@article{MientusNowakWulffetal.2023, author = {Mientus, Lukas and Nowak, Anna and Wulff, Peter and Borowski, Andreas}, title = {Unterrichtsanalyse und Reflexion}, series = {Reflexion in der Lehrkr{\"a}ftebildung: Empirisch - Phasen{\"u}bergreifend - Interdisziplin{\"a}r (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 4)}, journal = {Reflexion in der Lehrkr{\"a}ftebildung: Empirisch - Phasen{\"u}bergreifend - Interdisziplin{\"a}r (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 4)}, number = {4}, editor = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-566-8}, issn = {2626-3556}, doi = {10.25932/publishup-63200}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-632005}, pages = {445 -- 452}, year = {2023}, abstract = {Schulpraktische Phasen stellen eine bedeutende praxisnahe Lerngelegenheit im Lehramtsstudium dar, da sie Raum f{\"u}r umfangreiche Reflexionen der eigenen Lernerfahrung bieten. Das im Studium erworbene theoretisch-formale Wissen steht hierbei dem praktischen Wissen und K{\"o}nnen gegen{\"u}ber. Mit der professionellen Entwicklung im Referendariat, besonders im Kompetenzbereich des Unterrichtens, kann geschlussfolgert werden, dass sich eine Reflexion {\"u}ber eher fachliche Aspekte unter den Studierenden im Referendariat auf eine Reflexion {\"u}ber eher {\"u}berfachliche und p{\"a}dagogische Aspekte weitet. Infolge der Analyse von N = 55 schriftlichen Fremdreflexionen von angehenden Physiklehrkr{\"a}ften aus Studium und Referendariat konnte diese Hypothese f{\"u}r den Bereich der Unterrichtsanalyse und -reflexion unterst{\"u}tzt werden. Weiter wurde aus der Videovignette ein Workshopangebot f{\"u}r Lehrkr{\"a}fte der zweiten und dritten Phase der Lehrkr{\"a}ftebildung entwickelt, erprobt und evaluiert.}, language = {de} } @article{SposiniKrapfMarinarietal.2022, author = {Sposini, Vittoria and Krapf, Diego and Marinari, Enzo and Sunyer, Raimon and Ritort, Felix and Taheri, Fereydoon and Selhuber-Unkel, Christine and Benelli, Rebecca and Weiss, Matthias and Metzler, Ralf and Oshanin, Gleb}, title = {Towards a robust criterion of anomalous diffusion}, series = {Communications Physics}, volume = {5}, journal = {Communications Physics}, publisher = {Springer Nature}, address = {London}, issn = {2399-3650}, doi = {10.1038/s42005-022-01079-8}, pages = {10}, year = {2022}, abstract = {Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion.}, language = {en} } @phdthesis{DeAndradeQueiroz2023, author = {De Andrade Queiroz, Anna Barbara}, title = {The Milky Way disks, bulge, and bar sub-populations}, doi = {10.25932/publishup-59061}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-590615}, school = {Universit{\"a}t Potsdam}, pages = {xii, 187}, year = {2023}, abstract = {In recent decades, astronomy has seen a boom in large-scale stellar surveys of the Galaxy. The detailed information obtained about millions of individual stars in the Milky Way is bringing us a step closer to answering one of the most outstanding questions in astrophysics: how do galaxies form and evolve? The Milky Way is the only galaxy where we can dissect many stars into their high-dimensional chemical composition and complete phase space, which analogously as fossil records can unveil the past history of the genesis of the Galaxy. The processes that lead to large structure formation, such as the Milky Way, are critical for constraining cosmological models; we call this line of study Galactic archaeology or near-field cosmology. At the core of this work, we present a collection of efforts to chemically and dynamically characterise the disks and bulge of our Galaxy. The results we present in this thesis have only been possible thanks to the advent of the Gaia astrometric satellite, which has revolutionised the field of Galactic archaeology by precisely measuring the positions, parallax distances and motions of more than a billion stars. Another, though not less important, breakthrough is the APOGEE survey, which has observed spectra in the near-infrared peering into the dusty regions of the Galaxy, allowing us to determine detailed chemical abundance patterns in hundreds of thousands of stars. To accurately depict the Milky Way structure, we use and develop the Bayesian isochrone fitting tool/code called StarHorse; this software can predict stellar distances, extinctions and ages by combining astrometry, photometry and spectroscopy based on stellar evolutionary models. The StarHorse code is pivotal to calculating distances where Gaia parallaxes alone cannot allow accurate estimates. We show that by combining Gaia, APOGEE, photometric surveys and using StarHorse, we can produce a chemical cartography of the Milky way disks from their outermost to innermost parts. Such a map is unprecedented in the inner Galaxy. It reveals a continuity of the bimodal chemical pattern previously detected in the solar neighbourhood, indicating two populations with distinct formation histories. Furthermore, the data reveals a chemical gradient within the thin disk where the content of 𝛼-process elements and metals is higher towards the centre. Focusing on a sample in the inner MW we confirm the extension of the chemical duality to the innermost regions of the Galaxy. We find stars with bar shape orbits to show both high- and low-𝛼 abundances, suggesting the bar formed by secular evolution trapping stars that already existed. By analysing the chemical orbital space of the inner Galactic regions, we disentangle the multiple populations that inhabit this complex region. We reveal the presence of the thin disk, thick disk, bar, and a counter-rotating population, which resembles the outcome of a perturbed proto-Galactic disk. Our study also finds that the inner Galaxy holds a high quantity of super metal-rich stars up to three times solar suggesting it is a possible repository of old super-metal-rich stars found in the solar neighbourhood. We also enter into the complicated task of deriving individual stellar ages. With StarHorse, we calculate the ages of main-sequence turn-off and sub-giant stars for several public spectroscopic surveys. We validate our results by investigating linear relations between chemical abundances and time since the 𝛼 and neutron capture elements are sensitive to age as a reflection of the different enrichment timescales of these elements. For further study of the disks in the solar neighbourhood, we use an unsupervised machine learning algorithm to delineate a multidimensional separation of chrono-chemical stellar groups revealing the chemical thick disk, the thin disk, and young 𝛼-rich stars. The thick disk is shown to have a small age dispersion indicating its fast formation contrary to the thin disk that spans a wide range of ages. With groundbreaking data, this thesis encloses a detailed chemo-dynamical view of the disk and bulge of our Galaxy. Our findings on the Milky Way can be linked to the evolution of high redshift disk galaxies, helping to solve the conundrum of galaxy formation.