@phdthesis{Nguyen2011, author = {Nguyen, Hung Minh}, title = {Regulation of leaf growth and development by transcription factors in Arabidopsis thaliana}, address = {Potsdam}, pages = {152 S.}, year = {2011}, language = {en} } @phdthesis{Nahavandi2011, author = {Nahavandi, Nahid}, title = {Genetic and morphological analysis on the evolution of the Ponto-Caspian amphipod Pontogammarus maeoticus}, address = {Potsdam}, pages = {54 S.}, year = {2011}, language = {en} } @phdthesis{Naaf2011, author = {Naaf, Tobias}, title = {Floristic homogenization and impoverishment : herb layer changes over two decades in deciduous forest patches of the Weser-Elbe region (NW Germany)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52446}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Human-induced alterations of the environment are causing biotic changes worldwide, including the extinction of species and a mixing of once disparate floras and faunas. One type of biological communities that is expected to be particularly affected by environmental alterations are herb layer plant communities of fragmented forests such as those in the west European lowlands. However, our knowledge about current changes in species diversity and composition in these communities is limited due to a lack of adequate long-term studies. In this thesis, I resurveyed the herb layer communities of ancient forest patches in the Weser-Elbe region (NW Germany) after two decades using 175 semi-permanent plots. The general objectives were (i) to quantify changes in plant species diversity considering also between-community (β) and functional diversity, (ii) to determine shifts in species composition in terms of species' niche breadth and functional traits and (iii) to find indications on the most likely environmental drivers for the observed changes. These objectives were pursued with four independent research papers (Chapters 1-4) whose results were brought together in a General Discussion. Alpha diversity (species richness) increased by almost four species on average, whereas β diversity tended to decrease (Chapter 1). The latter is interpreted as a beginning floristic homogenization. The observed changes were primarily the result of a spread of native habitat generalists that are able to tolerate broad pH and moisture ranges. The changes in α and β diversity were only significant when species abundances were neglected (Chapters 1 and 2), demonstrating that the diversity changes resulted mainly from gains and losses of low-abundance species. This study is one of the first studies in temperate Europe that demonstrates floristic homogenization of forest plant communities at a larger than local scale. The diversity changes found at the taxonomic level did not result in similar changes at the functional level (Chapter 2). The likely reason is that these communities are functionally "buffered". Single communities involve most of the functional diversity of the regional pool, i.e., they are already functionally rich, while they are functionally redundant among each other, i.e., they are already homogeneous. Independent of taxonomic homogenization, the abundance of 30 species decreased significantly (Chapter 4). These species included 12 ancient forest species (i.e., species closely tied to forest patches with a habitat continuity > 200 years) and seven species listed on the Red List of endangered plant species in NW Germany. If these decreases continue over the next decades, local extinctions may result. This biotic impoverishment would seriously conflict with regional conservation goals. Community assembly mechanisms changed at the local level particularly at sites that experienced disturbance by forest management activities between the sampling periods (Chapter 3). Disturbance altered community assembly mechanisms in two ways: (i) it relaxed environmental filters and allowed the coexistence of different reproduction strategies, as reflected by a higher diversity of reproductive traits at the time of the resurvey, and (ii) it enhanced light availability and tightened competitive filters. These limited the functional diversity with respect to canopy height and selected for taller species. Thirty-one winner and 30 loser species, which had significantly increased or decreased in abundance, respectively, were characterized by various functional traits and ecological performances to find indications on the most likely environmental drivers for the observed floristic changes (Chapter 4). Winner species had higher seed longevity, flowered later in the season and had more often an oceanic distribution compared to loser species. Loser species tended to have a higher specific leaf area, to be more susceptible to deer browsing and to have a performance optimum at higher soil pH values compared to winner species. Multiple logistic regression analyses indicated that disturbances due to forest management interventions were the primary cause of the species shifts. As one of the first European resurvey studies, this study provides indications that an enhanced browsing pressure due to increased deer densities and increasingly warmer winters are important drivers. The study failed to demonstrate that eutrophication and acidification due to atmospheric deposition substantially drive herb layer changes. The restriction of the sample to the most base-rich sites in the region is discussed as a likely reason. Furthermore, the decline of several ancient forest species is discussed as an indication that the forest patches are still paying off their "extinction debt", i.e., exhibit a delayed response to forest fragmentation.