@phdthesis{Loew2008, author = {Loew, Noya}, title = {Meerrettich Peroxidase : Modifikationen und Anwendungen in Biosensoren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18430}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Biosensoren werden oft f{\"u}r die Messung einzelner Substanzen in komplexen Medien verwendet, wie z.B. bei der Blutzuckerbestimmung. Sie bestehen aus einem physikochemischen Sensor, dem Transduktionselement, und einer darauf immobilisierten biologischen Komponente, dem Erkennungselement. In dieser Arbeit wurde als Transduktionselement eine Elektrode und als Biokomponente das Enzym „Meerrettich Peroxidase" (engl. horseradish peroxidase, HRP) verwendet. Solche HRP-Elektroden werden f{\"u}r die Messung von Wasserstoffperoxid (H2O2) eingesetzt. H2O2 wird im K{\"o}rper von weißen Blutk{\"o}rperchen produziert, um Bakterien abzut{\"o}ten, wird teilweise ausgeatmet und kann in kondensierter Atemluft nachgewiesen werden. Da viele weiße Blutk{\"o}rperchen bei einer Chemotherapie abget{\"o}tet und dadurch die Patienten anf{\"a}lliger f{\"u}r Infektionen werden, muss ihre Anzahl regelm{\"a}ßig {\"u}berwacht werden. Dazu wird zurzeit Blut abgenommen. Im ersten Teil dieser Arbeit wurde untersucht, ob eine {\"U}berwachung der Anzahl an weißen Blutk{\"o}rperchen ohne Blutabnahme durch eine H2O2-Messung erfolgen kann. Ein direkter Zusammenhang zwischen der ausgeatmeten H2O2-Menge und der Zahl der weißen Blutk{\"o}rperchen konnte dabei nicht festgestellt werden. F{\"u}r empfindliche H2O2-Messungen mit einer HRP-Elektrode ist ein schneller Austausch von Elektronen zwischen der Elektrode und dem Enzym notwendig. Eine Vorraussetzung daf{\"u}r ist eine kurze Distanz zwischen dem aktiven Zentrum des Enzyms und der Elektrodenoberfl{\"a}che. Um einen kurzen Abstand zu erreichen wurden im zweiten Teil dieser Arbeit verschiedene por{\"o}se graphit{\"a}hnliche Materialien aus pyrolysierten Kobalt-Porphyrinen f{\"u}r die Elektrodenherstellung verwendet. Dabei stellte sich heraus, dass eines der untersuchten Materialien, welches Poren von etwa der Gr{\"o}ße eines Enzyms hat, Elektronen etwa 200mal schneller mit dem Enzym austauscht als festes Graphit. Die HRP selbst enth{\"a}lt in seinem aktiven Zentrum ein Eisen-Protoporphyrin, also ein aus vier Ringen bestehendes flaches Molek{\"u}l mit einem Eisenatom im Zentrum. Reagiert die HRP mit H2O2, so entzieht es dem Peroxid zwei Elektronen. Eines dieser Elektronen wird am Eisen, das andere im Ringsystem zwischengespeichert, bevor sie an ein anderes Molek{\"u}l oder an die Elektrode weitergegeben werden. Im letzten Teil dieser Arbeit wurde das Eisen durch Osmium ausgetauscht. Das so ver{\"a}nderte Enzym entzieht Peroxiden nur noch ein Elektron. Dadurch reagiert es zwar langsamer mit Wasserstoffperoxid, daf{\"u}r aber schneller mit tert-Butylhydroperoxid, einem organischen Vertreter der Peroxid-Familie.}, language = {de} } @phdthesis{Wegerich2010, author = {Wegerich, Franziska}, title = {Engineered human cytochrome c : investigation of superoxide and protein-protein interaction and application in bioelectronic systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50782}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {The aim of this thesis is the design, expression and purification of human cytochrome c mutants and their characterization with regard to electrochemical and structural properties as well as with respect to the reaction with the superoxide radical and the selected proteins sulfite oxidase from human and fungi bilirubin oxidase. All three interaction partners are studied here for the first time with human cyt c and with mutant forms of cyt c. A further aim is the incorporation of the different cyt c forms in two bioelectronic systems: an electrochemical superoxide biosensor with an enhanced sensitivity and a protein multilayer assembly with and without bilirubin oxidase on electrodes. The first part of the thesis is dedicated to the design, expression and characterization of the mutants. A focus is here the electrochemical characterization of the protein in solution and immobilized on electrodes. Further the reaction of these mutants with superoxide was investigated and the possible reaction mechanisms are discussed. In the second part of the work an amperometric superoxide biosensor with selected human cytochrome c mutants was constructed and the performance of the sensor electrodes was studied. The human wild-type and four of the five mutant electrodes could be applied successfully for the detection of the superoxide radical. In the third part of the thesis the reaction of horse heart cyt c, the human wild-type and seven human cyt c mutants with the two proteins sulfite oxidase and bilirubin oxidase was studied electrochemically and the influence of the mutations on the electron transfer reactions was discussed. Finally protein multilayer electrodes with different cyt form including the mutant forms G77K and N70K which exhibit different reaction rates towards BOD were investigated and BOD together with the wild-type and engineered cyt c was embedded in the multilayer assembly. The relevant electron transfer steps and the kinetic behavior of the multilayer electrodes are investigated since the functionality of electroactive multilayer assemblies with incorporated redox proteins is often limited by the electron transfer abilities of the proteins within the multilayer. The formation via the layer-by-layer technique and the kinetic behavior of the mono and bi-protein multilayer system are studied by SPR and cyclic voltammetry. In conclusion this thesis shows that protein engineering is a helpful instrument to study protein reactions as well as electron transfer mechanisms of complex bioelectronic systems (such as bi-protein multilayers). Furthermore, the possibility to design tailored recognition elements for the construction of biosensors with an improved performance is demonstrated.}, language = {en} }