}, language = {en} } @phdthesis{Ketzer2024, author = {Ketzer, Laura}, title = {The impact of stellar activity evolution on atmospheric mass loss of young exoplanets}, doi = {10.25932/publishup-62681}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-626819}, school = {Universit{\"a}t Potsdam}, pages = {x, 208}, year = {2024}, abstract = {The increasing number of known exoplanets raises questions about their demographics and the mechanisms that shape planets into how we observe them today. Young planets in close-in orbits are exposed to harsh environments due to the host star being magnetically highly active, which results in high X-ray and extreme UV fluxes impinging on the planet. Prolonged exposure to this intense photoionizing radiation can cause planetary atmospheres to heat up, expand and escape into space via a hydrodynamic escape process known as photoevaporation. For super-Earth and sub-Neptune-type planets, this can even lead to the complete erosion of their primordial gaseous atmospheres. A factor of interest for this particular mass-loss process is the activity evolution of the host star. Stellar rotation, which drives the dynamo and with it the magnetic activity of a star, changes significantly over the stellar lifetime. This strongly affects the amount of high-energy radiation received by a planet as stars age. At a young age, planets still host warm and extended envelopes, making them particularly susceptible to atmospheric evaporation. Especially in the first gigayear, when X-ray and UV levels can be 100 - 10,000 times higher than for the present-day sun, the characteristics of the host star and the detailed evolution of its high-energy emission are of importance. In this thesis, I study the impact of stellar activity evolution on the high-energy-induced atmospheric mass loss of young exoplanets. The PLATYPOS code was developed as part of this thesis to calculate photoevaporative mass-loss rates over time. The code, which couples parameterized planetary mass-radius relations with an analytical hydrodynamic escape model, was used, together with Chandra and eROSITA X-ray observations, to investigate the future mass loss of the two young multiplanet systems V1298 Tau and K2-198. Further, in a numerical ensemble study, the effect of a realistic spread of activity tracks on the small-planet radius gap was investigated for the first time. The works in this thesis show that for individual systems, in particular if planetary masses are unconstrained, the difference between a young host star following a low-activity track vs. a high-activity one can have major implications: the exact shape of the activity evolution can determine whether a planet can hold on to some of its atmosphere, or completely loses its envelope, leaving only the bare rocky core behind. For an ensemble of simulated planets, an observationally-motivated distribution of activity tracks does not substantially change the final radius distribution at ages of several gigayears. My simulations indicate that the overall shape and slope of the resulting small-planet radius gap is not significantly affected by the spread in stellar activity tracks. However, it can account for a certain scattering or fuzziness observed in and around the radius gap of the observed exoplanet population.}, language = {en} } @phdthesis{Kerutt2019, author = {Kerutt, Josephine Victoria}, title = {The high-redshift voyage of Lyman alpha and Lyman continuum emission as told by MUSE}, doi = {10.25932/publishup-47881}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-478816}, school = {Universit{\"a}t Potsdam}, pages = {152}, year = {2019}, abstract = {Most of the matter in the universe consists of hydrogen. The hydrogen in the intergalactic medium (IGM), the matter between the galaxies, underwent a change of its ionisation state at the epoch of reionisation, at a redshift roughly between 6>z>10, or ~10^8 years after the Big Bang. At this time, the mostly neutral hydrogen in the IGM was ionised but the source of the responsible hydrogen ionising emission remains unclear. In this thesis I discuss the most likely candidates for the emission of this ionising radiation, which are a type of galaxy called Lyman alpha emitters (LAEs). As implied by their name, they emit Lyman alpha radiation, produced after a hydrogen atom has been ionised and recombines with a free electron. The ionising radiation itself (also called Lyman continuum emission) which is needed for this process inside the LAEs could also be responsible for ionising the IGM around those galaxies at the epoch of reionisation, given that enough Lyman continuum escapes. Through this mechanism, Lyman alpha and Lyman continuum radiation are closely linked and are both studied to better understand the properties of high redshift galaxies and the reionisation state of the universe. Before I can analyse their Lyman alpha emission lines and the escape of Lyman continuum emission from them, the first step is the detection and correct classification of LAEs in integral field spectroscopic data, specifically taken with the Multi-Unit Spectroscopic Explorer (MUSE). After detecting emission line objects in the MUSE data, the task of classifying them and determining their redshift is performed with the graphical user interface QtClassify, which I developed during the work on this thesis. It uses the strength of the combination of spectroscopic and photometric information that integral field spectroscopy offers to enable the user to quickly identify the nature of the detected emission lines. The