}, language = {en} } @phdthesis{Mutwil2011, author = {Mutwil, Marek}, title = {Integrative transcriptomic approaches to analyzing plant co-expression networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50752}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {It is well documented that transcriptionally coordinated genes tend to be functionally related, and that such relationships may be conserved across different species, and even kingdoms. (Ihmels et al., 2004). Such relationships was initially utilized to reveal functional gene modules in yeast and mammals (Ihmels et al., 2004), and to explore orthologous gene functions between different species and kingdoms (Stuart et al., 2003; Bergmann et al., 2004). Model organisms, such as Arabidopsis, are readily used in basic research due to resource availability and relative speed of data acquisition. A major goal is to transfer the acquired knowledge from these model organisms to species that are of greater importance to our society. However, due to large gene families in plants, the identification of functional equivalents of well characterized Arabidopsis genes in other plants is a non-trivial task, which often returns erroneous or inconclusive results. In this thesis, concepts of utilizing co-expression networks to help infer (i) gene function, (ii) organization of biological processes and (iii) knowledge transfer between species are introduced. An often overlooked fact by bioinformaticians is that a bioinformatic method is as useful as its accessibility. Therefore, majority of the work presented in this thesis was directed on developing freely available, user-friendly web-tools accessible for any biologist.}, language = {en} } @phdthesis{Mittag2011, author = {Mittag, Sonnhild}, title = {Vom Rosetta-Stone-Protein NitFhit zur Tumorsuppressorwirkung der humanen Nitrilase1}, address = {Potsdam}, pages = {113 S.}, year = {2011}, language = {de} } @phdthesis{Massie2011, author = {Massie, Thomas Michael}, title = {Dynamic behavior of phytoplankton populations far from steady state : chemostat experiments and mathematical modeling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-58102}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Nature changes continuously and is only seemingly at equilibrium. Environmental parameters like temperature, humidity or insolation may strongly fluctuate on scales ranging from seconds to millions of years. Being part of an ecosystem, species have to cope with these environmental changes. For ecologists, it is of special interest how individual responses to environmental changes affect the dynamics of an entire population - and, if this behavior is predictable. In this context, the demographic structure of a population plays a decisive role since it originates from processes of growth and mortality. These processes are fundamentally influenced by the environment. But, how exactly does the environment influence the behavior of populations? And what does the transient behavior look like? As a result from environmental influences on demography, so called cohorts form. They are age or size classes that are disproportionally represented in the demographic distribution of a population. For instance, if most old and young individuals die due to a cold spell, the population finally consists of mainly middle-aged individuals. Hence, the population got synchronized. Such a population tends to show regular fluctuations in numbers (denoted as oscillations) since the alternating phases of individual growth and population growth (due to reproduction) are now performed synchronously by the majority of the population.That is, one time the population growths, and the other time it declines due to mortality. Synchronous behavior is one of the most pervasive phenomena in nature. Gravitational synchrony in the solar system; fireflies flashing in unison; coordinate firing of pacemaker cells in the heart; electrons in a superconductor marching in lockstep. Whatever scale one looks at, in animate as well as inanimate systems, one is likely to encounter synchrony. In experiments with phytoplankton populations, I could show that this principle of synchrony (as used by physicists) could well-explain the oscillations observed in the experiments, too. The size of the fluctuations depended on the strength by which environmental parameters changed as well as on the demographic state of a population prior to this change. That is, two population living in different habitats can be equally influenced by an environmental change, however, the resulting population dynamics may be significantly different when both populations differed in their demographic state before. Moreover, specific mechanisms relevant for the dynamic behavior of populations, appear only when the environmental conditions change. In my experiments, the population density declined by 50\% after ressource supply was doubled. This counter-intuitive behavior can be explained by increasing ressource consumption. The phytoplankton cells grew larger and enhanced their individual constitution. But at the same time, reproduction was delayed and the population density declined due to the losses by mortality. Environmental influences can also synchronize two or more populations over large distances, which is denoted as Moran effect. Assume two populations living on two distant islands. Although there is no exchange of individuals between them, both populations show a high similarity when comparing their time series. This is because the globally acting climate synchronizes the regionally acting weather on both island. Since the weather fluctuations influence the population dynamics, the Moran effect states that the synchrony between the environment equals the one between the populations. My experiments support this theory and also explain deviations arising when accounting for differences in the populations and the habitats they are living in. Moreover, model simulations and experiments astonishingly show that the synchrony between the populations can be higher than between the environment, when accounting for differences in the environmental fluctuations ("noise color").