@misc{KoechyBrakenhielm2008, author = {K{\"o}chy, Martin and Br{\aa}kenhielm, Sven}, title = {Separation of effects of moderate N deposition from natural change in ground vegetation of forests and bogs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16621}, year = {2008}, abstract = {The effect of moderate rates of nitrogen deposition on ground floor vegetation is poorly predicted by uncontrolled surveys or fertilization experiments using high rates of nitrogen (N) addition. We compared the temporal trends of ground floor vegetation in permanent plots with moderate (7-13 kg ha-1 year-1) and lower bulk N deposition (4-6 kg ha-1 year-1) in southern Sweden during 1982-1998. We examined whether trends differed between growth forms (vascular plants and bryophytes) and vegetation types (three types of coniferous forest, deciduous forest, and bog). Trends of site-standardized cover and richness varied among growth forms, vegetation types, and deposition regions. Cover in spruce forests decreased at the same rate with both moderate and low deposition. In pine forests cover decreased faster with moderate deposition and in bogs cover decreased faster with low deposition. Cover of bryophytes in spruce forests increased at the same rate with both moderate and low deposition. In pine forests cover decreased faster with moderate deposition and in bogs and deciduous forests there was a strong non-linear increase with moderate deposition. The trend of number of vascular plants was constant with moderate and decreased with low deposition. We found no trend in the number of bryophyte species. We propose that the decrease of cover and number with low deposition was related to normal ecosystem development (increased shading), suggesting that N deposition maintained or increased the competitiveness of some species in the moderate-deposition region. Deposition had no consistent negative effect on vegetation suggesting that it is less important than normal successional processes.}, language = {en} } @phdthesis{Oey2008, author = {Oey, Melanie}, title = {Chloroplasts as bioreactors : high-yield production of active bacteriolytic protein antibiotics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-28950}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Plants, more precisely their chloroplasts with their bacterial-like expression machinery inherited from their cyanobacterial ancestors, can potentially offer a cheap expression system for proteinaceous pharmaceuticals. This system would be easily scalable and provides appropriate safety due to chloroplasts maternal inheritance. In this work, it was shown that three phage lytic enzymes (Pal, Cpl-1 and PlyGBS) could be successfully expressed at very high levels and with high stability in tobacco chloroplasts. PlyGBS expression reached an amount of foreign protein accumulation (> 70\% TSP) that has never been obtained before. Although the high expression levels of PlyGBS caused a pale green phenotype with retarded growth, presumably due to exhaustion of plastid protein synthesis capacity, development and seed production were not impaired under greenhouse conditions. Since Pal and Cpl-1 showed toxic effects when expressed in E. coli, a special plastid transformation vector (pTox) was constructed to allow DNA amplification in bacteria. The construction of the pTox transformation vector allowing a recombinase-mediated deletion of an E. coli transcription block in the chloroplast, leading to an increase of foreign protein accumulation to up to 40\% of TSP for Pal and 20\% of TSP for Cpl-1. High dose-dependent bactericidal efficiency was shown for all three plant-derived lytic enzymes using their pathogenic target bacteria S. pyogenes and S. pneumoniae. Confirmation of specificity was obtained for the endotoxic proteins Pal and Cpl-1 by application to E. coli cultures. These results establish tobacco chloroplasts as a new cost-efficient and convenient production platform for phage lytic enzymes and address the greatest obstacle for clinical application. The present study is the first report of lysin production in a non-bacterial system. The properties of chloroplast-produced lysins described in this work, their stability, high accumulation rate and biological activity make them highly attractive candidates for future antibiotics.}, language = {en} } @misc{KoechyMathajJeltschetal.2008, author = {K{\"o}chy, Martin and Mathaj, Martin and Jeltsch, Florian and Malkinson, Dan}, title = {Resilience of stocking capacity to changing climate in arid to Mediterranean landscapes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18720}, year = {2008}, abstract = {Small livestock is an important resource for rural human populations in dry climates. How strongly will climate change affect the capacity of the rangeland? We used hierarchical modelling to scale quantitatively the growth of shrubs and annual plants, the main food of sheep and goats, to the landscape extent in the eastern Mediterranean region. Without grazing, productivity increased in a sigmoid way with mean annual precipitation. Grazing reduced productivity more strongly the drier the landscape. At a point just under the stocking capacity of the vegetation, productivity declined precipitously with more intense grazing due to a lack of seed production of annuals. We repeated simulations with precipitation patterns projected by two contrasting IPCC scenarios. Compared to results based on historic patterns, productivity and stocking capacity did not differ in most cases. Thus, grazing intensity remains the stronger impact on landscape productivity in this dry region even in the future.}, language = {en} }