@misc{SenBoginMondaletal.2021, author = {Sen, Jaydip and Bogin, Barry and Mondal, Nitish and Dey, Sima and Roy, Shreysai}, title = {Groundwater arsenic contamination in the Bengal Delta Plain is an important public health issue}, series = {Human Biology and Public Health}, volume = {2021}, journal = {Human Biology and Public Health}, number = {1}, editor = {Scheffler, Christiane and Koziel, Slawomir and Hermanussen, Michael and Bogin, Barry}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph.v1.7}, pages = {1 -- 31}, year = {2021}, abstract = {There is a close association between human biology, epidemiology and public health. Exposure to toxic elements is one area of such associations and global concerns. The Bengal Delta Plain (BDP) is a region where contamination of ground water by arsenic has assumed epidemic proportions. Apart from dermatological manifestations, chronic exposure to arsenic causes a heavy toll through several carcinogenic and non-carcinogenic disorders. This article provides a global overview of groundwater arsenic contamination in the BDP region, especially the sources, speciation, and mobility of arsenic, and critically reviews the effects of arsenic on human health. The present review also provides a summary of comprehensive knowledge on various measures required for mitigation and social consequences of the problem of arsenic contaminated groundwater in the BDP region.}, language = {en} } @phdthesis{Perillon2017, author = {P{\´e}rillon, C{\´e}cile}, title = {The effect of groundwater on benthic primary producers and their interaction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406883}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 180}, year = {2017}, abstract = {In littoral zones of lakes, multiple processes determine lake ecology and water quality. Lacustrine groundwater discharge (LGD), most frequently taking place in littoral zones, can transport or mobilize nutrients from the sediments and thus contribute significantly to lake eutrophication. Furthermore, lake littoral zones are the habitat of benthic primary producers, namely submerged macrophytes and periphyton, which play a key role in lake food webs and influence lake water quality. Groundwater-mediated nutrient-influx can potentially affect the asymmetric competition between submerged macrophytes and periphyton for light and nutrients. While rooted macrophytes have superior access to sediment nutrients, periphyton can negatively affect macrophytes by shading. LGD may thus facilitate periphyton production at the expense of macrophyte production, although studies on this hypothesized effect are missing. The research presented in this thesis is aimed at determining how LGD influences periphyton, macrophytes, and the interactions between these benthic producers. Laboratory experiments were combined with field experiments and measurements in an oligo-mesotrophic hard water lake. In the first study, a general concept was developed based on a literature review of the existing knowledge regarding the potential effects of LGD on nutrients and inorganic and organic carbon loads to lakes, and the effect of these loads on periphyton and macrophytes. The second study includes a field survey and experiment examining the effects of LGD on periphyton in an oligotrophic, stratified hard water lake (Lake Stechlin). This study shows that LGD, by mobilizing phosphorus from the sediments, significantly promotes epiphyton growth, especially at the end of the summer season when epilimnetic phosphorus concentrations are low. The third study focuses on the potential effects of LGD on submerged macrophytes in Lake Stechlin. This study revealed that LGD may have contributed to an observed change in macrophyte community composition and abundance in the shallow littoral areas of the lake. Finally, a laboratory experiment was conducted which mimicked the conditions of a seepage lake. Groundwater circulation was shown to mobilize nutrients from the sediments, which significantly promoted periphyton growth. Macrophyte growth was negatively affected at high periphyton biomasses, confirming the initial hypothesis. More generally, this thesis shows that groundwater flowing into nutrient-limited lakes may import or mobilize nutrients. These nutrients first promote periphyton, and subsequently provoke radical changes in macrophyte populations before finally having a possible influence on the lake's trophic state. Hence, the eutrophying effect of groundwater is delayed and, at moderate nutrient loading rates, partly dampened by benthic primary producers. The present research emphasizes the importance and complexity of littoral processes, and the need to further investigate and monitor the benthic environment. As present and future global changes can significantly affect LGD, the understanding of these complex interactions is required for the sustainable management of lake water quality.}, language = {en} }