}, language = {de} } @phdthesis{Li2011, author = {Li, Xiaoqing}, title = {Structural and dynamic analysis of circadian oscillators and modelling seasonal response in Soay sheep}, address = {Potsdam}, pages = {163 S.}, year = {2011}, language = {en} } @phdthesis{Lehmann2011, author = {Lehmann, Martin}, title = {Back to the roots : regulation of arabidopsis root metabolism during oxidative stress}, address = {Potsdam}, pages = {154 S.}, year = {2011}, language = {en} } @phdthesis{Lachmuth2011, author = {Lachmuth, Susanne}, title = {Towards a mechanistic understanding of how demography, genetic differentiation and environmental factors interact to generate the invasion dynamics of senecio inaequidens}, address = {Potsdam}, pages = {172 S.}, year = {2011}, language = {en} } @phdthesis{Krueger2011, author = {Kr{\"u}ger, Anne}, title = {Molekulare Charakterisierung von NE81 und CP75, zwei kernh{\"u}llen- und centrosomassoziierten Proteinen in Dictyostelium discoideum}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53915}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Lamine bilden zusammen mit laminassoziierten Proteinen die nukle{\"a}re Lamina. Diese ist notwendig f{\"u}r die mechanische Stabilit{\"a}t von Zellen, die Organisation des Chromatins, der Genexpression, dem Fortgang des Zellzyklus und der Zellmigration. Die vielf{\"a}ltigen Funktionen der Lamine werden durch die Pathogenese von Laminopathien belegt. Zu diesen Erkrankungen, welche ihre Ursache in Mutationen innerhalb der laminkodierenden Gene, oder der Gene laminassoziierter bzw. laminprozessierender Proteine haben, z{\"a}hlen unter anderem das „Hutchinson-Gilford Progerie Syndrom", die „Emery-Dreifuss" Muskeldystrophie und die dilatierte Kardiomyopathie. Trotz der fundamentalen Bedeutung der Lamine, wurden diese bisher nur in Metazoen und nicht in einzelligen Organismen detektiert. Der am{\"o}bide Organismus Dictyostelium discoideum ist ein haploider Eukaryot, der h{\"a}ufig als Modellorganismus in den verschiedensten Bereichen der Zellbiologie eingesetzt wird. Mit der Entdeckung von NE81, einem Protein das mit der inneren Kernh{\"u}lle von Dictyostelium discoideum assoziiert ist, wurde erstmals ein Protein identifiziert, dass man aufgrund seiner Eigenschaften als lamin{\"a}hnliches Protein in einem niederen Eukaryoten bezeichnen kann. Diese Merkmale umfassen die Existenz lamintypischer Sequenzen, wie die CDK1-Phosphorylierungsstelle, direkt gefolgt von einer zentralen „Rod"-Dom{\"a}ne, sowie eine typische NLS und die hoch konservierte CaaX-Box. F{\"u}r die Etablierung des NE81 als „primitives" Lamin, wurden im Rahmen dieser Arbeit verschiedene Experimente durchgef{\"u}hrt, die strukturelle und funktionelle Gemeinsamkeiten zu den Laminen in anderen Organismen aufzeigen konnten. Die Herstellung eines polyklonalen Antik{\"o}rpers erm{\"o}glichte die Verifizierung der subzellul{\"a}ren Lokalisation des NE81 durch Elektronenmikroskopie und gab Einblicke in das Verhalten des endogenen Proteins innerhalb des Zellzyklus. Mit der Generierung von NE81-Nullmutanten konnte demonstriert werden, dass NE81 eine wichtige Rolle bei der nukle{\"a}ren Integrit{\"a}t und der Chromatinorganisation von Zellen spielt. Des Weiteren f{\"u}hrte die Expression von zwei CaaX-Box deletierten NE81 - Varianten dazu, den Einfluss des Proteins auf die mechanische Stabilit{\"a}t der Zellen nachweisen zu k{\"o}nnen. Auch die Bedeutung der hochkonservierten CaaX-Box f{\"u}r die Lokalisation des Proteins wurde durch die erhaltenen Ergebnisse deutlich. Mit der Durchf{\"u}hrung von FRAP-Experimente konnte außerdem die strukturgebende Funktion von NE81 innerhalb des Zellkerns bekr{\"a}ftigt werden. Zus{\"a}tzlich wurde im Rahmen dieser Arbeit damit begonnen, den Einfluss der Isoprenylcysteincarboxylmethyltransferase auf die Lokalisation des Proteins aufzukl{\"a}ren. Die Entdeckung eines lamin{\"a}hnlichen Proteins in einem einzelligen Organismus, der an der Schwelle zu den Metazoen steht, ist f{\"u}r die evolution{\"a}re Betrachtung der Entwicklung der sozialen Am{\"o}be und f{\"u}r die Erforschung der molekularen Basis von Laminopathien in einem einfachen Modellorganismus sehr interessant. Die Arbeit mit Dictyostelium discoideum k{\"o}nnte daher Wege aufzeigen, dass Studium der Laminopathien am Tiermodell drastisch zu reduzieren. In den letzten Jahren hat die Erforschung unbekannter Bestandteile des Centrosoms in Dictyostelium discoideum große Fortschritte gemacht. Eine zu diesem Zwecke von unserer Arbeitsgruppe durchgef{\"u}hrte Proteomstudie, f{\"u}hrte zur Identifizierung weiterer, potentiell centrosomaler Kandidatenproteine. Der zweite Teil dieser Arbeit besch{\"a}ftigt sich mit der Charakterisierung eines solchen Kandidatenproteins, dem CP75. Es konnte gezeigt werden, dass CP75 einen echten, centrosomalen Bestandteil darstellt, der mikrotubuli-unabh{\"a}ngig mit der Core Struktur des Zellorganells assoziiert ist. Weiterhin wurde deutlich, dass die Lokalisation am Centrosom in Abh{\"a}ngigkeit vom Zellzyklus erfolgt und CP75 vermutlich mit CP39, einem weiteren centrosomalen Core Protein, interagiert.}, language = {de} }