reliable classification of LAEs and determination of their redshifts is a crucial first step towards an analysis of their properties. Through radiative transfer processes, the properties of the neutral hydrogen clouds in and around LAEs are imprinted on the shape of the Lyman alpha line. Thus after identifying the LAEs in the MUSE data, I analyse the properties of the Lyman alpha emission line, such as the equivalent width (EW) distribution, the asymmetry and width of the line as well as the double peak fraction. I challenge the common method of displaying EW distributions as histograms without taking the limits of the survey into account and construct a more independent EW distribution function that better reflects the properties of the underlying population of galaxies. I illustrate this by comparing the fraction of high EW objects between the two surveys MUSE-Wide and MUSE-Deep, both consisting of MUSE pointings (each with the size of one square arcminute) of different depths. In the 60 MUSE-Wide fields of one hour exposure time I find a fraction of objects with extreme EWs above EW_0>240A of ~20\%, while in the MUSE-Deep fields (9 fields with an exposure time of 10 hours and one with an exposure time of 31 hours) I find a fraction of only ~1\%, which is due to the differences in the limiting line flux of the surveys. The highest EW I measure is EW_0 = 600.63 +- 110A, which hints at an unusual underlying stellar population, possibly with a very low metallicity. With the knowledge of the redshifts and positions of the LAEs detected in the MUSE-Wide survey, I also look for Lyman continuum emission coming from these galaxies and analyse the connection between Lyman continuum emission and Lyman alpha emission. I use ancillary Hubble Space Telescope (HST) broadband photometry in the bands that contain the Lyman continuum and find six Lyman continuum leaker candidates. To test whether the Lyman continuum emission of LAEs is coming only from those individual objects or the whole population, I select LAEs that are most promising for the detection of Lyman continuum emission, based on their rest-frame UV continuum and Lyman alpha line shape properties. After this selection, I stack the broadband data of the resulting sample and detect a signal in Lyman continuum with a significance of S/N = 5.5, pointing towards a Lyman continuum escape fraction of ~80\%. If the signal is reliable, it strongly favours LAEs as the providers of the hydrogen ionising emission at the epoch of reionisation and beyond.}, language = {en} } @inproceedings{OPUS4-1412, title = {The 3rd international IEEE scientific conference on physics and control (PhysCon 2007) : September 3rd-7th 2007 at the University of Potsdam}, editor = {Kurths, J{\"u}rgen and Fradkov, Alexander and Chen, Guanrong}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15228}, pages = {345}, year = {2007}, abstract = {During the last few years there was a tremendous growth of scientific activities in the fields related to both Physics and Control theory: nonlinear dynamics, micro- and nanotechnologies, self-organization and complexity, etc. New horizons were opened and new exciting applications emerged. Experts with different backgrounds starting to work together need more opportunities for information exchange to improve mutual understanding and cooperation. The Conference "Physics and Control 2007" is the third international conference focusing on the borderland between Physics and Control with emphasis on both theory and applications. With its 2007 address at Potsdam, Germany, the conference is located for the first time outside of Russia. The major goal of the Conference is to bring together researchers from different scientific communities and to gain some general and unified perspectives in the studies of controlled systems in physics, engineering, chemistry, biology and other natural sciences. We hope that the Conference helps experts in control theory to get acquainted with new interesting problems, and helps experts in physics and related fields to know more about ideas and tools from the modern control theory.}, language = {en} } @phdthesis{Gressel2008, author = {Gressel, Oliver}, title = {Supernova-driven turbulence and magnetic field amplification in disk galaxies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29094}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Supernovae are known to be the dominant energy source for driving turbulence in the interstellar medium. Yet, their effect on magnetic field amplification in spiral galaxies is still poorly understood. Analytical models based on the uncorrelated-ensemble approach predicted that any created field will be expelled from the disk before a significant amplification can occur. By means of direct simulations of supernova-driven turbulence, we demonstrate that this is not the case. Accounting for vertical stratification and galactic differential rotation, we find an exponential amplification of the mean field on timescales of 100Myr. The self-consistent numerical verification of such a "fast dynamo" is highly beneficial in explaining the observed strong magnetic fields in young galaxies. We, furthermore, highlight the importance of rotation in the generation of helicity by showing that a similar mechanism based on Cartesian shear does not lead to a sustained amplification of the mean magnetic field. This finding impressively confirms the classical picture of a dynamo based on cyclonic turbulence.