.5-82.4\%. These outcomes strongly point to the efficacy of the ZCIS interlayer, which makes the core/shell interfacial strain effectively alleviated, toward high emissivity. The presence of such an intermediate ZCIS layer is further examined by comparative size, structural, and compositional analyses. The end of this chapter briefly introduces the research related to the LSC devices, fabricated from Cu:InP/ZCIS/ZnS QDs, currently in progress. Chapter 4 mainly deals with ligand effect in 1-octanethiol passivation of InP/ZnSe/ZnS QDs in terms of incomplete surface passivation during synthesis. This chapter demonstrates the lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1-octanethiol. The as-synthesized QDs initially have an under-coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1-octanethiol to the QD surface, 1-octanthiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bound on the incomplete QD surface. The systematic chemical analyses, such as thermogravimetric analysis‒mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light-emitting diodes (QD‒LEDs). Chapter 5 shows the relation between material stability of QDs and device stability of QD‒LEDs through the investigation of surface chemistry and shell thickness. In typical III-V colloidal InP quantum dots (QDs), an inorganic ZnS outermost shell is used to provide stability when overcoated onto the InP core. However, this work presents a faster photo-degradation of InP/ZnSe/ZnS QDs with a thicker ZnS shell than that with a thin ZnS shell when 1-octanethiol was applied as a sulfur source to form ZnS outmost shell. Herein, 1-octanethiol induces the form of weakly-bound carboxylate ligand via proton transfer on the QD surface, resulting in a faster degradation at UV light even though a thicker ZnS shell was formed onto InP/ZnSe QDs. Detailed insight into surface chemistry was obtained from proton nuclear magnetic resonance spectroscopy and thermogravimetric analysis-mass spectrometry. However, the lifetimes of the electroluminescence devices fabricated from InP/ZnSe/ZnS QDs with a thick or a thin ZnS shell show surprisingly the opposite result to the material stability of QDs, where the QD light-emitting diodes (QD‒LEDs) with a thick ZnS shelled QDs maintained its luminance more stable than that with a thin ZnS shelled QDs. This study elucidates the degradation mechanism of the QDs and the QD light-emitting diodes based on the results and discuss why the material stability of QDs is different from the lifetime of QD‒LEDs. Chapter 6 suggests a method how to improve a printability of EHD jet printing when QD materials are applied to QD ink formulation, where this work introduces the application of GaP mid-shelled InP QDs as a role of surface charge in EHD jet printing technique. In general, GaP intermediate shell has been introduced in III-V colloidal InP quantum dots (QDs) to enhance their thermal stability and quantum efficiency in the case of type-I core/shell/shell heterostructure InP/GaP/ZnSeS QDs. Herein, these highly luminescent InP/GaP/ZnSeS QDs were synthesized and applied to EHD jet printing, by which this study demonstrates that unreacted Ga and Cl ions on the QD surface induce the operating voltage of cone jet and cone jet formation to be reduced and stabilized, respectively. This result indicates GaP intermediate shell not only improves PL QY and thermal stability of InP QDs but also adjusts the critical flow rate required for cone-jet formation. In other words, surface charges of quantum dots can have a significant role in forming cone apex in the EHD capillary nozzle. For an industrially convenient validation of surface charges on the QD surface, Zeta potential analyses of QD solutions as a simple method were performed, as well as inductively coupled plasma optical emission spectrometry (ICP-OES) for a composition of elements. Beyond the generation of highly emissive InP QDs with narrow FWHM, these studies talk about the connection between QD material and QD devices not only to make it a vital jumping-off point for industrially feasible applications but also to reveal from chemical and physical standpoints the origin that obstructs the improvement of device performance experimentally and theoretically.