@article{HassanWollenberger2019, author = {Hassan, Rabeay Y. A. and Wollenberger, Ulla}, title = {Direct determination of bacterial cell viability using carbon nanotubes modified screen-printed electrodes}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {31}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1040-0397}, doi = {10.1002/elan.201900047}, pages = {1112 -- 1117}, year = {2019}, abstract = {For the early detection of bacterial infection, there is a need for rapid, sensitive, and label-free assays. Thus, in this study, nanostrucured microbial electrochemical platform is designed to monitor the viability and cell growth of S. aureus. Using multi-walled carbon nanotube modified screen-printed electrodes (MWCNTs/SPE), the cyclic voltammetric measurements showed only one irreversible oxidation peak at 600 mV vs Ag/AgCl that accounts for the viable and metabolically active bacterial cells. The assay was optimized and the secreted metabolites, in the extracellular matrix, were directly detected. The peak current showed a positive correlation with viable cell numbers ranging from OD600 nm of 0.1 to 1.1, indicating that the activity of live cells can be quantified. Consequently, responses of viable and non-viable cells of S. aureus to the effects of antibiotic and respiratory chain inhibitors were determined. Thus, the proposed nanostructure-based bacterial sensor provides a reasonable and reliable way for real-time monitoring of live-dead cell functions, and antibacterial profiling.}, language = {en} }