}, language = {en} } @article{XuZhouMetzleretal.2022, author = {Xu, Pengbo and Zhou, Tian and Metzler, Ralf and Deng, Weihua}, title = {Stochastic harmonic trapping of a L{\´e}vy walk}, series = {New journal of physics : the open-access journal for physics / Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics}, volume = {24}, journal = {New journal of physics : the open-access journal for physics / Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics}, number = {3}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/ac5282}, pages = {1 -- 28}, year = {2022}, abstract = {We introduce and study a L{\´e}vy walk (LW) model of particle spreading with a finite propagation speed combined with soft resets, stochastically occurring periods in which an harmonic external potential is switched on and forces the particle towards a specific position. Soft resets avoid instantaneous relocation of particles that in certain physical settings may be considered unphysical. Moreover, soft resets do not have a specific resetting point but lead the particle towards a resetting point by a restoring Hookean force. Depending on the exact choice for the LW waiting time density and the probability density of the periods when the harmonic potential is switched on, we demonstrate a rich emerging response behaviour including ballistic motion and superdiffusion. When the confinement periods of the soft-reset events are dominant, we observe a particle localisation with an associated non-equilibrium steady state. In this case the stationary particle probability density function turns out to acquire multimodal states. Our derivations are based on Markov chain ideas and LWs with multiple internal states, an approach that may be useful and flexible for the investigation of other generalised random walks with soft and hard resets. The spreading efficiency of soft-rest LWs is characterised by the first-passage time statistic.}, language = {en} } @phdthesis{Ott2006, author = {Ott, Christian David}, title = {Stellar iron core collapse in {3+1} general relativity and the gravitational wave signature of core-collapse supernovae}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12986}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {I perform and analyse the first ever calculations of rotating stellar iron core collapse in {3+1} general relativity that start out with presupernova models from stellar evolutionary calculations and include a microphysical finite-temperature nuclear equation of state, an approximate scheme for electron capture during collapse and neutrino pressure effects. Based on the results of these calculations, I obtain the to-date most realistic estimates for the gravitational wave signal from collapse, bounce and the early postbounce phase of core collapse supernovae. I supplement my {3+1} GR hydrodynamic simulations with 2D Newtonian neutrino radiation-hydrodynamic supernova calculations focussing on (1) the late postbounce gravitational wave emission owing to convective overturn, anisotropic neutrino emission and protoneutron star pulsations, and (2) on the gravitational wave signature of accretion-induced collapse of white dwarfs to neutron stars.}, language = {en} } @phdthesis{Scholz2012, author = {Scholz, Markus Reiner}, title = {Spin polarization, circular dichroism, and robustness of topological surface states}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96686}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2012}, abstract = {Dreidimensionale topologische Isolatoren sind ein neues Materialsystem, welches dadurch charakterisiert ist, dass es in seinem Inneren isolierend an der Ober {\"a}che jedoch leitend ist. Urs{\"a}chlich f{\"u}r die Leitf{\"a}higkeit an der Ober {\"a}che sind sogenannte topologische Ober- {\"a}chenzust{\"a}nde, welche das Valenzband des Inneren mit dem Leitungsband des Inneren verbinden. An der Ober {\"a}che ist also die Bandl{\"u}cke, welche die isolierende Eigenschaft verursacht, geschlossen. Die vorliegende Arbeit untersucht diese Ober {\"a}chenzust{\"a}nde mittels spin- und winkelauf- gel{\"o}ster Photoemissionsspektroskopie. Es wird gezeigt, dass in den Materialien Bi2Se3 und Bi2Te3, in {\"u}bereinstimmung mit der Literatur, die entscheidenden Charakteristika eines topologischen Ober {\"a}chenzustands vorzu nden sind: Die Ober {\"a}chenzust{\"a}nde dieser Sys- teme durchqueren die Bandl{\"u}cke in ungerader Anzahl, sie sind nicht entartet und weisen folgerichtig eine hohe Spinpolarisation auf. Weiterhin wird durch Aufdampfen diverser Adsorbate gezeigt, dass der Ober {\"a}chenzust{\"a}n- de von Bi2Se3 und Bi2Te3, wie erwartet, extrem robust ist. Ober {\"a}chenzust{\"a}nde topologisch trivialer Systeme erf{\"u}llen diese Eigenschaft nicht; bereits kleine Verunreinigungen k{\"o}n- nen diese Zust{\"a}nde zerst{\"o}ren, bzw. die Ober {\"a}che isolierend machen. Die topologischen Ober {\"a}chenzust{\"a}nde k{\"o}nnen in der vorliegenden Arbeit noch bis zur Detektionsgrenze der experimentellen Messmethode nachgewiesen werden und die Ober {\"a}che bleibt Leitf{\"a}hig. Unter den Adsorbaten be ndet sich auch Eisen, ein bekanntermaßen magnetisches Materi- al. Eine der Grundvoraussetzungen f{\"u}r topologische Isolatoren ist die Zeitumkehrsymme- trie, die Elektronen, welche den topologischen Ober {\"a}chenzustand besetzen, vorschreibt, dass sie eine bestimmte Spinrichtung haben m{\"u}ssen, wenn sie sich beispielsweise nach links bewegen und den entgegengesetzten Spin wenn sie sich nach rechts bewegen. In magnetischen Materialien ist die Zeitumkehrsymmetrie jedoch explizit gebrochen und die gezeigte Robustheit des Ober {\"a}chenzustands gegen magnetische Materialien daher uner- wartet. Die Zeitumkehrsymmetrie sorgt auch daf{\"u}r, dass eine Streuung der Elektronen um 180°, beispielsweise an einem Gitterdefekt oder an einem Phonon strikt verboten ist. Bei einem solchen Streuprozess bleibt die Spinrichtung erhalten, da aber in der Gegenrichtung nur Zust{\"a}nde mit entgegengesetztem Spin vorhanden sind kann das Elektron nicht in diese Richtung gestreut werden. Dieses Prinzip wird anhand der Lebensdauer der durch Pho- toemission angeregten Zust{\"a}nde untersucht. Hierbei wird gezeigt, dass die Kopplung der Elektronen des Ober {\"a}chenzustands von Bi2Te3 an Phononen unerwartet hoch ist und dass sich eine Anisotropie in der Bandstruktur des Selbigen auch in den Lebensdauern der ange- regten Zust{\"a}nde widerspiegelt. Weiterhin wird gezeigt, dass sich die Ein {\"u}sse von magne- tischen und nicht-magnetischen Verunreinigungen auf die Lebensdauern stark voneinander unterscheiden. Im letzten Teil der vorliegenden Arbeit wird untersucht, ob eine Asymmetrie in der Inten- sit{\"a}tsverteilung der winkelaufgel{\"o}sten Photoemissionsspektren, bei Anregung mit zirku- lar polarisiertem Licht, in Bi2Te3 R{\"u}ckschl{\"u}sse auf die Spinpolarisation der Elektronen erlaubt. Bei Variation der Energie des eingestrahlten Lichts wird ein Vorzeichenwechsel der Asymmetrie beobachtet. Daraus l{\"a}sst sich schlussfolgern, dass die Asymmetrie keine R{\"u}ckschl{\"u}sse auf die Spinpolarisation erlaubt.