@techreport{LessmannGrunerKalkuhletal.2024, type = {Working Paper}, author = {Lessmann, Kai and Gruner, Friedemann and Kalkuhl, Matthias and Edenhofer, Ottmar}, title = {Emissions Trading with Clean-up Certificates}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {79}, issn = {2628-653X}, doi = {10.25932/publishup-64136}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-641368}, pages = {35}, year = {2024}, abstract = {We analyze how conventional emissions trading schemes (ETS) can be modified by introducing "clean-up certificates" to allow for a phase of net-negative emissions. Clean-up certificates bundle the permission to emit CO2 with the obligation for its removal. We show that demand for such certificates is determined by cost-saving technological progress, the discount rate and the length of the compliance period. Introducing extra clean-up certificates into an existing ETS reduces near-term carbon prices and mitigation efforts. In contrast, substituting ETS allowances with clean-up certificates reduces cumulative emissions without depressing carbon prices or mitigation in the near term. We calibrate our model to the EU ETS and identify reforms where simultaneously (i) ambition levels rise, (ii) climate damages fall, (iii) revenues from carbon prices rise and (iv) carbon prices and aggregate mitigation cost fall. For reducing climate damages, roughly half of the issued clean-up certificates should replace conventional ETS allowances. In the context of the EU ETS, a European Carbon Central Bank could manage the implementation of cleanup certificates and could serve as an enforcement mechanism.}, language = {en} } @misc{YeZhangWarbyetal.2022, author = {Ye, Fangyuan and Zhang, Shuo and Warby, Jonathan and Wu, Jiawei and Gutierrez-Partida, Emilio and Lang, Felix and Shah, Sahil and Saglamkaya, Elifnaz and Sun, Bowen and Zu, Fengshuo and Shoaee, Safa and Wang, Haifeng and Stiller, Burkhard and Neher, Dieter and Zhu, Wei-Hong and Stolterfoht, Martin and Wu, Yongzhen}, title = {Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1317}, issn = {1866-8372}, doi = {10.25932/publishup-58770}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587705}, pages = {12}, year = {2022}, abstract = {Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23\% with a low non-radiative voltage loss of 110 mV, and retain >97\% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.}, language = {en} } @phdthesis{Ketzer2024, author = {Ketzer, Laura}, title = {The impact of stellar activity evolution on atmospheric mass loss of young exoplanets}, doi = {10.25932/publishup-62681}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-626819}, school = {Universit{\"a}t Potsdam}, pages = {x, 208}, year = {2024}, abstract = {The increasing number of known exoplanets raises questions about their demographics and the mechanisms that shape planets into how we observe them today. Young planets in close-in orbits are exposed to harsh environments due to the host star being magnetically highly active, which results in high X-ray and extreme UV fluxes impinging on the planet. Prolonged exposure to this intense photoionizing radiation can cause planetary atmospheres to heat up, expand and escape into space via a hydrodynamic escape process known as photoevaporation. For super-Earth and sub-Neptune-type planets, this can even lead to the complete erosion of their primordial gaseous atmospheres. A factor of interest for this particular mass-loss process is the activity evolution of the host star. Stellar rotation, which drives the dynamo and with it the magnetic activity of a star, changes significantly over the stellar lifetime. This strongly affects the amount of high-energy radiation received by a planet as stars age. At a young age, planets still host warm and extended envelopes, making them particularly susceptible to atmospheric evaporation. Especially in the first gigayear, when X-ray and UV levels can be 100 - 10,000 times higher than for the present-day sun, the characteristics of the host star and the detailed evolution of its high-energy emission are of importance. In this thesis, I study the impact of stellar activity evolution on the high-energy-induced atmospheric mass loss of young exoplanets. The PLATYPOS code was developed as part of this thesis to calculate photoevaporative mass-loss rates over time. The code, which couples parameterized planetary mass-radius relations with an analytical hydrodynamic escape model, was used, together with Chandra and eROSITA X-ray observations, to investigate the future mass loss of the two young multiplanet systems V1298 Tau and K2-198. Further, in a numerical ensemble study, the effect of a realistic spread of activity tracks on the small-planet radius gap was investigated for the first time. The works in this thesis show that for individual systems, in