}, language = {en} } @misc{PeterStuppLentes1983, author = {Peter, Martin G. and Stupp, Hans-Peter and Lentes, Klaus-Ulrich}, title = {Umkehr der Enantioselektivit{\"a}t bei der enzymatischen Hydrolyse von Juvenilhormon als Ergebnis einer Proteinfraktionierung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17001}, year = {1983}, abstract = {Aus dem Inhalt: Die Juvenilhormone 1a-c werden im Blut von Insekten enzymatisch zu den biologisch inaktiven Sluren hydrolysiert. Bei der Hydrolyse von racemischem 1c im Blut der Wanderheuschrecke Locusta migratoria wird ein Umsatz von 40-60\% erreicht. Das unumgesetzte Edukt enth{\"a}llt einen {\"U}berschuß an nat{\"u}rlich konfiguriertem (10R)-1c (e.e. 47.2\%). Wir konnten zeigen, daß das in der H{\"a}molymphe vorhandene Hormon-Bindungsprotein bevorzugt mit (10R)- 1c assoziiert.}, language = {de} } @phdthesis{SchulteOsseili2019, author = {Schulte-Osseili, Christine}, title = {Vom Monomer zum Glykopolymer}, doi = {10.25932/publishup-43216}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432169}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 149}, year = {2019}, abstract = {Glykopolymere sind synthetische und nat{\"u}rlich vorkommende Polymere, die eine Glykaneinheit in der Seitenkette des Polymers tragen. Glykane sind durch die Glykan-Protein-Wechselwirkung verantwortlich f{\"u}r viele biologische Prozesse. Die Beteiligung der Glykanen in diesen biologischen Prozessen erm{\"o}glicht das Imitieren und Analysieren der Wechselwirkungen durch geeignete Modellverbindungen, z.B. der Glykopolymere. Dieses System der Glykan-Protein-Wechselwirkung soll durch die Glykopolymere untersucht und studiert werden, um die spezifische und selektive Bindung der Proteine an die Glykopolymere nachzuweisen. Die Proteine, die in der Lage sind, Kohlenhydratstrukturen selektiv zu binden, werden Lektine genannt. In dieser Dissertationsarbeit wurden verschiedene Glykopolymere synthetisiert. Dabei sollte auf einen effizienten und kosteng{\"u}nstigen Syntheseweg geachtet werden. Verschiedene Glykopolymere wurden durch funktionalisierte Monomere mit verschiedenen Zuckern, wie z.B. Mannose, Laktose, Galaktose oder N-Acetyl-Glukosamin als funktionelle Gruppe, hergestellt. Aus diesen funktionalisierten Glykomonomeren wurden {\"u}ber ATRP und RAFT-Polymerisation Glykopolymere synthetisiert. Die erhaltenen Glykopolymere wurden in Diblockcopolymeren als hydrophiler Block angewendet und die Selbstassemblierung in w{\"a}ssriger L{\"o}sung untersucht. Die Polymere formten in w{\"a}ssriger L{\"o}sung Mizellen, bei denen der Zuckerblock an der Oberfl{\"a}che der Mizellen sitzt. Die Mizellen wurden mit einem hydrophoben Fluoreszenzfarbstoff beladen, wodurch die CMC der Mizellenbildung bestimmt werden konnte. Außerdem wurden die Glykopolymere als Oberfl{\"a}chenbeschichtung {\"u}ber „Grafting from" mit SI-ATRP oder {\"u}ber „Grafting to" auf verschiedene Oberfl{\"a}chen gebunden. Durch die glykopolymerbschichteten Oberfl{\"a}chen konnte die Glykan Protein Wechselwirkung {\"u}ber spektroskopische Messmethoden, wie SPR- und Mikroring Resonatoren untersucht werden. Hierbei wurde die spezifische und selektive Bindung der Lektine an die Glykopolymere nachgewiesen und die Bindungsst{\"a}rke untersucht. Die synthetisierten Glykopolymere k{\"o}nnten durch Austausch der Glykaneinheit f{\"u}r andere Lektine adressierbar werden und damit ein weites Feld an anderen Proteinen erschließen. Die biovertr{\"a}glichen Glykopolymere w{\"a}ren alternativen f{\"u}r den Einsatz in biologischen Prozessen als Transporter von Medikamenten oder Farbstoffe in den K{\"o}rper. Außerdem k{\"o}nnten die funktionalisierten Oberfl{\"a}chen in der Diagnostik zum Erkennen von Lektinen eingesetzt werden. Die Glykane, die keine selektive und spezifische Bindung zu Proteinen eingehen, k{\"o}nnten als antiadsorptive Oberfl{\"a}chenbeschichtung z.B. in der Zellbiologie eingesetzt werden.}, language = {de} }