}, language = {en} } @phdthesis{Ehlert2023, author = {Ehlert, Kristian}, title = {Simulations of active galactic nuclei feedback with cosmic rays and magnetic fields}, doi = {10.25932/publishup-57816}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-578168}, school = {Universit{\"a}t Potsdam}, pages = {155}, year = {2023}, abstract = {The central gas in half of all galaxy clusters shows short cooling times. Assuming unimpeded cooling, this should lead to high star formation and mass cooling rates, which are not observed. Instead, it is believed that condensing gas is accreted by the central black hole that powers an active galactic nuclei jet, which heats the cluster. The detailed heating mechanism remains uncertain. A promising mechanism invokes cosmic ray protons that scatter on self-generated magnetic fluctuations, i.e. Alfv{\´e}n waves. Continuous damping of Alfv{\´e}n waves provides heat to the intracluster medium. Previous work has found steady state solutions for a large sample of clusters where cooling is balanced by Alfv{\´e}nic wave heating. To verify modeling assumptions, we set out to study cosmic ray injection in three-dimensional magnetohydrodynamical simulations of jet feedback in an idealized cluster with the moving-mesh code arepo. We analyze the interaction of jet-inflated bubbles with the turbulent magnetized intracluster medium. Furthermore, jet dynamics and heating are closely linked to the largely unconstrained jet composition. Interactions of electrons with photons of the cosmic microwave background result in observational signatures that depend on the bubble content. Those recent observations provided evidence for underdense bubbles with a relativistic filling while adopting simplifying modeling assumptions for the bubbles. By reproducing the observations with our simulations, we confirm the validity of their modeling assumptions and as such, confirm the important finding of low-(momentum) density jets. In addition, the velocity and magnetic field structure of the intracluster medium have profound consequences for bubble evolution and heating processes. As velocity and magnetic fields are physically coupled, we demonstrate that numerical simulations can help link and thereby constrain their respective observables. Finally, we implement the currently preferred accretion model, cold accretion, into the moving-mesh code arepo and study feedback by light jets in a radiatively cooling magnetized cluster. While self-regulation is attained independently of accretion model, jet density and feedback efficiencies, we find that in order to reproduce observed cold gas morphology light jets are preferred.}, language = {en} } @phdthesis{Werhahn2023, author = {Werhahn, Maria}, title = {Simulating galaxy evolution with cosmic rays: the multi-frequency view}, doi = {10.25932/publishup-57285}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572851}, school = {Universit{\"a}t Potsdam}, pages = {5, 220}, year = {2023}, abstract = {Cosmic rays (CRs) constitute an important component of the interstellar medium (ISM) of galaxies and are thought to play an essential role in governing their evolution. In particular, they are able to impact the dynamics of a galaxy by driving galactic outflows or heating the ISM and thereby affecting the efficiency of star-formation. Hence, in order to understand galaxy formation and evolution, we need to accurately model this non-thermal constituent of the ISM. But except in our local environment within the Milky Way, we do not have the ability to measure CRs directly in other galaxies. However, there are many ways to indirectly observe CRs via the radiation they emit due to their interaction with magnetic and interstellar radiation fields as well as with the ISM. In this work, I develop a numerical framework to calculate the spectral distribution of CRs in simulations of isolated galaxies where a steady-state between injection and cooling is assumed. Furthermore, I calculate the non-thermal emission processes arising from the modelled CR proton and electron spectra ranging from radio wavelengths up to the very high-energy gamma-ray regime. I apply this code to a number of high-resolution magneto-hydrodynamical (MHD) simulations of isolated galaxies, where CRs are included. This allows me to study their CR spectra and compare them to observations of the CR proton and electron spectra by the Voyager-1 satellite and the AMS-02 instrument in order to reveal the origin of the measured spectral features. Furthermore, I provide detailed emission maps, luminosities and spectra of the non-thermal emission from our simulated galaxies that range from dwarfs to Milk-Way analogues to starburst galaxies at different evolutionary stages. I successfully reproduce the observed relations between the radio and gamma-ray luminosities with the far-infrared (FIR) emission of star-forming (SF) galaxies, respectively, where the latter is a good tracer of the star-formation rate. I find that highly SF galaxies are close to the limit where their CR population would lose all of their energy due to the emission of radiation, whereas CRs tend to escape low SF galaxies more quickly. On top of that, I investigate the properties of CR transport that are needed in order to match the observed gamma-ray spectra. Furthermore, I uncover the underlying processes that enable the FIR-radio correlation (FRC) to be maintained even in starburst galaxies and find that thermal free-free-emission naturally explains the observed radio spectra in SF galaxies like M82 and NGC 253 thus solving the riddle of flat radio spectra that have been proposed to contradict the observed tight FRC. Lastly, I scrutinise the steady-state modelling of the CR proton component by investigating for the first time the influence of spectrally resolved CR transport in MHD simulations on the hadronic gamma-ray emission of SF galaxies revealing new insights into the observational signatures of CR transport both spectrally and spatially.}, language = {en} } @article{WangCherstvyMetzleretal.2022, author = {Wang, Wei and Cherstvy, Andrey G. and Metzler, Ralf and Sokolov, Igor M.