particular if planetary masses are unconstrained, the difference between a young host star following a low-activity track vs. a high-activity one can have major implications: the exact shape of the activity evolution can determine whether a planet can hold on to some of its atmosphere, or completely loses its envelope, leaving only the bare rocky core behind. For an ensemble of simulated planets, an observationally-motivated distribution of activity tracks does not substantially change the final radius distribution at ages of several gigayears. My simulations indicate that the overall shape and slope of the resulting small-planet radius gap is not significantly affected by the spread in stellar activity tracks. However, it can account for a certain scattering or fuzziness observed in and around the radius gap of the observed exoplanet population.}, language = {en} } @article{CorbettSiegelThulin2024, author = {Corbett, Tim and Siegel, Bj{\"o}rn and Thulin, Mirjam}, title = {Towards Pluricultural and Connected Histories}, series = {PaRDeS}, journal = {PaRDeS}, number = {29}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-574-3}, issn = {1614-6492}, doi = {10.25932/publishup-64598}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-645988}, pages = {15 -- 27}, year = {2024}, language = {en} } @article{Hoedl2024, author = {H{\"o}dl, Klaus}, title = {Blurring the Boundaries of Jewishness}, series = {PaRDeS}, journal = {PaRDeS}, number = {29}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-574-3}, issn = {1614-6492}, doi = {10.25932/publishup-64600}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-646009}, pages = {39 -- 50}, year = {2024}, abstract = {In this essay I argue that while research in Jewish studies over the last several decades has done much to erode the historical narrative of Jewish/non-Jewish separation and detachment, it has also raised various questions pertaining to the outcome of Jewish/non-Jewish interactions and coexistence as well as the contours of Jewish difference. I contend that employing the concepts of conviviality, ethnic/religious/national indifference, and similarity will greatly facilitate answering these questions.}, language = {en} } @article{Csaky2024, author = {Cs{\´a}ky, Moritz}, title = {Habsburg Central Europe}, series = {PaRDeS}, journal = {PaRDeS}, number = {29}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-574-3}, issn = {1614-6492}, doi = {10.25932/publishup-64599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-645995}, pages = {31 -- 37}, year = {2024}, abstract = {Central Europe is characterized by linguistic and cultural density as well as by endogenous and exogenous cultural influences. These constellations were especially visible in the former Habsburg Empire, where they influenced the formation of individual and collective identities. This led not only to continual crises and conflicts, but also to an equally enormous creative potential as became apparent in the culture of the fin-de-si{\`e}cle.}, language = {en} } @book{SchmidtUlrichBuechneretal.2024, author = {Schmidt, Thorsten Ingo and Ulrich, Peter and B{\"u}chner, Christiane and Franzke, Jochen and Jann, Werner and Bauer, Hartmut and Wagner, Dieter and Br{\"u}ning, Christoph and Bickenbach, Christian and Kuhlmann, Sabine and Peters, Niklas and Reichard, Christoph and Tessmann, Jens and Maaß, Christian and Kern, Kristine and Kochsk{\"a}mper, Elisa and Gailing, Ludger and Krzymuski, Marcin}, title = {Kommunalwissenschaften an der Universit{\"a}t Potsdam}, series = {KWI-Schriften}, journal = {KWI-Schriften}, number = {15}, editor = {Schmidt, Thorsten Ingo and Bickenbach, Christian and Gronewold, Ulfert and Kuhlmann, Sabine and Ulrich, Peter}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-581-1}, issn = {1867-951X}, doi = {10.25932/publishup-63618}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-636180}, publisher = {Universit{\"a}t Potsdam}, pages = {124}, year = {2024}, abstract = {Zum dreißigj{\"a}hrigen Bestehen des Kommunalwissenschaftlichen Instituts an der Universit{\"a}t Potsdam vereint dieser Jubil{\"a}umsband kurze Aufs{\"a}tze von ehemaligen und aktuellen Vorstandsmitgliedern, von Ehrenmitgliedern des Vorstands, langj{\"a}hrigen wissenschaftlichen Mitarbeitern des Instituts und aktuellen wissenschaftlichen Kooperationspartnern. Die insgesamt zw{\"o}lf Beitr{\"a}ge befassen sich mit den Kommunalwissenschaften und der Geschichte des Kommunalwissenschaftlichen Instituts, mit aktuellen kommunalwissenschaftlichen Fragestellungen und wissenschaftlichen Kooperationen des KWI. Der vom KWI-Vorstand herausgegebene Band soll einen breiten Blick auf 30 Jahre Kommunalwissenschaften in Brandenburg und an der Universit{\"a}t Potsdam werfen und einen Ausblick auf zuk{\"u}nftige kommunalwissenschaftliche Forschung geben.}, language = {de} }