}, title = {Restoring ergodicity of stochastically reset anomalous-diffusion processes}, series = {Physical Review Research}, volume = {4}, journal = {Physical Review Research}, edition = {1}, publisher = {American Physical Society}, address = {College Park, Maryland, United States}, issn = {2643-1564}, doi = {10.1103/PhysRevResearch.4.013161}, pages = {013161-1 -- 013161-13}, year = {2022}, abstract = {How do different reset protocols affect ergodicity of a diffusion process in single-particle-tracking experiments? We here address the problem of resetting of an arbitrary stochastic anomalous-diffusion process (ADP) from the general mathematical points of view and assess ergodicity of such reset ADPs for an arbitrary resetting protocol. The process of stochastic resetting describes the events of the instantaneous restart of a particle's motion via randomly distributed returns to a preset initial position (or a set of those). The waiting times of such resetting events obey the Poissonian, Gamma, or more generic distributions with specified conditions regarding the existence of moments. Within these general approaches, we derive general analytical results and support them by computer simulations for the behavior of the reset mean-squared displacement (MSD), the new reset increment-MSD (iMSD), and the mean reset time-averaged MSD (TAMSD). For parental nonreset ADPs with the MSD(t)∝ tμ we find a generic behavior and a switch of the short-time growth of the reset iMSD and mean reset TAMSDs from ∝ _μ for subdiffusive to ∝ _1 for superdiffusive reset ADPs. The critical condition for a reset ADP that recovers its ergodicity is found to be more general than that for the nonequilibrium stationary state, where obviously the iMSD and the mean TAMSD are equal. The consideration of the new statistical quantifier, the iMSD—as compared to the standard MSD—restores the ergodicity of an arbitrary reset ADP in all situations when the μth moment of the waiting-time distribution of resetting events is finite. Potential applications of these new resetting results are, inter alia, in the area of biophysical and soft-matter systems.}, language = {en} } @article{MientusKlempinNowak2023, author = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna}, title = {Reflexion in der Lehrkr{\"a}ftebildung: Empirisch - Phasen{\"u}bergreifend - Interdisziplin{\"a}r}, series = {Reflexion in der Lehrkr{\"a}ftebildung: Empirisch - Phasen{\"u}bergreifend - Interdisziplin{\"a}r (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 4)}, journal = {Reflexion in der Lehrkr{\"a}ftebildung: Empirisch - Phasen{\"u}bergreifend - Interdisziplin{\"a}r (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 4)}, number = {4}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-566-8}, issn = {2626-3556}, doi = {10.25932/publishup-61889}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-618890}, pages = {13 -- 18}, year = {2023}, abstract = {Reflexion - unhinterfragt eines der wichtigsten Worte im Kontext der Lehrkr{\"a}ftebildung. Fest verankert in den bundesdeutschen Bildungsstandards sind in Forschung und Lehre die Suche nach Evidenz und die Unterst{\"u}tzung (angehender) Lehrkr{\"a}fte st{\"a}ndiger Antrieb unz{\"a}hliger Akteur:innen aller Phasen der Lehrkr{\"a}ftebildung. Wenngleich begriff liche Unklarheiten die Kommunikation von Forschungsergebnissen nicht immer intuitiv und die Unterst{\"u}tzung in der Lehre nicht immer praktikabel werden lassen, besteht Einigkeit dar{\"u}ber, dass ein Diskurs zur reflexiven Professionalisierung von Lehrkr{\"a}ften gef{\"u}hrt werden muss. Aus diesem Grund veranstalteten die beiden QLB-Projekte PSI-Potsdam der Universit{\"a}t Potsdam und K2teach der Freien Universit{\"a}t Berlin vom 5. bis 7. Oktober 2022 die Onlinetagung „Reflexion in der Lehrkr{\"a}ftebildung. Empirisch - Phasen{\"u}bergreifend - Interdisziplin{\"a}r". Ausgehend von den verschiedensten Fachdisziplinen diskutierten Akteur:innen aller Phasen der Lehrkr{\"a}ftebildung unterschiedlicher Standorte Ergebnisse empirischer Studien und Erfahrungen aus der Arbeit mit (angehenden) Lehrkr{\"a}ften. Beitr{\"a}ge der Tagung sind in diesem Buch festgehalten und sind als Momentaufnahme eines sich st{\"a}ndig entwickelnden Themenfelds zu verstehen. Forschende und Lehrende haben mit dieser Momentaufnahme die M{\"o}glichkeit, Eindr{\"u}cke f{\"u}r die eigene Arbeit aufzunehmen und weiterzuentwickeln.}, language = {de} } @book{MientusKlempinNowaketal.2023, author = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna and Wyss, Corinne and Aufschnaiter, Claudia von and Faix, Ann-Christin and te Poel, Kathrin and Wahbe, Nadia and Pieper, Martin and H{\"o}ller, Katharina and Kallenbach, Lea and F{\"o}rster, Magdalena and Redecker, Anke and Dick, Mirjam and Holle, J{\"o}rg and Schneider, Edina and Rehfeldt, Daniel and Brauns, Sarah and Abels, Simone and Ferencik-Lehmkuhl, Daria and Fr{\"a}nkel, Silvia and Frohn, Julia and Liebsch, Ann-Catherine and Pech, Detlef and Schreier, Pascal and Jessen, Moiken and Großmann, Uta and Skintey, Lesya and Voerkel, Paul and Vaz Ferreira, Mergenfel A. and Zimmermann, Jan-Simon and Buddeberg, Magdalena and Henke, Vanessa and Hornberg, Sabine and V{\"o}lschow, Yvette and Warrelmann, Julia-Nadine and Malek, Jennifer and Tinnefeld, Anja and Schmidt, Peggy and Bauer, Tobias and J{\"a}nisch, Christopher and Spitzer, Lisa and Franken, Nadine and Degeling, Maria and Preisfeld, Angelika and Meier, Jana and K{\"u}th, Simon and Scholl, Daniel and Vogelsang, Christoph and Watson, Christina and Weißbach, Anna and Kulgemeyer, Christoph and Oetken, Mandy and Gorski, Sebastian and Kubsch, Marcus and Sorge, Stefan and Wulff, Peter and Fellenz, Carolin D. and Schnell, Susanne and Larisch, Cathleen and Kaiser, Franz and Knott, Christina and Reimer, Stefanie and Stegm{\"u}ller, Nathalie and Boukray{\^a}a Trabelsi, Kathrin and Schißlbauer, Franziska and Lemberger, Lukas and Barth, Ulrike and Wiehl, Angelika and Rogge, Tim and B{\"o}hnke, Anja and Dietz, Dennis and Großmann, Leroy and Wienmeister, Annett and Zoppke, Till and Jiang, Lisa and Gr{\"u}nbauer, Stephanie and Ostersehlt, D{\"o}rte and Peukert, Sophia and Sch{\"a}fer, Christoph and L{\"o}big, Anna and Br{\"o}ll, Leena and Brandt, Birgit and Breuer, Meike and Dausend, Henriette and Krelle, Michael and Andersen, Gesine and Falke, Sascha and Kindermann-G{\"u}zel, Kristin and K{\"o}rner, Katrina and Lottermoser, Lisa-Marie and P{\"u}gner, Kati and Sonnenburg, Nadine and Akarsu, Selim and Rechl, Friederike and Gadinger, Laureen and Heinze, Lena and Wittmann, Eveline and Franke, Manuela and Lachmund, Anne-Marie and B{\"o}ttger, Julia and Hannover, Bettina and Behrendt, Renata and Conty, Valentina and Grundmann, Stephanie and Ghassemi, Novid and Opitz, Ben and Br{\"a}mer, Martin and Gasparjan, David and Sambanis, Michaela and K{\"o}ster, Hilde and L{\"u}cke, Martin and Nordmeier, Volkhard and Schaal, Sonja and Haberbosch, Maximilian and Meissner, Maren and Schaal, Steffen and Br{\"u}chner, Melanie and Riehle, Tamara and Leopold, Bengta Marie and Gerlach, Susanne and Rau-Patschke, Sarah and Skorsetz, Nina and Weber, Nadine and Damk{\"o}hler, Jens and Elsholz, Markus and Trefzger, Thomas and Lewek, Tobias and Borowski, Andreas}, title = {Reflexion in der Lehrkr{\"a}ftebildung}, series = {Potsdamer Beitr{\"a}ge f{\"u}r Lehrkr{\"a}ftebildung und Bildungsforschung}, journal = {Potsdamer Beitr{\"a}ge f{\"u}r Lehrkr{\"a}ftebildung und Bildungsforschung}, number = {4}, editor = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-566-8}, issn = {2626-3556}, doi = {10.25932/publishup-59171}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-591717}, publisher = {Universit{\"a}t Potsdam}, pages = {452}, year = {2023}, abstract = {Reflexion ist eine Schl{\"u}sselkategorie f{\"u}r die professionelle Entwicklung von Lehrkr{\"a}ften, welche als Ausbildungsziel in den Bildungsstandards f{\"u}r die Lehrkr{\"a}ftebildung verankert ist. Eine Verstetigung universit{\"a}r gepr{\"a}gter Forschung und Modellierung in der praxisnahen Anwendung im schulischen Kontext bietet Potentiale nachhaltiger Professionalisierung. Die St{\"a}rkung reflexionsbezogener Kompetenzen durch Empirie und Anwendung scheint eine phasen{\"u}bergreifende Herausforderung der Lehrkr{\"a}ftebildung zu sein, die es zu bew{\"a}ltigen gilt. Ziele des Tagungsbandes Reflexion in der Lehrkr{\"a}ftebildung sind eine theoretische Sch{\"a}rfung des Konzeptes „Reflexive Professionalisierung" und der Austausch {\"u}ber Fragen der Einbettung wirksamer reflexionsbezogener Lerngelegenheiten in die Lehrkr{\"a}ftebildung. Forschende und Lehrende der‚ drei Phasen (Studium, Referendariat sowie Fort- und Weiterbildung) der Lehrkr{\"a}ftebildung stellen Lehrkonzepte und Forschungsprojekte zum Thema Reflexion in der Lehrkr{\"a}ftebildung vor und diskutieren diese. Gemeinsam mit Teilnehmenden aller Phasen und von verschiedenen Standorten der Lehrkr{\"a}ftebildung werden zuk{\"u}nftige Herausforderungen identifiziert und L{\"o}sungsans{\"a}tze herausgearbeitet.}, language = {de} } @article{RosenblumPikovskijKuehnetal.2021, author = {Rosenblum, Michael and Pikovskij, Arkadij and K{\"u}hn, Andrea A. and Busch, Johannes Leon}, title = {Real-time estimation of phase and amplitude with application to neural data}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-97560-5}, pages = {11}, year = {2021}, abstract = {Computation of the instantaneous phase and amplitude via the Hilbert Transform is a powerful tool of data analysis. This approach finds many applications in various science and engineering branches but is not proper for causal estimation because it requires knowledge of the signal's past and future. However, several problems require real-time estimation of phase and amplitude; an illustrative example is phase-locked or amplitude-dependent stimulation in neuroscience. In this paper, we discuss and compare three causal algorithms that do not rely on the Hilbert Transform but exploit well-known physical phenomena, the synchronization and the resonance. After testing the algorithms on a synthetic data set, we illustrate their performance computing phase and amplitude for the accelerometer tremor measurements and a Parkinsonian patient's beta-band brain activity.}, language = {en} } @inproceedings{KustererNagelWerneretal.2007, author = {Kusterer, D.-J. and Nagel, T. and Werner, K. and Feldmeier, Achim}, title = {Radiative transfer in CV disk winds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17847}, year = {2007}, abstract = {Mass accretion onto compact objects through accretion disks is a common phenomenon in the universe. It is seen in all energy domains from active galactic nuclei through cataclysmic variables (CVs) to young stellar objects. Because CVs are fairly easy to observe, they provide an ideal opportunity to study accretion disks in great detail and thus help us to understand accretion also in other energy ranges. Mass accretion in these objects is often accompanied by mass outflow from the disks. This accretion disk wind, at least in CVs, is thought to be radiatively driven, similar to O star winds. WOMPAT, a 3-D Monte Carlo radiative transfer code for accretion disk winds of CVs is presented.}, language = {en} } @unpublished{KurthsVossWittetal.1994, author = {Kurths, J{\"u}rgen and Voss, A. and Witt, Annette and Saparin, P. and Kleiner, H. J. and Wessel, Niels}, title = {Quantitative analysis of heart rate variability}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13470}, year = {1994}, abstract = {In the modern industrialized countries every year several hundred thousands of people die due to the sudden cardiac death. The individual risk for this sudden cardiac death cannot be defined precisely by common available, non-invasive diagnostic tools like Holter-monitoring, highly amplified ECG and traditional linear analysis of heart rate variability (HRV). Therefore, we apply some rather unconventional methods of nonlinear dynamics to analyse the HRV. Especially, some complexity measures that are basing on symbolic dynamics as well as a new measure, the renormalized entropy, detect some abnormalities in the HRV of several patients who have been classified in the low risk group by traditional methods. A combination of these complexity measures with the parameters in the frequency domain seems to be a promising way to get a more precise definition of the individual risk. These findings have to be validated by a representative number of patients.}, language = {en} } @phdthesis{HerreroAlonso2023, author = {Herrero Alonso, Yohana}, title = {Properties of high-redshift galaxies in different environments}, doi = {10.25932/publishup-61328}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613288}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 114}, year = {2023}, abstract = {The Lyman-𝛼 (Ly𝛼) line commonly assists in the detection of high-redshift galaxies, the so-called Lyman-alpha emitters (LAEs). LAEs are useful tools to study the baryonic matter distribution of the high-redshift universe. Exploring their spatial distribution not only reveals the large-scale structure of the universe at early epochs, but it also provides an insight into the early formation and evolution of the galaxies we observe today. Because dark matter halos (DMHs) serve as sites of galaxy formation, the LAE distribution also traces that of the underlying dark matter. However, the details of this relation and their co-evolution over time remain unclear. Moreover, theoretical studies predict that the spatial distribution of LAEs also impacts their own circumgalactic medium (CGM) by influencing their extended Ly𝛼 gaseous halos (LAHs), whose origin is still under investigation. In this thesis, I make several contributions to improve the knowledge on these fields using samples of LAEs observed with the Multi Unit Spectroscopic Explorer (MUSE) at redshifts of 3 < 𝑧 < 6.}, language = {en} } @masterthesis{Eggers2023, type = {Bachelor Thesis}, author = {Eggers, Nele}, title = {Properties of Arctic aerosol in the transition between Arctic haze to summer season derived by lidar}, doi = {10.25932/publishup-61943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-619438}, school = {Universit{\"a}t Potsdam}, pages = {x, 63}, year = {2023}, abstract = {During the Arctic haze period, the Arctic troposphere consists of larger, yet fewer, aerosol particles than during the summer (Tunved et al., 2013; Quinn et al., 2007). Interannual variability (Graßl and Ritter, 2019; Rinke et al., 2004), as well as unknown origins (Stock et al., 2014) and properties of aerosol complicate modeling these annual aerosol cycles. This thesis investigates the modification of the microphysical properties of Arctic aerosols in the transition from Arctic haze to the summer season. Therefore, lidar measurements of Ny-{\AA}lesund from April 2021 to the end of July 2021 are evaluated based on the aerosols' optical properties. An overview of those properties will be provided. Furthermore, parallel radiosonde data is considered for indication of hygroscopic growth. The annual aerosol cycle in 2021 differs from expectations based on previous studies from Tunved et al. (2013) and Quinn et al. (2007). Developments of backscatter, extinction, aerosol depolarisation, lidar ratio and color ratio show a return of the Arctic haze in May. The haze had already reduced in April, but regrew afterwards. The average Arctic aerosol displays hygroscopic behaviour, meaning growth due to water uptake. To determine such a behaviour is generally laborious because various meteorological circumstances need to be considered. Two case studies provide further information on these possible events. In particular, a day with a rare ice cloud and with highly variable water cloud layers is observed.}, language = {en} } @misc{YeZhangWarbyetal.2022, author = {Ye, Fangyuan and Zhang, Shuo and Warby, Jonathan and Wu, Jiawei and Gutierrez-Partida, Emilio and Lang, Felix and Shah, Sahil and Saglamkaya, Elifnaz and Sun, Bowen and Zu, Fengshuo and Shoaee, Safa and Wang, Haifeng and Stiller, Burkhard and Neher, Dieter and Zhu, Wei-Hong and Stolterfoht, Martin and Wu, Yongzhen}, title = {Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1317}, issn = {1866-8372}, doi = {10.25932/publishup-58770}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587705}, pages = {12}, year = {2022}, abstract = {Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23\% with a low non-radiative voltage loss of 110 mV, and retain >97\% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.}, language = {en} } @article{YeZhangWarbyetal.2022, author = {Ye, Fangyuan and Zhang, Shuo and Warby, Jonathan and Wu, Jiawei and Gutierrez-Partida, Emilio and Lang, Felix and Shah, Sahil and Saglamkaya, Elifnaz and Sun, Bowen and Zu, Fengshuo and Shoai, Safa and Wang, Haifeng and Stiller, Burkhard and Neher, Dieter and Zhu, Wei-Hong and Stolterfoht, Martin and Wu, Yongzhen}, title = {Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, publisher = {Springer Nature}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-34203-x}, pages = {12}, year = {2022}, abstract = {Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23\% with a low non-radiative voltage loss of 110 mV, and retain >97\% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.}, language = {en} } @phdthesis{Dubinovska2013, author = {Dubinovska, Daria}, title = {Optical surveys of AGN and their host galaxies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64739}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {This thesis rests on two large Active Galactic Nuclei (AGNs) surveys. The first survey deals with galaxies that host low-level AGNs (LLAGN) and aims at identifying such galaxies by quantifying their variability. While numerous studies have shown that AGNs can be variable at all wavelengths, the nature of the variability is still not well understood. Studying the properties of LLAGNs may help to understand better galaxy evolution, and how AGNs transit between active and inactive states. In this thesis, we develop a method to extract variability properties of AGNs. Using multi-epoch deep photometric observations, we subtract the contribution of the host galaxy at each epoch to extract variability and estimate AGN accretion rates. This pipeline will be a powerful tool in connection with future deep surveys such as PANSTARS. The second study in this thesis describes a survey of X-ray selected AGN hosts at redshifts z>1.5 and compares them to quiescent galaxies. This survey aims at studying environments, sizes and morphologies of star-forming high-redshift AGN hosts in the COSMOS Survey at the epoch of peak AGN activity. Between redshifts 1.51.5 to date. We analyzed the evolution of structural parameters of AGN and non-AGN host galaxies with redshift, and compared their disturbance rates to identify the more probable AGN triggering mechanism in the 43.5